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Abstract 
In the present study, an analytical closed form solution for free vi-
bration response of hybrid composite plate reinforced with shape 
memory alloy (SMA) fibers is derived. Recovery stresses generated 
during martensitic phase transformation are obtained based on one- 
dimensional Brinson’s model. The mechanical properties of plate are 
assumed to be temperature dependent. Based on the first-order 
shear deformation theory (FSDT) the governing equations are ob-
tained via Hamilton’s principle. Ritz method is used to obtain the 
fundamental natural frequency of the plate for different tempera-
tures. A detailed parametric analysis shows the strong influence of 
the volume fraction, pre-strain, orientation and location of SMA 
fibers as well as the aspect ratio of the plate on the fundamental 
natural frequency and the onset of the thermal buckling. 
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Laminated composite plate, First-order shear deformation theory, 
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1 INTRODUCTION 

The demand for the so-called smart materials which are sensitive to the environmental fluctuation is 
continuously increasing. Nitinol shape memory alloy, used in the current study, has two unique prop-
erties: shape memory effect (SME) and super elasticity. The former means returning back to the 
predetermined shapes upon heating. The latter is related to the large amount of inelastic deformation 
which can be recovering after unloading (Aguiar and Savi, 2013). Composites are being increasingly 
used in aerospace, marine and civil due to the advantages they offer. In order to avoid the resonant 
behavior, free vibration of the laminated structures should be analysed (Reddy et al., 2013). 

Despite the continuous advances in composites with embedded SMA fibers, there are still many 
unsolved challenges in the field of free vibration. Birman (1997) compared the effect of composite and 
SMA stiffeners on the stability of composite cylindrical shells and rectangular plates which are sub-
jected to compressive loads. It is shown that composite stiffeners are more efficient in cylindrical 
shells, whereas SMA stiffeners are preferable in plates or long shallow shells. Lau (2002) investigated 
the vibration characteristic of SMA composite beam considering different boundary conditions using 
Finite Element Method. They have demonstrated that increasing temperature in the composite beam 
with SMA fibers results in increasing the natural frequency and damping ratios of smart composite 
beams. Park et al. (2006) investigated the effect of SMA on vibrational behavior of thermally buckled 
composite plate. The results depicted that SMA fibres have significant influence on increasing the 
critical buckling temperature. Zhang et al. (2006) explored the vibrational characteristics of a lami-
nated composite plate containing unidirectional fine SMA wires and laminated composite plates with 
embedded woven SMA layer experimentally and theoretically. They showed the influence of both 
SMA arrangement and temperature on the vibrational characteristics. Kuo et al. (2009) used the 
Finite Element Method to study the buckling of laminated composite plate embedded with SMA 
fibers. According to their findings, the concentration of these fibers on the middle of plate improves 
buckling load. Asadi et al. (2013-2014)proposed an analytical solution for free vibration and thermal 
stability of SMA hybrid composite beam. They found that increase of temperature can postpone the 
critical thermal buckling temperature of plate. Malekzadeh et al. (2014) studied the effect of some 
geometrical and physical parameters on the response of free vibration of rectangular laminated com-
posite embedded with SMA fibers. Asadi et al. (2014) developed an analytical solution to obtain the 
post buckling behavior of geometrically imperfect composite plates embedded with SMA fibers. They 
illustrated that the SMA hybrid laminated plate is barely sensitive to the initial imperfections. 

