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Abstract 

In this paper, analytical couple-stress solution for size-dependent 

large-amplitude vibrations of FG (functionally-graded) tapered-

nanobeams is presented. Using the modified couple-stress theory, 

the small scale effects are accounted for. Employing the 

Homotopy-Pade Analysis Method, efficient and accurate analytical 

expressions for the deflection and non-linear frequencies of the 

both single and double tapered nanobeam are presented. Very 

good agreement is observed between the present work results and 

some available results reported in the literature. This study may 

be helpful to investigate the size-dependent mechanical properties 

of MEMS\NEMS. Therefore, the proposed analytical solution can 

be used as an efficient tool for the material or geometrical para-

metric studies of small scale devices consisting of beams for their 

design and optimization which involves a large number of simula-

tions. 
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1 INTRODUCTION 

Micro/nano-scale mechanical structures are structures whose characteristic size is in the order of 

micron or submicrons, e.g., micro/nano-beams and micro/nano-cylinders. These elements are widely 

used in micro- and nano-electromechanical devices (MEMS and NEMS) (Baghani, 2012; Sadeghi et 

al., 2012; Koochi et al., 2014; Rezaiee-Pajand and Yaghoobi, 2014). Micro/nano-scale mechanical 

elements are also used in micro-pumps, accelerometers, micro-mirrors and microswitches. A large 

number of engineering applications utilize the mechanical properties of thin films materials for tar-
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geted performance specifications such as those vibration shock sensor, atomic force microscopes and 

resonant testing method (Kong et al., 2008). 

 Functionally gradient materials (FGMs) utilized in e.g., space devices are high-performance heat-

resistant materials which are able to tolerate extremely large temperature gradients (Koizumi and 

Niino, 1995; Ansari et al., 2014). Meanwhile, FGM concepts have triggered world-wide research 

activities which are applied to metals, ceramics and organic composites to produce modified compo-

nents with superior physical and mechanical properties (Schulz et al., 2003). In recent years, the 

application of FGMs has broadly been spread in micro and nano structures such as thin films in the 

form of shape memory alloys (Fu et al., 2003, 2004) and also in MEMS and NEMS (Witvrouw and 

Mehta, 2005; Lee et al., 2006). In addition to FG functionality, especially in beams, changes in the 

cross-section (gradually or abruptly along the length) could also play an important role in different 

engineering fields as a design tool. They are used in optimization of the structures' weight and 

strength, as well as in architectural and aesthetical aspects of structural engineering design. These 

particular features enable the engineers to design and construct precise structures, e.g., aerospace 

structures. 

 There are several experimental evidences which reveal that the behavior of micro-structures is 

size dependent (Fleck et al., 1994; Lam et al., 2003; McFarland and Colton, 2005; Stolken and Ev-

ans, 1998). Lam et al. (2003) observed that during the bending test of epoxy polymeric micro-beams 

the normalized bending rigidity of the beams becomes 2.4 times larger when the thickness of the 

beam reduces from 115 mµ to 20 mµ . McFarland and Colton (2005) have experimentally investi-

gated the bending of polypropylene small-sized cantilever beams. They observed that the stiffness of 

the small-sized cantilevers was at least 4 times larger than the value which the classical theory of 

elasticity anticipated. To properly predict the behavior of such structures, non-classical theories 

such as couple-stress theory, nonlocal elasticity, Cosserat continuum and strain gradient elasticity 

have been developed to take into account the size-dependent materials' behavior in small-scales 

(Mindlin and Eshel, 1968; Yang et al., 2002; Yoshiyuki, 1968). 

 MEMS/NEMS systems' responses have been the subject of several analytical studies in two past 

decades. Based on the modified couple-stress theory introduced by Yang et al. (2002), Kong et al. 

(2008) analytically calculated the size-dependent natural frequencies of Euler-Bernoulli beams. 

Shahba et al. (2011) studied the free vibration and stability analysis of axially FG tapered Timo-

shenko beams using a finite element approach. There are also several numerical investigations about 

different aspects of vibration of tapered beams (see e.g., Cheng et al. (2011); Saffari et al. (2008); 

Bazoune et al. (2001) among others). Baghani (2012) have analytically studied the deflection and 

static pull-in voltage of cantilevers based on the modified couple-stress theory. It has been shown 

that the couple-stress theory can successfully remove the gap between the experimental observa-

tions and the classical theory based simulations for the static pull-in voltage. Ke and Wang (2011) 

have studied the size effect on dynamic stability of FG microbeams based on a modified couple 

stress theory. They have also investigated on nonlinear free vibration of size-dependent functionally 

graded microbeams (Ke et al., (2012)). 

 It is noted that the governing equations of such systems are essentially non-linear. Generally in a 

non-linear problem, it is hard to arrive at an analytical solution unless numbers of different simpli-

fying assumptions are considered. Otherwise, application of different numerical techniques is una-
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voidable (Baghani et al., 2011, 2012). However, it is difficult to arrive at an indispensable under-

standing of a non-linear problem out of the numerical results. Further, numerical complications 

may occur, if a non-linear problem contain singularities or multiple solutions. Among different ana-

lytical methods, the Homotopy Perturbation Method (HPM) is one of the most accurate and effi-

cient methods for studying non-linear systems (Liao, 2004, 2003). 

 In this paper, employing the modified couple-stress theory, the size-dependent non-linear vibra-

tion of FG tapered Euler-Bernoulli beams is analytically investigated. Incorporating the inextensi-

bility condition in the model, a kinematic dependency between axial and transverse displacements is 

produced. Analytical expressions for the deflection of these beams are obtained using the HAM. The 

impact of FG parameters and also size-dependent effects on the non-linear response of beams are 

analytically studied. Finally, results are compared with experimental data as well as the numerical 

results available from the literature. 

