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Abstract 
Equal channel angular rolling (ECAR) is a severe plastic defor-
mation (SPD) process in order to achieve ultrafine-grained (UFG) 
structure. In this paper, the mechanical properties of ECAR pro-
cess using artificial neural network (ANN) and nonlinear regres-
sion have been illustrated. For this purpose, a multilayer percep-
tron (MLP) based feed-forward ANN has been used to predict the 
mechanical properties of ECARed Al5083 sheets. Channel oblique 
angle, number of passes and the route of feeding are considered as 
ANN inputs and tensile strength, elongation and hardness are 
considered as the outputs of ANN. In addition, the relationship 
between input parameters and mechanical properties were ex-
tracted separately using nonlinear regression method. Comparing 
the outputs of models and experimental results shows that models 
used in this study can predict and estimate mechanical properties 
appropriately. Where, the performance of ANN model is better 
than the correlations to predict mechanical properties. Finally, 
the developed outputs of neural network model are used to ana-
lyze the effects of input parameters on tensile strength, elongation 
and hardness of ECARed Al5083 sheets. 
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NOMENCLATURE 

O  output value 
I  input value 
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NOMENCLATURE (continuation) 

m  experimental data 
p  predicted data 
W  weight function 
ξ  activation function 
b  bias value 
R  correlation coefficient 
ρ  performance ratio 
φ  channel oblique angle 
N  number of passes 
 
1 INTRODUCTION 

In the last decade, SPD was introduced as an effective method in the production of metals with 
nano structure. Recently UFG materials produced by SPD processes have been considered by many 
researchers. ECAR process is a SPD method that leads to UFG structure and improved mechanical 
properties of material. This process is presented for continuous forming of sheets and strips and like 
ECAP can apply large strain to the material with no change in cross-section of piece (Sedighi et al., 
2013). 

In this decade, many researchers have investigated the ECAR process and micro-structure of its 
samples. Kavackaj et al (2012). The effect of the temperature on the accelerated grain refining dur-
ing the continuous ECAP operation was discussed by Lee et al (2002). Chen et al. (2007) illustrated 
the effect of ECAR pass on microstructure and properties of magnesium alloy sheets. 

 Chung et al. (2006, 2007) analyzed the accumulated deformation and the control of thickness 
uniformity of Al 6063 alloy in the ECAR process. Cheng et al. (2007, 2008) illustrated ECARed 
AZ31 magnesium alloy sheet drawability and its improvement at room temperature. The effect of 
ECAR process on AZ31 magnesium alloy has been studied by Hasani et al. (2011) to achieve a 
nano-structure. Habibi et al. (2011, 2012) illustrated the effect of ECAR process on strength and 
electrical conductivity of pure copper. They also applied ECAR and post-annealing to enhance the 
properties of nano-grained pure copper. Mahmoodi et al. (2012) studied the residual stress distribu-
tion through the thickness of ECARed aluminum alloy. 

 Since experiments require fairly high cost and time, ANN has been attended considerably by 
researchers in various fields because of its ability in modeling variables with a few experiments. In 
fact, ANN is a new method for predicting the nonlinear behavior of material properties (Anaraki et 
al., 2008). The main advantage of ANN compared to conventional methods is its high speed in solv-
ing the complicated relationships (Zhangtt et al., 1995). ANN has capability of modeling and pre-
dicting the behavior of complex processes based on specified data (Derogar et al., 2011). 

 Recently, a tendency toward modeling using neural network in different fields of metal forming 
has increased (Toros et al., 2011; Forcellese et al., 2011; Ambrogio et al., 2010). Djavanroodi et al. 
(2013) and Esmailzadeh et al. (2012) applied ANN to model ECAP process based on experimental 
and three-dimensional finite element method. They indicated a good agreement between experi-
mental results and ANN outputs. 
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Chan et al. (2008) developed a comprehensive methodology based on finite element method and 
ANN to estimate the design parameters and determine the optimal network structure. Qin et al. 
(2010) used ANN model to evaluate and predict the deformation behavior of ZK60 magnesium alloy 
during hot compression. ANN modeling to predict the hot deformation behavior of A356 aluminum 
alloy was performed by Haghdadi et al. (2013). Sheikh et al. (2008) estimated the flow stress behav-
ior of AA5083 using ANN with regard to the dynamic strain aging effect. 