Studies on the free vibration of hybrid composites embedded with SMA fibers are mostly based 
on the approximated data derived from the experimental curves of an SMA. In this paper, obtaining 
the natural frequency of laminated composite plate embedded with SMA fibers is based on the Brin-
son’s model for the SMA fibers and employing the Ritz method. In the present study, free vibration 
of laminated composite plate with shape memory alloy fibers is examined using the Ritz method. The 
influence of some geometrical and material properties on the free vibration response of the plate is 
investigated. The first-order shear deformation theory of plate is used to provide more accurate solu-
tion in comparison with classic theory of plate. The Brinson (1993) model is used to simulate the 
behavior of the SMA fibers. 
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2 GOVERNING EQUATIONS 

2.1 Constitutive Modeling of Shape Memory Alloy Fibers 

Several models which predict the behavior of SMA fibers are provided in literature. In the present 
study the simplified Brinson model which is a one dimensional model is used. According to this model, 
the total martensitic fraction is expressed as 
 

s T     (1)
 

where , s and T are used to describe total martensitic fraction, stress-induced martensitic fraction, 

and temperature induced martensitic fraction (Auricchio and Sacco,1997). Young modulus of SMA 
fibers is defined as 
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AE and ME are the modulus of SMAs in the pure austenite and the pure martensitic fraction, 

respectively (Auricchio et al., 1997). The recovery stress can be calculated using the equation (3) 
(Brinson, 1996). 
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where  , , , T , and L are strain, stress, thermos-elastic tensor, temperature difference with re-

spect to the reference temperature, and maximum residual strain of the SMA fibers, respectively. 
Calculation of the martensitic fractions during the heating stage constrained with sT A and 

( ) ( )A f A sC T A C T A    can be written as follows: 
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where the constant AC  is the gradient of the curve of critical stress for the reverse phase transfor-

mation, and the initial state is expressed by ' 0 ' . sA and fA are austenitic start temperature and aus-

tenitic finish temperature, respectively. Equations 3 and 4 must be solved simultaneously in each 
temperature to obtain the recovery stress and martensitic fraction (Brinson, 1993). 

The recovery stress versus temperature has been reproduced by Brinson’s model for various pre-
strains. It is illustrated in figure 1. The slope of the curve reaches its largest amount in the phase 
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transformation temperature of SMA fibers. It is depicted in figure 1 that increase of pre-strain will 
increase the recovery strain accordingly. 
 

 

Figure 1: Recovery stress for different pre-strains to SMA fibers versus Temperature. 

 
2.2 Constitutive Equations 

The length, width, and thickness of the hybrid composite plate are presented with a, b, and h, re-
spectively. Laminated composite plate is reinforced with SMA fibers which are aligned with fibers of 
composite medium. 
 

 

Figure 2: Schematic view of the hybrid laminated composite plate embedded with SMA fibers. 
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The multi-cell mechanics approach is employed to find the effective thermos-mechanical proper-
ties of hybrid plate (Chamis, 1983). Thermos-elastic properties are as follows 
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where subscript ‘m’ denotes matrix of composite and ‘s’ represents SMA fibers. Furthermore, volume 
fraction of SMA fibers, Young modulus, shear modulus, Poisson ratio, thermal expansion coefficient 
in principal coordinate of the plate are represented as sV , E ,G , and , respectively. 

In the present study, FSDT is applied, and the displacement field is defined by 
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in which 0u , 0v  and 0w are displacements in the middle surface with assigning zero to z . Furthermore,

x and y  corresponds to the rotation of transverse normal of middle surface about y and x axes 

(Liew et al., 2004). Linear strains based on the displacements field shown in equation (6) are as follows 
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Considering T as temperature change from reference temperature 0T , constitutive law for hybrid 

composite can be written as follows (Asadi et al., 2014). 
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where parameters rM , TM , rN , TN , k and r are moment resultant induced by stress recovery, 
thermal moment resultant, resultant force induced by recovery stress, thermal resultant force, fiber 

orientation of thk  layer and generated recovery stress, respectively. ijA , ijB , ijD and
__

ijQ are exten-

sional, coupling, bending stiffness matrices and transformed reduced stiffness matrix of lamina in the 
principal coordinate of the plate, respectively. The components of these matrices are specified in 
equations (9) and (10). 
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Strain energy (U), kinetic energy (K) and work which is done by external forces (W) yields to 
the following equations (Reddy, 1997). 
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N denotes the resultant force obtained by applying the SMA fibers and uniform thermal load-
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The plate is assumed to be immovable simply supported in each edges. 
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3 RESULTS 

The fundamental natural frequency of smart hybrid composite is computed by Ritz method. The 
plate is simply supported in each four edges. The harmonic series described in equation (14) are 
assumed in order to satisfy the essential boundary conditions of the plate 
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Applying the assumed functions in the energy functions and taking derivative with respect to the 
coefficients, the mass and stiffness matrices are formed. Then the eigenvalue problem can be solved 
to obtain the natural frequencies of the hybrid smart plate. 
 