 
2 GOVERNING EQUATIONS BASED ON THE MODIFIED COUPLE-STRESS THEORY 

In the modified couple-stress theory, the strain energy density for an elastic material in the infini-

tesimal deformation is introduced as (Yang et al., 2002; Asghari et al., 2011)1: 
 

( )1 2 : :U = + mσ ε χ
 

(1) 
 

In especial isotropic case, we may write:  
  

( )1 2 T= ∇ + ∇u uε
 

(2) 

( )tr 2λ µ= +1σ ε ε
 

(3) 

( ) ( )1 2 ; 1 2 curlT= ∇ + ∇ = uχ θ θ θ
 

(4) 

22l µ=m χ
 

(5) 
 

where u  and θ are the displacement and rotation vectors, respectively. Also , ,mε σ  and χ  stand 

for strain, stress, couple stress and curvature tensors, respectively. The material length scale param-

eter is represented by l , while λ  and µ  are Lame' constants. 

 We now consider a FG tapered beam (shown in Figure 1). The axial and transverse components 

of the displacement vector are:  
 

( )
( )

( )
,

, ; 0; ,x y z

w x t
u u x t z u u w x t

x

∂
= − = =

∂  

(6) 

 

in which xu , yu  and zu  are the displacement components. It is assumed that all cross sections 

remain plane after deformation; but, they can experience a rigid body displacement in xz plane 

                                                 
1Double contraction between second order tensors A and B denoted by : is defined as A : B = AijBij ; (i, j = 1..3) 
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and/or a rotation about y-axis. Assuming small slopes after deformation but finite deflection w, the 

axial strain can be approximately calculated by the von
 

xx

u w w

x x
ε

∂ ∂ ∂
= − +
∂ ∂

 

In view of equations (2-5), we obtain: 
 

0; ; 0x y zθ θ θ= = − =

Figure 1: An Euler-Bernoulli, loading and coordinate system

Substitution of (8) in to (4) gives 
xyχ = −∂ ∂

zero components of the stress and couple-stress tensors are easily found as follows:
 

2

xx

xy

u w w
E z

x x

m l

σ

µ

   ∂ ∂ ∂  = − +  ∂ ∂   = − ∂
 

To obtain the governing equations, the kinetic energy of the beam 

are considered as follows: 

0

1

2

L
T Au Iw Aw xρ  = + +  ∫

(

Beam strain energy due to bending

2

2 2 2 21 1

2 2
U EA u w EI Al w N u w



  ′ ′ ′′ ′ ′= + + + + +   

�������������������������������������

0

L

              

∫
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axis. Assuming small slopes after deformation but finite deflection w, the 

axial strain can be approximately calculated by the von-Karman strain as: 

22

2

1

2

u w w
z

x xx

 ∂ ∂ ∂ = − +    ∂ ∂∂  

(

( ),
0; ; 0x y z

w x t

x
θ θ θ

∂
= = − =

∂  

(

 

 

 
 

Bernoulli, loading and coordinate system. 

 

 
2 2w x= −∂ ∂ while other components vanish. Therefore, no

stress tensors are easily found as follows: 

22

2

2
2

2

1

2

u w w
E z

x xx

w
m l

x

    ∂ ∂ ∂  = − +     ∂ ∂∂  
∂

 ∂

 

(

To obtain the governing equations, the kinetic energy of the beam T and the beam strain energy 

2 2 2 dT Au Iw Aw x ′= + +  ɺ ɺɺ

 

(10

) ( )
0

    Beam strain energy due to Beam strain energy due to bending
existence of initially axial load 

2 2 2 2
0 2

N

U EA u w EI Al w N u wµ′ ′ ′′ ′ ′= + + + + +

�������������������������������������
���������������

dx

              

 
(11

axis. Assuming small slopes after deformation but finite deflection w, the 

(7) 

(8) 

non-

(9) 

the beam strain energy U 

10) 

11) 



M. Baghani et al./ Analytical Couple-stress Solution for Size-dependent Large-amplitude Vibrations of FG Tapered-nanobeams  99 

Latin American Journal of Solids and Structures 13(2016) 95-118 

 

where A, I, L and 0N is the cross-sectional area, the second moment of inertia of the cross-section 

about the y-axis, beam length and the initial axial load, respectively. E and ρ  are also the effective 

Young's modulus and density, respectively. The strain energy is composed of two parts:  first part 

due to bending and also due to the change of the stretch with respect to the initial configuration, 

and second part the increase in the stored energy with respect to the initial configuration due to the 

existence of initially axial load 0N . It is noted that the x-axis lies on the neutral-axis of the beam 

( d 0

A

z A =∫ ). 

 To derive the governing equations of motion of the FG tapered beam, the Hamilton principle is 

utilized as: 

{ }2

1

dt 0
t

t
T U Wδ δ δ− + − =∫

 
(12) 

 

After some mathematical manipulations (integral by parts, ...), we arrive at: 
 

2 2

1 1

2
2

1
1

0

0
0,

dt d dt

d dt

t t L

t t

t
L t

t
t x L

T Au u Aw Iw w x

Au u Iw w Aw w x Iw w

δ ρ δ δ

ρ δ δ δ ρ δ
=

   ′   ′= − + −      

 ′ ′ ′+ + + − 

∫ ∫ ∫

∫ ∫

ɺɺ ɺɺɺɺ

ɺ ɺ ɺɺɺ  

(13) 

And 

 

( )

