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Dynamic fracture analysis of concrete or rock plates by means of
the Discrete Element Method

Abstract

The authors apply the so-called Discrete Element Method

(DEM) to determine the dynamic response of concrete and

rock plates of various sizes that fracture under the action of

static and dynamic loading. When, on account of the size

of the model, larger elements must be employed, the issue of

mesh objectivity must be addressed. In response determina-

tions of structures with initial cracks or high stress gradients,

which result in fracture localization, well established proce-

dures lead to results that appear to be mesh independent.

However, in elements subjected to approximately uniform

stress fields a hitherto unknown problem arises in the analy-

sis of non-homogeneous materials: the need to know a priori

the degree of fracturing of the element. This should also af-

fect finite element analysis in cases in which there is no clear

fracture localization. In order to provide additional evidence

on fracture localization, plates of different sizes subjected

to external uni-axial tensile loading under different levels of

stress localization are investigated in this paper. The ef-

fective stress-strain relationship, ultimate tensile stress and

strain, dissipated fracture energy and fracture patterns are

determined for plates ranging in size from 0.25 to 15m. Dif-

ficulties associated to the prediction of the behavior of large

nonlinear structural systems are discussed in connection with

the available results.
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1 INTRODUCTION

The determination of the static or dynamic response of solids by means of numerical meth-

ods, such as Finite Differences (FDM), Finite Elements (FEM) or Discrete Elements (DEM)

requires the estimation of computational errors, i.e., the sensitivity of the solutions to the

size or other features of the mesh adopted in the analysis. In Linear Elasticity problems the

issue is commonly addressed by comparing solutions obtained with increasingly finer meshes
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until convergence is reached with the desired accuracy. In Linear Elastic Fracture Mechanics

(LEFM), a similar approach is possibly the only feasible alternative to assess convergence of

the solution. The performance of the DEM has been evaluated both in the solution of Linear

Elasticity problems as well as in connection with problems of LEFM, as a preliminary step

before applying the method to non-linear problems (Iturrioz, [4]; Dalguer et al., [2]; Miguel et

al., [8]).

Figure 1 shows the critical stress in a homogeneous plate with an edge crack subjected to a

uniform tensile stress applied at the upper and lower plate boundaries according to theoretical

LEFM and computed using a DEM model by Rocha and Riera [17]. The length of the elements

was in all cases equal to 0.01m, size that appears to yield accurate results except in the case of

the shortest edge crack, which might require adopting a finer mesh. In such cases, assessing the

adequacy of a given mesh presents no difficulty except eventually high computational costs.

 

 

 

 

 

Figure 1 Critical stress for tensile fracture of a rectangular plate (0.12×0.24m) in plane stress with edge crack
computed by DEM model (solid dots) and predicted by LEFM (Rocha and Riera, [17]).

A somewhat different situation appears in the solution of problems involving non-homogeneous

materials, because in such case the size of the elements must be sufficiently small both in re-

lation to the size of the crack as well as in relation to the correlation lengths of the fields

that model the material non-homogeneities (Riera et al., [13]). These requirements can rarely

be met in engineering practice on account of the resulting computational costs, demanding

resort to larger DEM or FEM elements. In this context, the static strength of rock dowels was

numerically determined by Miguel et al. [8]. In this case a cubic rock dowel fixed at its base

is subjected to a uniform tangential stress (shear) at its upper face, which results in strong

fracture localization. In such case renders the effect investigated in this paper is marginal.

In fact the DEM, as employed by the authors for determining the response of homogeneous

solids subjected to arbitrary static or dynamic loading, including LEFM problems, is robust and

reliable. In case of non-homogeneous materials, the authors obtained solutions by simulation,

generating samples of the random fields that define the spatial variation of material properties

(Rios and Riera, [15]; Miguel et al., [8]). In such case, the issue of fracture localization requires

a more detailed examination, which is the subject of this paper. The basic features of the DEM

in these applications are summarized in Section 2. Examples that cover the full response of
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plates subjected to tension are then presented in Section 3, providing numerical evidence for

the evolution of fracture localization with size.