3.1 Comparative Study 

To verify the results of proposed method, some comparative studies have been done. The obtained natural 
frequency of the composite plate is compared with results in (Asadi et al, 2014, Reddy, 1984, Senthilna-
than, 1987, Whitney et al., 1970, Kant et al, 2001, Srikanth et al, 2003 and Shariyat, 2007). In the first 
experiment, a rectangular composite plate with simply supported boundary condition at four edges is 
considered. The stacking sequence is set to[0 / 90 / 90 / 0] . The properties and dimensions are given by 
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In Table 2, the result of dimensionless fundamental natural frequency parameter 
2__

2

b

h E

    is 

compared with (Reddy, 1984, Senthilnathan, 1987, Whitney et al., 1970, Kant et al, 2001 and Srikanth et 
al, 2003). The results is approximated by using the first 4 terms of equation (14). 
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__

Theory Source 

18.6702 FSDT Present with 4 terms 

18.6718 HSDT Reddy (1984) 

18.7381 HSDT Senthilnathan (1987) 

18.6742 FSDT Whitney-Pagano (1970) 

18.6713 HSDT Kant (2001) 

Table 1: Comparison of dimensionless fundamental natural frequency of laminated composite plate. 

 
Next, the obtained results for plate under thermal loading is compared with natural frequency of 

(Asadi et al, 2014), (Srikanth et al, 2003), and (Shariyat, 2007). Material properties are given in table 
2. Table 3 compares the critical buckling temperature of eight-layered composite plate. Srikanth 
(2003) proposed a nonlinear method, while Shariyat (2007) used Hermitian finite element strategy, 
and results in Asadi (2014) are based on Galerkin procedure.  
 
 

 0( )Temperature C

Property 20 200 260 600 3316 

1( )E GPa 141 141 141 141 141 

2 ( )E GPa 13.1 10.3 0.138 0.0069 0.0069 

12( )G GPa 9.31 7.45 0.0069 0.0034 0.0034 

12 0.28 0.28 0.28 0.28 0.28 

6 0 1
11 10 ( )C    

0.01
8 

0.054 0.054 0.054 0.054 

6 0 1
22 10 ( )C    21.8 37.8 37.8 37.8 37.8 

Table 2: Lamina material properties ( 12 13 23G G G  )(Srikanth et al,2003). 

 
 

Stacking 
sequence 

Present 
Asadi 
(2014) 

Srikanth 
(2003) 

Shariyat 
(2007) 

4[ 45] s  80 79.133 80.5 76.9 

4[0 / 90] s  60 59.458 61 58.7 

Table 3: Critical buckling temperature for different stacking sequences (a/h=100, a/b=1). 
 
 

Since the model seems accurate in comparison with results of literature, the composite plate with 
shape memory alloy fibres is studied in the next part. 
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3.1 Parametric Studies 

In this section the effect of various material and geometry parameters on the first natural frequency 
of a composite plate embedded with shape memory alloy fibers is studied. The material and geomet-
rical properties are described in table 4 and 5, and the plate’s dimensions are
0.1( ) 0.1( ) 0.002( )m m m  . The default values for stacking sequence of laminated composite plate 

and volume fraction of SMA fibers are[0 / 90 / 90 / 0 / 0 / 90 / 90 / 0] and 0.15, respectively. SMA fi-

bers are aligned with Graphite fibers in the top and bottom most layer of laminated composite plate. 