2 2

1 1

2

1

2
0

0,

2 2
0 00

2

1
dt dt

2

1 1
d dt

2 2

t t

t t
x L

t L

t

U EA u w N w w

EA u w N w EA u w N w w x

EI Al w w w EI Al

δ δ

δ

µ δ µ

=

        ′ ′ ′= + +          
  ′              ′ ′ ′ ′ ′ ′′− + + + + +                   

′′ ′ ′′+ + − +

∫ ∫

∫ ∫

( )( ) ( )( )2 2

1 1

2 2

1 1

2 2

0
0

2 2
0 00

0

dt d dt

1 1
d dt dt

2 2

L
t t L

t t
x

L
t L t

t t
x

w EI Al w w x

EA u w N u x EA u w N u

δ µ δ

δ δ

=

=

 ′ ′′′′  + +
  

′            ′ ′ ′ ′− + + + + +              

∫ ∫ ∫

∫ ∫ ∫
 

(14) 

In addition, the virtual work done by external loads are expressed as: 
 

( ) ( )
0,0 0

, d , d
L L

x L
W F x t w x G x t u x M w V w N uδ δ δ δ δ δ

=
 ′= + + + + ∫ ∫

 

(15) 

 

in which ( ),G x t  and ( ),F x t  are body forces along x and y axes, respectively. The external trans-

verse force, the axial force and the total moment acting on the beam ends are expressed by V , N

and M , respectively. 

 Finally, substitution of (13), (14) and (15) into (12) and equating coefficients of similar varia-

tions, we obtain: 
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2
0

: ,

1

2

u Au EA u w N G x t

EA u w N N u

δ ρ
    ′ ′= + + +   

    ′ ′+ + − = =     

ɺɺ

( )( )

((

2 2

2 2
0

1
: ,

2
1

2

w EI Al w EA u w N w Aw Iw F x t

EA u w N w EI Al w V Iw w

δ µ ρ ρ

µ ρ δ

     ′′   ′′ ′ ′ ′ ′+ − + + + − =       
        ′ ′ ′ ′′ ′+ + − + − + = =         

(: 0w EI Al w Mδ µ′ ′′+ − =

In the following sections, we focus on analytical solution of set of equations (1

 

ζ =1 

͠x

͠x =L  

                                        (a)            
 

Figure 2: a: Initial configuration of the FG tapered 

3 INEXTENSIBILITY CONDITION 

Consider the FG tapered micro-cantilever beam as illustrated in Figure 2, where 

κ  is the curvature of the beam neutral axis. 

(free end) to 1 (clamped end). Applying the change of parameter 

derivative with respect to x) and using the fact that 
 

ϕ′ =

 

Applying the Taylor series to (19), we may write:
 

w wϕ ′ =
 

Considering the relation κ ϕ′= , we derive an explicit
 

(2 2 2 4w w wκ ′′ ′ ′= + +
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( )2
0

0,
0,

1
: ,

2

0 or 0
x L

x L

u Au EA u w N G x t

EA u w N N uδ
=

=

′    ′ ′= + + +   
   
 + + − = =
  

 
(16

( )

) )

2 2
0

2 2

0,
0,

1
: ,

2

0 or 0
x L

x L

w EI Al w EA u w N w Aw Iw F x t

EA u w N w EI Al w V Iw w

δ µ ρ ρ

µ ρ δ
=

=

′      ′    ′′ ′ ′ ′ ′+ − + + + − =          
     ′   ′ ′ ′ ′′ ′+ + − + − + = =
      

ɺɺ ɺɺ

ɺɺ  
(17

)2
0,

: 0
x L

w EI Al w Mδ µ
=

′ ′′+ − =  (18

n analytical solution of set of equations (16-18). 

 ζ =ε*

         

    (b) 

: a: Initial configuration of the FG tapered nanobeam. b: Deflection of the neutral axis. 

 

cantilever beam as illustrated in Figure 2, where   /x x L=ɶ   

is the curvature of the beam neutral axis. ζ is a dimensionless parameter which varies from 

(free end) to 1 (clamped end). Applying the change of parameter sinw ϕ′ =  (prime represents the 

) and using the fact that κ ϕ′= , it is concluded that: 

21

w

w

′′
′ =

− ′  
(19

), we may write: 

( )21 1 / 2w w′′ ′+
 

(20

, we derive an explicit form for the beam curvature as: 

( )2 2 2 41 1 4w w w′′ ′ ′= + +
 

(21

16) 

17) 

18) 

  and 

er which varies from *ε

(prime represents the 

19) 

20) 

21) 
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The inextensibility condition in special case of 1w ′ <<   leads to the following relation for the axial 

displacement u (Abdel-Jaber et al., 2008; Al-Qaisia and Hamdan, 1999): 
 

( )2 4

0
1 2 1 4

x

u w w dx′ ′= +∫
 

(22) 

 

Differentiating the relation (22) with respect to x gives: 
 

( )2 41 2 1 4u w w′ ′ ′= +
 

(23) 
 

Substituting (23) into (17), we may write: 
 

( )( ) ( )2 3 5
0

1
,

8
EI Al w EA w w N w Aw Iw F x tµ ρ ρ

′   ′′ ′    ′′ ′ ′ ′ ′+ − + + + − =            
ɺɺ ɺɺ

 

(24) 

 

with the following boundary conditions: 
 

( )( )
( )

3 5 2
0 0,

0,
2

0,0,

1
0 or 0

8

0 or 0

x L
x L

x Lx L

EA w w N w EI Al w V Iw w

EI Al w M w

µ ρ δ

µ δ

=
=

==

     ′  ′ ′ ′ ′′ ′+ + − + − + = =       ′′ ′+ − = =

ɺɺ

 

(25) 

 

Introducing the dimensionless parameters, 
 

( ) ( )

0

2 4
0

2 2
0

0 0 0 0 0

0
0 2 2

0 0 0 00 0 0

; ; ; ; ; ;

; ; ; ;

,1
; ; ; ,

hx w l A I
t x w l A I

L h L L L L

LE
E

E E E

F x tN V
N V M M F x

E h L E hE L E h L

τ β χ

ρ βρ µ ν
ρ µ ν κ

ρ ν

τ

 = = = = = = = = = = = = = = = =

ɶɶ ɶɶɶ

ɶ ɶ ɶɶ ɶ

ɶ ɶɶ ɶ ɶ

 
(26) 