The tensile strength, elongation and hardness have traditionally been the most widely quoted 
and applied determinants of mechanical behavior. In this paper, mechanical properties of ECARed 
Al5083 alloy sheet have been estimated by using artificial neural network. Likewise, nonlinear re-
gression has been employed to propose equations for mechanical properties in terms of channel 
oblique angle and number of passes. 
 
2 ECAR PROCESS 

Figure 1 shows a schematic of ECAR process equipment. In this process, the sample passes through 
the die channel with no change in cross section under a continuous severe shear deformation. Ac-
cording to Figure 1, ECAR process takes place in routes A and C. In route A, the strip moves along 
rolling direction with no rotation, while in route C, the strip is rotated 180 degrees in rolling direc-
tion before the process. 

Input and output channel thickness is 2 mm and the thickness of strip after rolling reduction is 
1.95 mm. The Al 5083 samples with the dimension of 400 * 40 * 2 mm were annealed for one hour 
at 350 ċ. The experiments were accomplished in channel oblique angles of 110, 120 and 130 degrees 
for 1 to 3 passes at room temperature (Mahmoodi et al., 2011). 
 

 
Figure 1: schematic of ECAR process. 
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3 DESIGN AND TRAINING ARTIFICIAL NEURAL NETWORK 

Artificial neural network is a general tool for modeling nonlinear functions, so that it can approxi-
mate any complex behavior with any desired level of accuracy. ANN flexibility to estimate nonline-
ar functions has made it a valuable tool in data processing. ANN modeling process is given in Fig-
ure 2. 
 

 

Figure 2: ANN modeling process. 

 
ANN is specified by important features such as network architecture, activation function and 

training algorithm. The network complexity depends on the number of hidden layers and the num-
ber of neurons in each layer. The small number of hidden layer neurons may cause under fitting. 
Conversely, a large number of hidden layer neurons may result in over fitting. In most cases, the 
optimal number of hidden layer neurons can be achieved through trial and error. 

Selecting the appropriate input parameters has an important role in ANN method and can af-
fect the quality of prediction. In this research, channel oblique angle, routes of feeding and number 
of passes are considered as the input variables and tensile strength, elongation and hardness of 
ECARed Al5083 are considered as the output variables. 

A neuron is the basic processing element in ANN modeling. In a neuron, each input is multi-
plied by the weights, and the results are added to each other and bias. The activation function of 
neurons in each layer is determined and is used to produce output neurons by calculating sum of 
input weights and bias (Equation1). 
 

( )O WI bx= +  (1)
 

Where O, I, b, W and x are output value, input value, bias value, weight function and activation 

function, respectively. 
In this study, TANSIG function is used as activation function of neurons in hidden layer and 

PURELIN linear function is used as activation function of neurons in output layer. The data are 
normalized in the range of -1 to 1 before the network training to ensure that ANN is trained effec-
tively and without any deviation. 
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ANN is trained using data obtained from experiments to estimate the mechanical properties of 
ECARed Al5083 sample. The aim of training process in ANN is to achieve near zero errors with the 
proper adjustment of the training parameters, including updating the weights to achieve the desired 
error. In the present study, Levenberg-Marquardt back-propagation algorithm is used for modeling 
the mechanical properties of ECARed Al5083 sample. For this purpose, the experimental data set is 
used in which 70% of data set is used for training, and the remaining data set is used to test and 
validate the network. The mechanical properties of ECARed Al5083 sheets are predicted using a 
multilayer perceptron (MLP) feed forward network (Fig. 3). The network has a good ability to es-
timate nonlinear relations and is one of the most common models of ANN in engineering applica-
tions. Haghdadi (2013). 
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Figure 3: MLP feed forward neural network. 

 
One of the most commonly used performance functions in a MLP feed forward network is mean 

square error (MSE). MSE and correlation coefficient (R) are used to evaluate the performance of 
ANN. MSE and R-values are obtained from the following equations. 
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Where im represents experimental data values, ip represents predicted values, andn is the number 

of samples. m and p  are mean values of m and p , respectively. 