2 THE DISCRETE ELEMENT METHOD IN FRACTURE PROBLEMS

The Discrete Element Method employed in this paper is based on the representation of a solid

by means of an arrangement of elements able to carry only axial loads. The equivalence between

an orthotropic elastic continuum and the cubic arrangement of uni-axial elements consisting

of a cubic cell with eight nodes at its corners plus a central node was shown by Nayfeh and

Hefzy [9]. The discrete elements representation of the orthotropic continuum was adopted

by the authors to solve structural dynamics problems by means of explicit direct numerical

integration of the equations of motion, assuming the mass lumped at the nodes. Each node

has three degrees of freedom, corresponding to the nodal displacements in the three orthogonal

coordinate directions.

The equivalence between the orthotropic elastic solid with the principal material axes ori-

ented in the direction parallel to the longitudinal elements of the discrete elements model was

extensively verified by Hayashi [3]. The equations that relate the properties of the elements

with the elastic constants of an isotropic medium are:

δ = 9ν

4 − 8ν
,EA = EAn = EL2

0

(9 + 8δ)
2 (9 + 12δ)

,EAd =
2
√
3

3
An (1)

in which E and ν denote Young’s modulus and Poisson’s ratio, respectively, while An and Ad

represent the areas of normal and diagonal elements.

The resulting equations of motion may be written in the well-known form:

M ⃗̈x +C ⃗̇x + F⃗r (t) − P⃗ (t) = 0 (2)

in which x⃗ represents the vector of generalized nodal displacements, M the diagonal mass

matrix, C the damping matrix, also assumed diagonal, F⃗r (t) the vector of internal forces

acting on the nodal masses and P⃗ (t) the vector of external forces. Obviously, if M and C

are diagonal, Equations (2) are not coupled. Then the explicit central finite differences scheme

may be used to integrate Equation (2) in the time domain. Note that the location of each nodal

mass is defined by three coordinates, rotational degrees of freedom being disregarded. Since

the nodal coordinates are updated at every time step, large displacements can be accounted

for in a natural and efficient manner.

Thus, in all cases the integration is performed employing the explicit central finite differences

method. Therefore, the integration time step must to be smaller than a critical value ∆tcrit,

which may be estimated as 0.6L0/
√
E/ρ, in which the denominator represents the velocity of

propagation of P-waves in an isotropic elastic medium. The numerator denotes the length of

the shortest elements in the model, i.e., the diagonal bars.

In the present paper, the relation between tensile stress and strain in the material was

assumed to be triangular, as indicated in Figure 2. The limit strain ϵr is determined to satisfy
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the condition that, upon rupture of the element, once the strain reaches the value ϵr, energy

Uelem is liberated, according to Equation (3):

Uelem =
AfGf

L0
(3)

in which Af is the fractured area bar, L0 is the normal bar length and Gf is the specific

fracture energy that characterized the material toughness.

 

Figure 2 Triangular constitutive law for brittle material.

Note that the fracture energy, i.e., the energy dissipated by the total rupture of one element,

depends on the numerator of Equation (3), which is the product of the fracture area within

the element under consideration, times the specific fracture energy of the material. In previous

papers (Rocha, [16]; Riera and Iturrioz, [10]; Miguel et al., [8]), the assumption that Af equals

the area of the basic brick element L2
0 was implicit. On that basis, the fracture area of the

longitudinal bars is given by:

Af = caL2
0 (4)

in which the coefficient ca was computed as 0.1385. For diagonal bars, ca equals 0.1593. This

assumption is valid as long as there is a strong localization effect, leading to a rupture config-

uration characterized by a single large crack. For example, fracture of rock dowels analyzed

by Miguel et al. [8] occurs in most cases as a single crack that, starting near the intersection

between the dowel wall and the foundation, propagates through the dowel, as illustrated in

Figure 3. As more cracks extend throughout the volume of the element, the coefficient ca

should increase, since the fractured area is larger.