 

the governing equations are represented as follows: 
 

( )( ) ( )2 2 3 4 5
0

1
,

8
EI Al w EA w w N w Aw I w F xµ χ χ κ ρ ρ τ

 ′   ′ ′        ′′       ′′ ′ ′ ′+ − + + + − =                       

�� ��

ɶ ɶ ɶɶɶ ɶ ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶɶ ɶ ɶ

 
(27) 

 

( )( )

( )

2 3 4 5 2
0 0,1

0,1

2

0,1

1
0 or 0

8

0 or 0

x

x

x

EA w w N w EI Al w V I w w

EI Al w M w

χ χ µ κρ δ

µ δ

=

=

=

   ′    ′  ′ ′ ′ ′′+ + − + − + = =          ′′ ′+ − = =

��

ɶ

ɶ

ɶɶ ɶɶ ɶ ɶɶ ɶ ɶɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶɶ

ɶɶɶɶ ɶɶ ɶ

 

(28) 

where �  denotes the derivative with respect to t̂ . In order to account for functionality of the mate-

rial parameters, the following forms are used for the density, elastic modulus and Poisson's ratio: 
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( ) ( ) ( )

( )
( )

( )( )

1 0 1 0 0 1 0

0 1 0

0 0 1 0

1 1 ; 1 1 ;

1 1

2 1 2 1

n m p

m

p

x E E E x x

E E E E x

E x

ρ ρ ρ ν ν ν ν

µ
µ

ν ν ν ν

 = + − = + − = + − + − = = = + + + −

ɶɶ ɶ ɶ ɶ

ɶ
ɶ

ɶ
 

(29) 

 

in which 0 1 0 1 0 1, , , , , , ,E E n mρ ρ ν ν  and p are material parameters. In this work, we focus on the solu-

tion of the system under a single active mode. Therefore, a preferred single mode method is used in 

the following form: 

( ) ( ) ( )ˆ ˆ,w x t x q tψ=ɶ ɶ ɶ

 
(30) 

 

where ( )xψ ɶ is the dominant assumed mode while ( )ˆq t stands for the time dependency of the trans-

verse displacement ( )ˆ,w x tɶ ɶ . Multiplying equation (28) by ( )xψ ɶ and integrating along the x-axis, 

the governing equation of motion is calculated as: 
 

( )3 5
2 4 5

ˆq c q c q c q f t+ + + =
��

 

(31) 

where 

( )( ) ( )

( ) ( )

1

1 0

1
2

2 00
1

2 41 1
3 5

4 50 0
1 1

d

1
d

d ; d
8

c A I x

c EI Al N x
c

c EA x c EA x
c c

κ ψ ρ ψ ρ ψ

ψ µ ψ ψ

χ χ
ψ ψ ψ ψ

  ′   ′= −         ′′ ′′′ ′ = + −     − − ′ ′ ′ ′= =

∫

∫

∫ ∫

ɶ ɶɶ ɶ ɶ ɶ

ɶɶɶ ɶ ɶɶ ɶ

ɶ ɶɶ ɶɶ ɶ

 
(32) 

 

The beam neutral axis is subjected to the following initial conditions: 
 

( ) ( )1,0 , 0 0w a q= =
� �

ɶ ɶ

 

(33) 

 

where aɶ is the initial amplitude of beam deflection at the free end. Mode shape amplitudes are nor-

malized in such a way that they satisfy the relation ( )1 1ψ = . This assumption gives ( )0q a= ɶ . 

It is also from (33) obtained that ( )0 0q =
�

. For both single and double tapered beams we use the 

following mode shapes (Gorman, 1975; Abdel-Jaber et al., 2008). For the single tapered beam we 

have: 

( ) ( ) ( ) ( ) ( )( )1 1 2 1 3 1 4 1

1
2 2 2 2x AJ AY A I A Kψ β ς β ς β ς β ς

ς
= + + +ɶ

 
(34) 

 

and for the double tapered beam: 
 

( ) ( ) ( ) ( ) ( )( )1 2 2 2 3 2 4 2

1
2 2 2 2x AJ AY A I A Kψ β ς β ς β ς β ς

ς
= + + +ɶ

 
(35) 
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where *1 ( 1)xς ε= + − ɶ  and α  is determined using linear frequency-analysis of the system 

( 4 2 4
0 0 0 0/ LA L E Iβ ρ ω=  ). Also 1J  and 1Y  are Bessel functions of the first and the second kind, 

respectively, and 1I  and 1K  are modified Bessel functions of the first and the second kind, respec-

tively. Moreover, iA 's are arbitrary constants that to be found by imposing the boundary condi-

tions of the clamped tapered beam as: 
 

( ) ( ) ( ) ( )
1

0 0, 0 0, 1 0, 0
x

Iψ ψ ψ ψ
=

′′′ ′′ ′= = = =
ɶ

ɶ

 
(36) 

In the following, we present an approximate analytical solution based on the Homotopy analysis 

method  (HAM) and discuss on the effect of material parameters functionality, length-scale parame-

ter and geometrical parameters on the large displacement response of both single (STB) and double 

(DTB) tapered FG nanobeams. 