The first dimensionless natural frequency is calculated as
2

2
2
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h E




   . 

 

4
1 155(1 3.53 10 )E T GPa     

4
2 8.07(1 4.27 10 )E T GPa     

4
12 13 4.55(1 6.06 10 )G G T GPa    

4
23 3.25(1 6.06 10 )G T GPa     

6 3
1 0

1
0.07 10 (1 1.25 10 )T

C
         

6 4
2 0

1
30.1 10 (1 0.41 10 )T

C
        

12 0.22   

3
1586

kg

m
   

Table 4: Thermo-mechanical properties of Graphite/Epoxy (Duan et al., 2000). 

 

67 ; 26.3A ME GPa E GPa   

0 018.4 ; 9s fM C M C   

0 034.5 ; 49s fA C A C   

0 0
8 ; 13.8M A

MPa MPa
C C

C C
 

0
0.55 ; 0.067L

MPa

C
    

6
0

1
10.26 10s C

    

Table 5: Thermo-mechanical properties of NiTi fibers (Brinson, 1993). 
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where AE , ME , fM , sM , MC and s areYoung modulus in austenite phase, Young modulus in mar-

tensite phase, martensitic start temperature, martensitic finish temperature, transformation con-
stant, , thermal expansion coefficient of SMA. 
 

3.1.1 Effect of Pre-Strain on the First Dimensionless Frequency 

The effect of pre-strain on the first dimensionless frequency is depicted in figure 3. It can be concluded 
that the increase of pre-strain will leads to increase of natural frequency and critical temperature of 
thermal buckling. At the beginning of the curves, the frequency is less than that of a plate without 
SMA. Since SMA fibers are denser in comparison to the composite plate, they increase the mass. 
Then, the generated recovery stress increases the frequency. After completion of martensitic transfor-
mation phase of the SMA fibers, the increase of temperature results in decrease of stiffness which in 
turn leads to decrease of frequency. 
 

 

Figure 3: Dimensionless fundamental natural frequency of plate for different pre-strains  

to SMA fibers versus Temperature. 

Table 6 specifies the fundamental natural frequency (Hz) of laminated composite plate embedded 
with SMA fibers. 
 

 T=25 0 C T=100 0 C T=200 0 C
Without 

SMA 
6080.2 4651.6 1563.2 

0.01   4984.4 5136.7 3856.2 

0.02   4984.4 5402.7 5056.7 

0.03   4984.4 5426.5 6023.8 

0.04   4984.4 5446.4 6241.3 

0.05   4984.4 5462.2 6268.4 

Table 6: Natural frequency of hybrid plate in different temperatures (Hz) for different pre-strains. 
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3.1.2 Effect of the Volume Fraction of SMA Fibers on Natural Frequency 

As figure 4 demonstrates, from the reference temperature ( 020 C ) to 057 C  the frequency decreases 
and it is less than the frequency of the plate without SMA fibers. As it is shown, increasing the 
volume fraction of SMA fibers results in decrease of the frequency until 057 C . On the other hand, 
generated recovery stress during phase transformation increases the natural frequency and critical 
temperature of thermal buckling after 057 C . 
 

 

Figure 4: Dimensionless fundamental natural frequency of plate for different volume fraction  

of SMA fibers versus Temperature. 

 
3.1.3 Effect of Geometrical Properties of Plate 

The fundamental natural frequency is computed for different length to width (a/b) ratios. Figure 5 
shows the first dimensionless natural frequency versus temperature for both the plate with and with-
out SMA fibers. Increase of length to width ratio for a constant length increases the rigidity of the 
plate, since the plate becomes like a beam with four supported edges, which in turn results in increase 
of the natural frequency. On the other hand, since SMA fibers are aligned with the length of the 
plate, with a constant volume fraction of the SMA fibers and decrease of cross section al area, the 
amount of SMA fibers decreases. Thus, the recovery stress becomes less than the required amount for 
increase of natural frequency. As the green curve illustrates, for a/b=2.5 the SMA fibers do not 
improve the natural frequency, instead, because of increase of them ass of the plate, they decrease the 
natural frequency. 
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Figure 5: Dimensionless fundamental natural frequency of plate for different aspect ratios of plate  

versus Temperature. Solid lines represent curves of composite plate with SMA fibers,  

while the dashed lines depict the behavior of composite plate without SMA fibers. 