Another important feature of the model is the assumption that all material properties, such

as E, ρ and Gf, may be described by random fields, i.e. they can vary randomly throughout

the structure. In this paper, a Weibull probability distribution was adopted for the specific

fracture energy. It should be underlined again that fracture localization weakens as the non-

homogeneous nature of the material becomes more pronounced, i.e., as the coefficients of
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Figure 3 (a) Tangential stress vs. distortion for a 1m cube computed using five different meshes. (b) Mesh
1: 5×5×5 cubic modules, (c) Mesh 5: 20×20×20. In all cases a large crack that follows closely the
lower edge occurs, with minor damage elsewhere.

variation of the fields that describe the material properties increase. On account of this effect,

LEFM solutions for plates with edge cracks, such as the theoretical and numerical values shown

in Figure 1, for example, may not be valid in case of non-homogeneous materials like concrete

or rock.

Applications of the DEM in studies involving non-homogeneous materials subjected to

fracture, like concrete and rock, may be found in Iturrioz [4], Riera and Iturrioz [10], Dalguer

et al. [1], Rios [14] and Miguel et al. [8]. Additionally, Dalguer et al. [2], Riera et al. [12],

Miguel [5], Miguel et al. [7] and Miguel and Riera [6], also applied the method to solve problems

involving rupture of concrete or rock.

3 SIZE EFFECT IN FRACTURE ANALYSIS OF NON-HOMOGENEOUS PLATES

3.1 Concrete plates

Concrete plates under a plane strain condition, fixed at the lower face and subjected to tensile

stress on the upper face were analyzed up to failure through numerical simulation. The size of

the plates ranges from 0.25m to 10.0m. A rectangular plate (Case A) and a rectangular plate

with an indentation on both sides (Case B) were simulated. Plate dimensions and DEM mesh
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employed in the analysis are indicated in Table 1 (See also Figure 6). The material properties

of the concrete are given in Table 2. The coefficients of variation of Gf indicated in Tables 2

and 5 correspond to the individual bar elements, which are approximately two and a half times

larger than the corresponding value for a cubic cell of the same size.

Table 1 Basic dimensions of the concrete plate samples (L0 = 0.05m).

Plate L

Plate 0.25 (5×5) 0.25m

Plate 1.25 (25×25) 1.25m

Plate 6.25 (125×125) 6.25m

Plate 10.0 (200×200) 10.0m

Table 2 Properties of brittle materials: Concrete.

Property Value

E (Young’s modulus) 3.5E10N/m2

ρ (mass density) 2400kg/m3

ν (Poisson’s ratio) 0.25

E(Gf ) (expected value of specific fracture energy) 100N/m

ϵp (critical strain) 6.35E-5

CV(Gf ) (coefficient of variation of Gf ) 40%

Nodal points on the upper face of the specimens were subjected to a controlled uniform

displacement that increases smoothly in time, simulating a slowly increasing applied load. Uni-

form displacements along the upper edge induce a nominally uniform tension in the specimen.

Ten simulations were performed for each case and each plate size. The resulting stress-strain

curves for plate size of 0.25m and for size 10m are shown in Figures 4 (a, b, c, and d) for all

simulations. Note that the fracture energy is regarded as a 3D random field with the properties

indicated in Table 2 and Weibull (Extreme Value Type III, minimum) probability distribution

functions, so each virtual test leads to a different strength and a different stress-strain curve.

The mean curve for all simulations is also shown in Figures 4, while the mean curves for all

sizes in both cases are shown in Figures 5a and 5b.

Typical crack patterns are shown in Figure 6. Undamaged, damaged and totally broken

elements are represented in cyan, orange and red, respectively. The models show both a per-

ceptible size effect as well as typical cracking patterns, which quantify the damage distribution

in the plates. Table 3 presents the average tensile strength and ultimate strain of the plates,

which tend to decrease as the size of the plate increases.
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(d)

Figure 4 Mean normal stress on the lower face vs. mean strain for all simulations and resulting mean curve for
all simulations (thick blue line). (a) L = 0.25m (Case A), (b) L = 10.0m (Case A), (c) L = 0.25m
(Case B), (d) L = 10.0m (Case B).  
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(b)

Figure 5 Mean normal stress on the lower face vs. mean strain: average curves for all sizes. (a) Case A, (b)
Case B.
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identation 0.25L 
Figure 6 Rupture configuration of concrete plates subjected to uniform tensile stress for all sizes: Upper row

Case A, Bottom row Case B.