 
4 SOLUTION APPROACH: HOMOTOPY ANALYSIS METHOD 

In most cases, it is difficult to arrive at an analytical solution for non-linear problems. Perturbation 

technique is one of the basic methods to analytically solve non-linear problems. In addition to per-

turbation methods, some non-perturbative methods are developed to be not limited to such con-

straints. Among several different existing methods, HAM is an effective analytical method for solv-

ing non-linear equations. HAM transforms a general non-linear problem into an infinite number of 

linear problems embedding an auxiliary parameter s . As s varies from 0 to 1, the solution moves 

from the initial guess to the exact solution. To describe the basic idea of HAM, we consider a gen-

eral non-linear problem as: 

( ) 0q τ  = N

 
(37) 

 

in which N is a general non-linear differential operator and ( )q τ  is an unknown function. Let ( )q τ  

represent an initial guess of the exact solution for ( )q τ  , h an auxiliary parameter, ( ) 0H τ ≠ an 

auxiliary function, and L an auxiliary linear operator, respectively. Then, using an embedding pa-

rameter 0,1s  ∈   , the homotopy function is constructed as (Liao, 2003): 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 0, , , , , 1 , ,s u H h s s s u s hH sτ τ τ τ τ τ τ     Φ = − Φ − − Φ     N L N

 
(38) 

 

where . ( ),sτΦ .is the primary asymptotic solution. Defining homotopy function as (38), we have a 

vast number of choices for initial guess, auxiliary linear operator, the nonzero auxiliary parameter 

and the auxiliary function, which have direct impact on the solution convergence. 

Setting the homotopy function zero, the zero-order deformation equation is obtained as: 
 

( ) ( ) ( ) ( ) ( )01 , ,s s u shH sτ τ τ τ   − Φ − = Φ   L N

 
(39) 

 

with ( )0,s aΦ =  and 
( )0,

0
s

s

∂Φ
=

∂
 . Setting 0s = , the zero-order deformation equation becomes: 
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( ) ( )0, 0 0qτ τ Φ − = L

 
(40) 

 

Using (40), it is easy to show that ( ) ( )0, 0 qτ τΦ = . When 1s = , the zero-order deformation equa-

tion is reduced to: 

( ),1 0τ Φ = N

 
(41) 

 

which is the same as the non-linear equation (37), provided ( ) ( ),1 qτ τΦ = . It is observed that as 

the embedding parameter s increases from 0 to 1, ( ), sτΦ varies continuously from the initial guess 

( )0q τ to the exact solution ( )q τ of (37). Equation (39) is called the zero-order deformation equa-

tion. The mth-order deformation derivative is constructed as: 
 

( )
( )

0

,1

!

m

m m

s

s
q

m s

τ
τ

=

∂ Φ
=

∂  
(42) 

 

Using Taylors series, ( ),sτΦ  and ( )sω  could be expanded as:  
 

 

( ) ( )
( )

( ) ( )
1 10

,1
, , 0 , 0

!

m
m m

mm
m ms

s
s s q s

m s

τ
τ τ τ τ

∞ ∞

= ==

∂ Φ
Φ = Φ + = Φ +

∂
∑ ∑

 

(43) 

 

( )
( )

0 0
1 10

1

!

m
m m

mm
m ms

s
s s s

m s

ω
ω ω ω ω

∞ ∞

= ==

∂
= + = +

∂
∑ ∑

 

(44) 

 

with ( )0 0mq =  and ( )0 0mq =
�

. Using (41) and (43), we have: 
 

( ) ( ) ( )0
1

m
m

q q qτ τ τ

∞

=

= + ∑
 

(45) 

 

To find ( )mq τ , the higher order deformation equations should be identified. Differentiating (39) m 

times with respect to s, and then setting s = 0 and finally dividing by m!, higher order approxima-

tions of the solution ( )q τ can be determined by: 

( ) ( ) ( )1 1 1 0 1

0 1
,..., , ,..., ;

1 1m m m m m m m

m
q q H R q q

m
hτ τ τ ω ω− − −

 ≤     = Υ + =       >
ϒ


L L

 
(46) 

where 

( )
( ) ( )1

1 1 0 1 1

0

, ,1
,..., , ,...,

1 !

m

m m m m

s

s s
R q q

m s

τ ω
ω ω

−

− − −
=

 ∂ Φ   =  − ∂

N

 
(47) 

 

According to (47), the right-hand side of (45) is only dependent on ( ) ( ) ( ){ }1 2 1, ,..., mq q qτ τ τ− . 

Thus, solving (45), mq  is calculated. The mth-order approximation of ( )q τ is represented by: 
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( ) ( )
0

m

j
j

q qτ τ
=

≈∑
 

(48) 

 

There are also some techniques to accelerate the convergence of a solution series. Among them, the 

Pade technique is widely used. The homotopy-Pade technique was proposed by combining the Pade 

technique with the HAM (Liao, 2003). The corresponding [m, n] Pade approximant for series of (43) 

about the embedding parameter s, is introduced by: 
 

( ) ( ) ( )
( )

( )

,
0

1

,
0

, , 0

m
k

m k
m k

m n
m k

n k
k

A s

s q s

B s

τ

τ τ τ

τ

∞
=

=

=

Φ = Φ + =
∑

∑
∑  

(49) 

 

where ( ),m kA τ  and ( ),n kB τ are determined by following set of approximations: 
 

( ) ( ) ( ) ( )0 1 2, , ,..., m nq q q qτ τ τ τ+
  

 
(50) 

 

Setting s = 0, the [m, n] Homotopy-Pade approximant is obtained as: 
 

( )
( )

( )

,
0

,
0

,1

m

m k
k

n

n k
k

A

B

τ

τ

τ

=

=

Φ =
∑

∑  
(51) 

 

The Homotopy-Pade technique can greatly enlarge the convergence region of the solution series. 

Besides, Homotopy-Pade approximants often converge faster than solutions calculated by HAM. In 

many cases, the [m, m] Homotopy-Pade approximants do not depend on the auxiliary parameter h

. In such cases, even if the corresponding solution series diverge, utilizing the Homotopy-Pade tech-

nique results in a convergent series (Liao, 2003). 