Modified performance function is one of the methods which improve ANN generalization. By 
applying this performance function makes network have smaller biases and weights and forces the 
network reaction to be smoother and less probably to over fit. The typical performance function 
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MSE has been modified by adding a term, including the mean square network weights (MSW). The 
modified performance function is: 
 

(1 )MSEreg MSE MSWr r= ´ + -  (4)
 
WhereMSEreg is the modified performance function and r is the performance ratio. 

 
4 RESULTS AND DISCUSSION 

In this section, the mechanical properties of ECARed Al5083 samples have been investigated by 
using nonlinear regression and ANN. The performance of these models has been measured and 
compared to each other. For this purpose, MSE and Correlation coefficient have been used. Finally, 
the mechanical properties of ECAR process have been analyzed based on adequate model. 
 
4.1 Proposed Empirical Correlation 

The mechanical properties of samples were modeled using nonlinear regression equation as well as 
ANN. For this purpose, experimental data set was used as the pattern. The resulting equations are 
extracted as a function of channel oblique angle and number of passes. For accurate evaluating 
model output to get the best correlation, mean square error and correlation coefficient are calculat-
ed and compared (Equations 2 and 3). Finally, equations of 5, 6 and 7 were selected as correlations 
with less error for tensile strength, elongation and hardness, respectively. 
 

6 3 2

2 3

Tensile Strength 323 231.9 1.59 10 16.2 0.709 1.41

                             110 0.106

N N N N

N N

j j j

j

-= + + ´ + + -

- -
 (5)

 
6 2 3

3 2

Elongation% 16.5 131 10 0.123 16.5 0.0122 30.9

                         2.84 0.0683

N N N N

N N

j j j

j

-= + ´ + + + -

- -
 (6)

 
7 3 2 2

2 3 2

Hardness 89 44.6 3.25 10 9.72 0.294 7.92 sin(1.8 0.8 2.4 )

                     0.335 36.7 0.081 11.9 sin(1.8 0.8 2.4 )

N N N N N N

N N N N N

j j

j j

-= + + ´ + + + + -

- - - - + -
 (7)

 
Where j  is the channel oblique angle andN is the number of passes. Mean square error values of 

equations of tensile strength, elongation and hardness are 2.1, 0.1283 and 0.37 and their correlation 
coefficients are 0.9983, 0.9986, and 0.9979, respectively. The results show that the equations can 
estimate the mechanical properties favorably. 
 
4.2 Results of Ann Modeling 

Table 1 shows the trial-and-error process to find the best structure of MLP feed forward neural 
network among different architectures of ANN to predict the mechanical properties of ECARed 
Al5083 sheet. 
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Number of 
hidden layer 

Number of neuron in 
each hidden layers 

MSE R1 R2 R3 R 

1 2 4.4186 0.9925 0.99133 0.99048 0.99196 

1 3 1.3995 0.99793 0.99831 0.9972 0.99756 

1 4 0.7716 0.99829 0.99927 0.99804 0.9984 

1 5 0.2538 0.99929 0.99962 0.99915 0.99924 

1 6 0.3666 0.99914 0.99944 0.99988 0.99932 

1 7 0.6219 0.99831 0.99758 0.99808 0.99813 

1 8 0.4514 0.9988 0.9991 0.99906 0.99889 

1 9 0.4278 0.99916 0.99956 0.9999 0.99926 

2 2 2.8301 0.99446 0.99682 0.99372 0.99483 

2 3 0.4068 0.9986 0.99866 0.99877 0.99847 

2 4 0.5667 0.99834 0.99879 0.99854 0.99833 

2 5 0.4765 0.99934 0.99882 0.9994 0.99886 

2 6 0.0972 0.99954 0.99977 0.99938 0.99952 

2 7 0.3407 0.99936 0.9992 0.99954 0.99936 

2 8 0.6221 0.99829 0.9997 0.99906 0.99858 

2 9 0.5048 0.99715 0.99783 0.9994 0.99743 

Table 1: Error and trial procedure for finding optimal number of hidden layers and neurons. 