Table 3 Maximum (rupture) mean tensile stress and strain of simulated concrete plates.

Plate Stress σr Strain ϵr

Plate 0.25 2.41MPa 1.80E-4

Plate 1.25 2.30MPa 1.33E-4

Plate 6.25 2.23MPa 1.06E-5

Plate 10.0 2.23MPa 1.03E-5

3.2 Rock plates

Rock plates under plane stress, fixed at their lower face and subjected to tension on their upper

face were analyzed up to failure through numerical simulation. The size of the samples ranges

from 1.0 to 15.0m. The response of the specimens may be determined in a similar manner,

starting from the constitutive criteria for the individual elements. The smallest array that leads

to satisfactory results consists of 10×10×1 cubic modules, with 1026 DOF, used for the 1.0m

plate, while the 15.0m plate presents 150×150×1 cubic modules, with 204306 DOF, constituting
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the largest array used in this study. Table 4 shows the basic dimensions of the four samples

analyzed, while relevant material properties are listed in Table 5.

Table 4 Basic dimensions of the rock plate samples (L0 = 0.10m).

Plate L

Plate 1.0 (10×10) 1.0m

Plate 4.0 (40×40) 4.0m

Plate 8.0 (80×80) 8.0m

Plate 15.0 (150×150) 15.0m

Table 5 Properties of brittle materials: Granite rock.

Property Value

E (Young’s modulus) 7.5E10N/m2

ρ (mass density) 2700kg/m3

ν (Poisson’s ratio) 0.25

E(Gf ) (expected value of specific fracture energy) 1300N/m

ϵp (critical strain) 1.054E-4

CV(Gf ) (coefficient of variation of Gf ) 40%

The nodes on the upper face of the specimens were subjected to controlled displacements

that smoothly increase from zero to a limit value. In loading case A, uniform displacements

along the upper edge induce a nominally uniform tension in the specimen. In loading case

B, the test specimens were subjected to a triangularly distributed controlled displacement,

inducing a non-uniform tension in the specimen.

Six simulations were carried out for each loading case and for each plate size. For illustration

purposes, the resulting stress-strain curves for all simulations for the 4.0m plate are shown in

Figure 7, for loading case A. Note that the fracture energy is also considered a random field

with the properties indicated in Table 5, so each simulation leads to a different strength and

a different stress-strain curve. The probability distribution of Gf was assumed Weibull. The

mean curve for all simulations is also shown in Figure 7. The mean curves for all tested sizes

are shown in Figure 8.

Next, the plates were subjected to triangularly distributed displacements on their upper

face (loading Case B). Six simulations were also performed for each plate size. The resulting

stress-strain curves for all simulations for the 4.0m plate are shown in Figure 9, which also

presents the mean curve. Figure 10 shows the mean curves for all simulated sample sizes.

Typical cracked granite plates for loading Case A are shown in Figure 11, while Figure

12 presents the cracking patterns for Case B. Again, colors cyan, orange and red represent

undamaged, damaged and totally broken (failed) elements, respectively.
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Figure 7 Mean normal stress on the lower face vs. mean strain for the 4m plate, for all simulations and

resulting average curve (thick blue curve) (Rock Case A – uniform imposed displacements).
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Figure 8 Normal stress on the lower face vs. mean strain for the mean curve of all tested sizes (Rock Case A
– uniform imposed displacements).
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Figure 9 Mean normal stress on the lower face vs. mean strain for the 4m plate, for all simulations and

resulting average curve, shown by thick blue line (Rock Case B – triangular imposed displacements).
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Figure 10 Mean normal stress on the lower face vs. mean strain for the mean curve of all tested sizes (Rock

Case B – triangular imposed displacements).
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Figure 11 Rupture configuration of rock plates subjected to uniform tensile stress (Case A).