 
5 APPLICATION OF HOMOTOPY-PAD'E METHOD TO THE MODEL 

Considering the free vibrations, the governing non-linear equation (31) can be recast as follows: 
 

2
2 3 5

4 52
0

q
q c q c qω

τ

∂
+ + + =

∂  
(52) 

 

where 2
ˆc tτ ω= . Free oscillation of a system (without damping) represents a periodic motion 

which could be described by the base functions ( ) { }cos , 1,2,...m mτ = . To satisfy the initial condi-

tions, the following form is considered as the initial guess of ( )q τ for zero-order deformation equa-

tion: 

( ) ( )0 cosq aτ τ= ɶ
 

(53) 

To produce the Homotopy function, the auxiliary linear operator is chosen as: 
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( )
( )

( )
2

2
0 2

,
, ,

q s
q s q s

τ
τ ω τ

τ

 ∂    = +     ∂ 
L

 
(54) 

Furthermore, from (50), the non-linear operator is: 
 

( )
( )

( ) ( ) ( )
2

2 3 5
4 52

,
, , , , ,

q s
q s q s c q s c q s

τ
τ ω ω τ τ τ

τ

∂
  = + + +  ∂
N

 

(55) 

 

Whereas the solution should comply with the base functions, the auxiliary function must be selected 

as ( ) 1H τ = . Considering the odd non-linearity of the system, it is found that mR  can be expressed 

by: 

( ) ( )( )1
0

, cos 2 1
m

m m n
n

R nτ ω τ−
=

= Θ +∑
 

(56) 

 

To avoid appearing secular terms in the final solution, the coefficient of ( )cos τ should vanish. 

Thus, we have ( )1 1 0mω −Θ =  . Solving this equation, 1mω − is obtained. For the first-order approx-

imation of HAM, 1R  is obtained as: 
 

( ) ( ) ( )3 2 5 5 3 5
1 0

3 5 5 1 1
cos cos 3 cos 5

4 8 16 4 16
R a a a a a a aβ ω γ τ γ β τ γ τ

     = − + + + + +          
(57) 

 

Thus, 0ω is: 
 

2 4
0

5
1

3

4 8
a aω β γ+= +

 

(58) 

 

Solving (46) for m = 1, 1q  is written as: 
 

( ) ( ) ( ) ( ) ( )3 5 3 5 5

1 2 4

12 16 cos 12 15 cos 3 cos 5

288 240 384

a a a a
q

a
h

a

a

β γ τ β γ τ γ τ

β γ

+ − + −
=

+ +  
(59) 

 

Moreover, using the coefficient of ( )cos τ  in 2R , 1ω is: 
 

( )
( )

4 2 2 2 4

1 3/2
2 4

96 36 652

192 6 8 5

a a a

a a

h β γ β γ
ω

β γ

+ +
=

+ +  
(60) 

 

Solving (46) for m = 2, we arrive at the following expression for 2q  : 
 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 3 2 4 1
2

2 3 40

30 5 10 3 cos 30 cos 31

10 cos 5 5 cos 7 3 cos 9240

C C C C C

C C
q

CC

τ τ
τ

τ τ τ

 − + + + +  =  + + +    
(61) 
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in which 

( ) ( )( )
( ) ( ) ( )

( )

4 2
4 53

6 2 2
5 4 4

1 2 4
4 5

600 615 480 1

300 320 288 384

192 6 5 8

1

h c a a c
a

h a c

h
h

c c a
C

c a c

h

a

 + + +     + + + + +  
= −

+ +  

(62) 

( ) ( )( )( )
( )

5 2 4 2 2

2 2 4

20 24 7 32 1 12

64 6 8 5

a a h a hh

a

h
C

a

γ β β γ β

β γ

+ − + + −
=

− + +  
(63) 

( )7 2 2

3 2 4

72 95

4608 6144 3840

a
C

a a

h aγ β γ

β γ

− +
=

+ +  
(64) 

2 2 9

4 2 4

5

4608 6144 3840

a
C

a

h

a

γ

β γ
=

+ +  
(65) 

 

The procedure described in this section is straight-forward and can be followed to higher order of 

approximations. In next section, it is shown that, 2,2q   
and its correspondent frequency [2,2]ω  give 

very good results compared to the numerical results as well as the experimental data. Thus, we cut 

the procedure at this step. Whereas 2,2q   
is lengthy, it is not reported, however, in the following 

section, to arrive at an acceptable accuracy we report 2,2q   
results (Liao, 2003). 

 The [1, 1] and [2, 2] Homotopy-Pade approximations of ω and ( )q τ can be written in the follow-

ing form (Liao, 2003; Pirbodaghi et al., 2009): 

( ) 2
0 1 2 1

[1,1]
1 2

ω ω ω ω
ω

ω ω

− +
=

−  
(66) 

( ) ( ) ( )( ) ( ) ( )2 3 2 2
3 4 1 0 2 3 4 1 3 4 1 2 3 2 2 0 3 2

[2,2] 2 2
4 2 3 4 1 2 3 1 3 2

2ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω
ω

ω ω ω ω ω ω ω ω ω ω

− + + + − + − − − +
=

− − + + −

 

(67) 

( ) 2
0 1 2 1

[1,1]
1 2

q q q q
q

q q

− +
=

−
 (68) 

( ) ( ) ( )( ) ( ) ( )2 3 2 2
3 4 1 0 2 3 4 1 3 4 1 2 3 2 2 0 3 2

[2,2] 2 2
4 2 3 4 1 2 3 1 3 2

2q q q q q q q q q q q q q q q q q q
q

q q q q q q q q q q

− + + + − + − − − +
=

− − + + −
 (69) 
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6 RESULTS AND DISCUSSION 

In this Section, in order to investigate the size effects (through the couple stress theory) on the 

large amplitude vibrations of axially FG beam, numerical results are provided in various material 

and geometrical properties, e.g., taper ratios, FG parameters and length scale parameters. The non-

linear natural frequencies of the both STB and DTB are calculated and reported in Tables 1-3. A 

comparison study is performed to verify the reliability of the present work formulation with those 

reported in Rao and Rao (1988). It is observed that the present work results are in good agreement 

with those of Rao and Rao (1988). The difference between the present work results and Rao and 

Rao (1988) results is due to employing the Finite element method in Rao and Rao (1988), while in 

this work, we developed analytic approximate solutions through assuming a mode shape. To verify 

the validity of the analytical solution, Table 2 reports the present work results in comparison with 

the numerical results obtained based on the FFT analysis (with a signal length of 350000 and sam-

pling frequency of 560 Hz). As one may observe, the maximum difference is 1.64%. 