 
In Table 1, R1, R2 and R3 are the correlation coefficients between the model output and train-

ing data, model output and validation data and finally model output and test data, respectively. 
Likewise, R is the correlation coefficient between the model output and the whole experimental 

data. MSE and R-values have been calculated and compared in Table 1 for different ANN architec-
tures. 
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Figure 4: Regression plot for ANN modeling by use of normalized data. 
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As it can be observed in Table 1, a network with three hidden layers and eight neurons at ei-
ther of them shows the best performance. MSE value is 0.0972 for selected network architecture 
that is a suitable value on scale of output parameters. Figure 4 shows the network regression graph 
after training. Obviously, R-value is close to one, which confirms the proper performance of the 
selected network. 
 
4.3 Comparing the Outputs of Models with Experimental Results 

As it has been illustrated, artificial neural network and nonlinear regression models can estimate the 
mechanical properties accurately. Figure 5 shows the comparison between experimental results and 
models outputs. According to this figure, the experimental results and the models outputs for all 
three properties are in a very good agreement. 
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Figure 5: Comparison between experimental results and models outputs, a. Tensile strength  

b. elongation c. hardness 

 
However, ANN estimates mechanical properties at higher precision. The maximum errors of 

ANN model for estimating tensile strength, elongation and hardness are 0.30, 0.18 and 0.23, respec-
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tively. Although, the maximum error values for nonlinear regression model to estimate the tensile 
strength, elongation and hardness are 3.93, 0.63 and 1.97, respectively. 
 
4.4 The Mechanical Properties Analyzed Using Ann Model 

The ANN model has been used for developing the mechanical properties of ECARed Al5083 sam-
ples after selecting the best model with proper performance. The tensile strength, elongation and 
hardness at different channel oblique angles of 110 to 130 ° for annealed and one to three passes 
samples have been shown separately in Figure 6. 
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Figure 6: The developed data using trained ANN based on experimental data, 

a. Tensile strength b. elongation c. hardness 

 
According to Figure 6.a, the results of ANN show that the tensile strength increases in route C 

compared to route A. In agreement with conducted research, volume fraction and the velocity of 
formation of coaxial grains for route C are more than route A. (Dobatkin et al., 2007). 

As shown in Figure 6.b, the material strength increases by decreasing the channel oblique angle 
of 130° to 110°, but the elongation decreases. An increase in strength and decrease in elongation at 
the first pass may be due to dislocation multiplication in the structure during deformation in the 
ECAR process. The dislocations can be formed within the grains and grain boundaries. The higher 
dislocation density in the material, the higher resistance to movement of dislocations and conse-
quently the higher forces required for plastic deformation. This matter explains the increase in 
strength during plastic deformation. 
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After the first pass, the tensile strength increases with a much lower rate and elongation reduc-
es to a very small extent. It can be due to the sharp decline of work hardening in subsequent passes. 
The fine grains produced by high angle boundaries obstruct dislocation movement. Other defor-
mation mechanisms are begun by increasing passes, such as grain boundary sliding and rotating 
grains (Meyers et al., 2006). 

The reduction in elongation will not continue with increasing the number of passes. Increasing 
the cumulative plastic strain and generation of fine grains can be as a result of the dynamic equilib-
rium between the generation and the annihilation of dislocations (Lee et al., 2003) 

As Figure 6.c shows, a sever increase in hardness of samples occurs in the first pass. The reason 
is because of the work hardening of sample caused by the sub-grain boundaries formation. 
 
5 CONCLUSIONS 

In this paper, two methods of ANN and nonlinear regression modeling were used to estimate the 
mechanical properties of ECARed Al5083 sample. For this purpose, MLP feed forward network was 
employed. Furthermore, the relationship between the channel oblique angles and the number of 
passes as the input parameters and tensile strength, elongation and hardness as the output parame-
ters was presented separately using the nonlinear regression model. Performance of ANN and non-
linear regression model shows that both models estimate the mechanical properties of ECARed 
Al5083 samples accurately. However, the ANN model estimates the output parameters with high 
accuracy. Mean square error and correlation coefficient are 0.0972 and 0.99952 for ANN, respective-
ly. 

The results of mechanical properties obtained by trained ANN show that tensile strength values 
increases in route C more than corresponding values at route A. By decreasing the channel oblique 
angle especially at the first pass, the strength increases and the elongation decreases. The greater 
number of passes leads to increase in tensile strength, hardness and reduction in elongation. 
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