 

 

 

 

 

 

 

L = 1.0m L = 4.0m L = 8.0m L = 15.0m 

Figure 12 Rupture configuration of rock plates subjected to triangular tensile stress (Case B).

Once again, the models show both a perceptible size effect as well as credible cracking

patterns, defining the predicted damage distribution in the plates. The size effect may be

detected in Table 6, which illustrates the decrease of the average tensile strength as the size of

the plate increases. Damage localization, shown in Figures 11 and 12, is more pronounced in

presence of a stress gradient (Case B). Damage, indicated by the orange-tainted regions, as well

as crack surfaces, are more widely distributed in loading case A (Figure 11). No experimental

results for this size range are known to the authors. At any rate, as discussed below, both

features of the non-linear problem should be taken into consideration when large DEM or

FEM elements are employed.

Table 6 Maximum (rupture) mean tensile stress and strain of simulated rock plates.

Plate
Case A Case B

Stress σr Strain ϵr Stress σr Strain ϵr
Plate 1.0 10.02MPa 2.38E-4 7.80MPa 1.56E-4

Plate 4.0 10.02MPa 2.28E-4 7.08MPa 1.23E-4

Plate 8.0 10.00MPa 2.18E-4 6.78MPa 1.17E-4

Plate 15.0 9.62MPa 1.91E-4 6.68MPa 1.03E-4
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4 INFLUENCE OF SIZE ON APPARENT MATERIAL PROPERTIES

Figure 13(a) shows the normalized coefficients of variation of the ultimate stress and ultimate

strain determined in the simulation analysis of concrete plates Case A. The dots represent

the CV obtained in ten simulations of each plate size and they are thus affected by statistical

error. Nevertheless, a trend towards smaller values of the CV as the size increases is visible.

Similar results for the expected values of the maximum stress and strain in terms of the plate

size, normalized with respect to the corresponding value for the smallest plate (0.25m), are

shown in Figure 13(b). Since the variability of estimates of the mean is smaller than those of

the variance, in the former case the dots are closer to a smooth curve. The ultimate strain is

clearly more sensitive to size variations than the ultimate stress. Figures 14, 15 and 16 show

the results for the others simulated cases.
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Figure 13 Influence of size in simulations of concrete plates (Case A) under tensile stresses. (a) Variation of
CV(σr) and CV(εpr) with plate size, (b) Variation of the mean normalized maximum tensile stress
and strain with size.
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Figure 14 Influence of size in simulations of concrete plates (Case B) under tensile stresses. (a) Variation of
CV(σr) and CV(εpr) with plate size, (b) Variation of the mean normalized maximum tensile stress
and strain with size.
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 Figure 15 Influence of size in simulations of rock plates under tension (Case A). (a) Variation of CV(σr) and

CV(εpr) with plate size, (b) Variation of the mean normalized maximum tensile stress and strain
with size.
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 Figure 16 Influence of size in simulations of rock plates under tensile stresses (Case B). (a) Variation of CV(σr)

and CV(εpr) with plate size, (b) Variation of the mean normalized maximum tensile stress and strain
with size.

The normalized mean strain for various sizes estimated by simulation, for both concrete

and rock plates is shown in Figure 17(a), while Figure 17(b) shows the normalized mean

maximum tensile strength for both concrete and rock plates for various sizes. Figure 17 also

shows experimental results obtained by Van Vliet and Van Mier [18] in concrete and sandstone

samples. A more pronounced size effect in the experimental results than in the numerical

simulations is perceptible (in Case A for concrete and in Cases A and B for rock plates). This

fact is explained by observing that the experimental samples have the shape of an eight, that

is, a neck that tends to induce the localization of rupture at the section with smallest area.