 

STB �
∗
= 0.2 �

∗
= 0.4 �

∗
= 0.6 �

∗
= 0.8 

Free tip 

angle 

amplitude 

Rao and 

Rao (1988) 

Present 

work 

Rao and Rao 

(1988) 

Present 

work 

Rao and 

Rao 

(1988) 

Present 

work 

Rao and 

Rao 

(1988) 

Present 

work 

0.01 4.292 
4.292 

(0.0) 
3.934 

3.934 

(0.0) 
3.737 

3.737 

(0.0) 
3.608 

3.608 

(0.0) 

10 4.299 
4.301 

(0.0) 
3.941 

3.967 

(0.66) 
3.744 

3.773 

(0.77) 
3.615 

3.644 

(0.80) 

20 4.317 
4.363 

(1.02) 
3.961 

4.065 

(2.63) 
3.764 

3.875 

(2.95) 
3.636 

3.752 

(3.19) 

30 4.348 
4.447 

(2.74) 
3.994 

4.217 

(5.58) 
3.799 

4.039 

(6.31) 
3.671 

3.921 

(6.81) 

40 4.392 
4.556 

(2.27) 
4.042 

4.406 

(9.01) 
3.848 

4.244 

(10.29) 
3.721 

4.134 

(11.09) 

50 4.452 
4.681 

(5.14) 
4.106 

4.626 

(12.66) 
3.914 

4.473 

(14.28) 
3.788 

4.369 

(15.34) 

60 4.528 
4.814 

(6.31) 
4.188 

4.850 

(15.80) 
3.998 

4.711 

(17.83) 
3.873 

4.614 

(19.13) 

 

Table 1: Nonlinear natural frequency ratio for a STB and comparison between 

the present work and Rao and Rao (1988) ( 1 0 1 0 1 0/ / / 1, 0E E lρ ρ ν ν= = = = ). 
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Figs. 3 and 4 depict the effect of changing the mechanical properties along the beam axis, such as 

density and Young modulus, on the nonlinear frequency ratio with different taper ratio ( *ε ) (for 

both the first and second mode shapes), while the effect of length scale parameter is neglected. To 

this end, the axially FG beam made of material properties tabulated in Table 4 is considered. In 

Fig. 3, the nonlinear frequency ratio is plotted as a function of dimensionless amplitude of vibration 

for different mechanical properties. From Fig. 3 results, it is concluded that for the first mode 

shape, the nonlinear frequency ratio increases where we encounter an increase in FG parameters (n 

and m). In contrary to the first mode results, as seen in Fig. 4, we have an opposite trend. Larger 

values for n and m indicate the conditions in which the equivalent material behavior is more similar 

to that of the left end of the beam constituent (for both the first and second mode shapes). 

 

STB �
∗
= 0.2 �

∗
= 0.4 �

∗
= 0.6 �

∗
= 0.8 

Free tip 

angle 

amplitude 

FFT 
Present 

work 
FFT 

Present 

work 
FFT 

Present 

work 
FFT 

Present 

work 

0.01 4.292 
4.292 

(0.0) 
3.934 

3.934 

(0.0) 
3.737 

3.737 

(0.0) 
3.608 

3.608 

(0.0) 

10 4.306 
4.301 

(0.12) 
3.979 

3.967 

(0.30) 
3.756 

3.773 

(0.45) 
3.654 

3.644 

(0.27) 

20 4.383 
4.363 

(0.46) 
4.103 

4.065 

(0.93) 
3.904 

3.875 

(0.74) 
3.765 

3.752 

(0.35) 

30 4.451 
4.447 

(0.09) 
4.263 

4.217 

(1.08) 
4.021 

4.039 

(0.45) 
3.897 

3.921 

(0.62) 

40 4.584 
4.556 

(0.61) 
4.375 

4.406 

(0.71) 
4.179 

4.244 

(1.56) 
4.071 

4.134 

(1.55) 

50 4.692 
4.681 

(0.23) 
4.647 

4.626 

(0.43) 
4.461 

4.473 

(0.27) 
4.402 

4.369 

(0.75) 

60 4.850 
4.814 

(0.74) 
4.931 

4.850 

(1.64) 
4.766 

4.711 

(1.15) 
4.605 

4.614 

(0.20) 

 

Table 2: Nonlinear natural frequency ratio for a STB and comparison between the present 

work and numerical results based on the FFT analysis. Numbers in parentheses are relative 

differences in percent ( 1 0 1 0 1 0/ / / 1, 0E E lρ ρ ν ν= = = = ). 
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DTB �
∗
= 0.2 �

∗
= 0.4 �

∗
= 0.6 �

∗
= 0.8 

Free tip 

angle 

amplitude 

Rao and 

Rao (1988) 

Present 

work 

Rao and Rao 

(1988) 

Present 

work 

Rao and 

Rao 

(1988) 

Present 

work 

Rao and 

Rao 

(1988) 

Present 

work 

0.01 6.196 
6.196 

(0.0) 
5.009 

5.009 

(0.0) 
4.319 

4.319 

(0.0) 
3.855 

3.855 

(0.0) 