 
3.1.4 Effect of Changing the SMA Fibers’ Location Through Thickness of the Plate 

Changing the layers which contains SMA fibers might change the critical buckling temperature 
and the natural frequency. In order to avoid the influence of other parameters on the results, 
the plate is considered as an eight-layered composite plate with stacking sequence of 4[45] s . Fig-

ure 6 depicts the effect of inserting SMA fibers in different layers on natural frequency and 
critical thermal buckling temperature. Inserting SMA fibers in top and bottom most layers 
results in more increase in the critical thermal buckling temperature and natural frequency of 

plate for temperaturas higher than 0270 C . On the other hand, putting them in other layers 

leads to more increase of natural frequency until 0270 C . This demonstrates that based on the 
application needs one of the two suggested options can be used. 
 

 

Figure 6: Dimensionless fundamental natural frequency of plate for embedding SMA fibers  

in different layers of plate versus Temperature. 
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3.1.4 Effect of Changing the SMA Fibers Orientation 

The stacking sequence is considered as[ / 90 / 45 / 0 / 0 / 45 / 90 / ]   where   can be changed from 

0 to 90 degrees, and the volume fraction of SMA fibers is 0.1 in the top and bottom most layers. In 
figure 7, the orientation of SMA fibers and graphite fibers is changed simultaneously. No specific 
pattern can be resulted with changing  and natural frequency of the plate for simultaneous change 
of orientation of SMA fibers and graphite fibers since they both affect the frequency of the plate. The 
reason of changing them simultaneously is that the resulting abrasion caused by the non-aligned SMA 
and graphite fibers will decrease the strength of the plate thus the SMA and graphite fibers should 
be aligned. 
 

 

Figure 7: Dimensionless fundamental natural frequency of plate for orientation of SMA fibers versus Temperature. 

 
4 CONCLUSIONS 

In this paper, linear free vibration of hybrid laminated composite plates embedded with SMA fibers 
is studied. The one-dimensional Brinson’s model is used for simulating the behavior of SMA fibers 
and the recovery stress generated in martensitic phase transformation. By employing first-order shear 
deformation theory and Hamilton’s principle, governing equations are obtained. In addition, employ-
ing Ritz method leads to extracting the fundamental natural frequency of plate. Moreover, the influ-
ence of SMA fibers’ volume fraction, pre-strain, orientation, embedding in different layers, and change 
of aspect ratio of plates are investigated. From the conducted experiments, the following main results 
can be drawn. 

 Inserting the SMA fibers increases the mass of the plate. However, there is no recovery stress 
in the temperatures below the martensitic phase transformation temperature to increase the 
stiffness and natural frequency of the plate.  This in turn, decreases the natural frequency of 
the plate. On the other hand, in the temperatures above the martensitic phase transformation, 
inserting the SMA fibers in the plate increases critical thermal buckling temperature and nat-
ural frequency of the plate noticeably. 
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 Increasing the pre-strain and volume fraction of SMA fibers will result in more increase of 
critical thermal buckling temperature and natural frequencies after the martensitic phase trans-
formation temperature. 

 As the length to width ratio of the plate increases, the effect of SMA fibers decreases. SMA 
fibers are aligned with the length of the plate. Hence, for constant length, decrease of plate 
width will decrease its cross section. Thus, for a constant volume fraction of SMA fibers, the 
rectangular plate has less SMA fibers than the square plate with the same length. Having less 
SMA fiber will result in less stress recovery and less increase in critical thermal buckling and 
natural frequency of the plate. 
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