Figures 18(a) and 18(b) show the CV of the ultimate strain and ultimate stress, respectively,

for both concrete and rock plates. In the presence of strong localization (rock plate, Case B), the

last figures show a perceptible trend to larger variances as the size of the specimens increases,

not only for the rupture strain εpr but also for the maximum stress σr. This trend may be

due to the fact that when localization occurs the material properties linked with the strength

such as Gf or σmax over a small region of the specimen are responsible for the definition of

the rupture parameters previously defined (εpr , σr).
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Figure 17 (a) Normalized rupture strain, (b) Normalized mean tensile strength, for various sizes estimated
by simulation and obtained experimentally by Van Vliet and Van Mier [18], for concrete and rock
plates.
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Figure 18 (a) Coefficients of variation of rupture strain, (b) Coefficients of variation of the tensile strength,
estimated by simulation, for concrete and rock plates.

5 ON MESH DEPENDENCE IN DEM FRACTURE PREDICTIONS

The authors quantified size effects in the assessment of rupture of concrete or rock structures

subjected to static or dynamic loading employing discrete elements of the same size (Rocha and

Riera, [17]; Rios and Riera, [15]; Miguel et al., [8]). In 3-D problems involving large systems,

such as NPP containments, dams or rock foundations, larger elements must be resorted in

order to reduce computational costs or to simply render the analysis feasible. Dalguer et al.

[2] studied the formation of new cracks in rock layers during an earthquake employing DEM

elements with a very large size (several hundred meters) and assumed for that purpose the

constitutive relations for rock. Recognizing the need to reliably assess those relations, for

which direct experimental evidence is definitely out of reach, Riera and Iturrioz [11] suggested

the following scheme: determine the constitutive relations of large cubes by simulating tensile

tests up to failure of 3-D models, employing constitutive elements of a size that can be tested

in laboratory experiments. By repeating the scheme, the response of very large bodies could

be theoretically inferred.
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To illustrate the approach, the effective stress-strain curves shown in Figure 8 for plates

with sizes ranging from 1.0 to 15.0m will be used. All of them were computed with models

consisting of basic 0.1m elements, which are characterized by the stress-strain diagram shown in

Figure 2, derived in turn from laboratory tests. Now, it is clear that 1m elements would present

the stress-strain curve indicated in gray, while 15m elements would present the curve drawn in

red (Figure 8). Use of larger elements requires re-evaluation of the properties of the random

fields that define material properties, in this case Gf, subject discussed in detail by Riera and

Iturrioz [11]. In this reference however, an important issue was not taken into consideration:

the energy dissipated in the process of rupture is computed by means of Equation (3) which, if

the coefficients ca indicated in Section 2 are used, implies that only one crack goes through the

element. As clearly shown by Figures 11 and 12 and in uncountable laboratory experiments,

in large plates or cubes the total fracture surface may largely exceed the minimum fracture

surface needed to separate the plate or cube in two parts.

From the preceding reasoning, it is clear that when employing larger elements with length

L0, care must be taken to preserve the energy dissipated in the rupture process, condition that

may be satisfied by calculating a new fractured area Af, as follows: Af = c∗aL2
0 (5)

in which the modified coefficient ca* must be computed jointly with the evaluation of the

effective stress-strain curves for the larger element and represents the ratio between the energy

actually dissipated and the minimum energy required to split the element in two parts, given

by Equation (3). One difficulty is that the energy depends on the stress field applied, which

can be visually confirmed by inspecting Figures 11 and 12. The fractured areas for a given

plate size are not the same.

Research is presently under way to develop criteria to predict values of ca* for elements of

various sizes, which is not an easy task because ca* is not independent of the scale of correlation

of material properties.

6 CONCLUSIONS

It was confirmed in this examination of the tensile fracture behavior of concrete and rock plates

that predictions of fracture of non-homogeneous materials using DEM models are feasible and

yield results that are consistent with the scarce experimental evidence so far available. The use

of large elements, in which extensive cracking within the elements of the model may be expected,

requires additional research, since the approach has proved successful only in cases where there

is intense fracture localization, while tending to underestimate the strength otherwise.
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Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 1982.

[4] I. Iturrioz. Aplicação do método dos elementos discretos ao estudo de estruturas laminares de concreto armado.
PhD thesis, CPGEC, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 1995.
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