10 6.203 
6.211 

(0.13) 
5.017 

5.021 

(0.09) 
4.326 

4.334 

(0.19) 
3.862 

3.870 

(0.20) 

20 6.225 
6.236 

(0.18) 
5.040 

5.064 

(0.48) 
4.349 

4.366 

(0.40) 
3.884 

3.906 

(0.57) 

30 6.261 
6.299 

(0.61) 
5.079 

5.137 

(1.15) 
4.387 

4.421 

(0.77) 
3.921 

3.964 

(1.10) 

40 6.314 
6.355 

(0.65) 
5.135 

5.227 

(1.8) 
4.442 

4.495 

(1.19) 
3.974 

4.030 

(1.43) 

50 6.385 
6.470 

(1.34) 
5.210 

5.327 

(2.26) 
4.515 

4.531 

(0.36) 
4.044 

4.117 

(1.81) 

60 6.475 
6.509 

(0.52) 
5.306 

5.375 

(1.31) 
4.609 

4.838 

(4.99) 
4.134 

4.395 

(6.31) 

 

Table 3: Nonlinear natural frequency ratio for a DTB and comparison between 

the present work and Rao and Rao (1988) ( 1 0 1 0 1 0/ / / 1, 0E E lρ ρ ν ν= = = =  ). 

 

  

(a) (b) 
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(c) (d) 
 

Figure 3: Nonlinear frequency ratio of the single tapered beam versus free tip nondimensional amplitude 

for the first mode. a) * 0.2ε = , b ) * 0.4ε = , c) * 0.6ε = , d ) * 0.8ε = . 

 

 

Material Density [ kg/m� ] Young modulus [ GPa ] 

Steel 7810 212.3 

Aluminum 2370 72.6 
 

Table 4: Material properties of constituents in the FG beam. 

 

 

  

(a) (b) 
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(c) (d) 
 

Figure 4: Nonlinear frequency ratio of the single tapered beam versus free tip nondimensional 

amplitude for the second mode. a) * 0.2ε = , b ) * 0.4ε = , c) * 0.6ε = , d ) * 0.8ε = . 

 

In Figs. 5 and 6, the influence of the dimensionless length scale parameter ( 0/l h ) on the nonlinear 

natural frequencies of the structure is shown (for both the first and second mode shapes). The non-

linear frequency ratio with dimensionless amplitude is plotted at different values for the mechanical 

properties (n and m). As observed from Fig. 5, it can be deduced that for the first mode shape, an 

increase in the length scale parameter decreases the nonlinear frequency ratio, since the increase in 

the linear frequency is larger than increase in the nonlinear frequency. For the second mode shape 

(Fig. 6), the trend is reversed. 

 The effect of the taper ratio on the nonlinear frequency is scrutinized in Figs. 7 and 8 where the 

nonlinear frequency ratio is plotted versus the dimensionless amplitude in different taper ratios with 

different mechanical properties (for both the first and second mode shapes). As it can be seen, for 

the first mode shape, the nonlinear frequency ratio goes up by increasing the taper ratio with differ-

ent mechanical properties. For the second mode shape, this trend is opposite (Fig. 8). 
 

 
(a) 
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(b) 

 
(c) 

Figure 5: Nonlinear frequency ratio of the single tapered beam versus free tip nondimensional 

amplitude for the first mode. n = m = 1, b) n = m = 2, c) n = m = 6. 

 

 
(a) 
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(b) 

 
(c) 

 

Figure 6: Nonlinear frequency ratio of the single tapered beam versus free tip 

nondimensional amplitude for the second mode. n = m = 1, b) n = m = 2, c) n = m = 6. 

 

 
(a) 
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(b) 

 
(c) 

 

Figure 7: Nonlinear frequency ratio of the single tapered beam versus free tip 

nondimensional amplitude for the first mode at different * 'sε . n = m = 1, b) n = m = 2, c) n = m = 6. 

 

 
(a) 
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(b) 

 
(c) 
 

Figure 8: Nonlinear frequency ratio of the single tapered beam versus free tip nondimensional 

amplitude for the second mode at different * 'sε . a) n = m = 1, b) n = m = 2, c) n = m = 6. 

 
7 SUMMARY AND CONCLUSIONS 

In this study, Homotopy-Pade analysis method is employed to obtain simple analytical expressions 

for the non-linear natural frequency and load-deflection relationship of the (single and double) func-

tionally graded tapered nanobeams. The presented expressions are simple, convenient and efficient 

for the non-linear analysis of the tapered FG beams. Besides, the presented model is valid for a 

wide range of vibration amplitudes while predictions of the other analytical methods such as per-

turbation techniques are valid only for the small amplitude vibrations. Comparison between results 

of the present work and other available data in the literature reveals the accuracy of the presented 

method. The effects of different parameters such as vibration amplitude and different mode shapes 

on the natural frequency ratios and displacement response of the FG tapered nanobeams are also 

investigated. It was shown that increasing the taper ratio, at a given free end initial deflection, in-

creases the non-linear frequency ratio of the single and double tapered beams under the first mode 
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shape excitation. It was also shown that the beam behaves completely different under the second 

mode shapes. Moreover, for a given value of a taper ratio, the non-linear natural frequency of a 

double tapered beam is higher than that of a single tapered beam. Regarding the size-dependency 

effects, it was observed that in the smaller structures in which these effects are more prominent, 

fixing the other material parameters, we have larger values for the natural frequency ratios, regard-

less of the mode shape and/or type of the tapered beam. Moreover, larger values for FG indexes (n 

and m) indicated that the conditions in which the equivalent material behavior was more similar to 

that of the left end of the beam constituent (for both the first and second mode shapes regardless of 

the type of tapered beam). 
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