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Abstract 
In the present study, a simple trigonometric shear deformation the-
ory is applied for the bending, buckling and free vibration of cross-
ply laminated composite plates. The theory involves four unknown 
variables which are five in first order shear deformation theory or 
any other higher order theories. The in-plane displacement field uses 
sinusoidal function in terms of thickness co-ordinate to include the 
shear deformation effect. The transverse displacement includes 
bending and shear components. The present theory satisfies the zero 
shear stress conditions at top and bottom surfaces of plates without 
using shear correction factor. Equations of motion associated with 
the present theory are obtained using the dynamic version of virtual 
work principle. A closed form solution is obtained using double trig-
onometric series suggested by Navier. The displacements, stresses, 
critical buckling loads and natural frequencies obtained using pre-
sent theory are compared with previously published results and 
found to agree well with those. 
 
Keywords 
Shear deformation, bending, buckling, vibration, cross-ply lami-
nates, trigonometric theory, laminated plates. 
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NOMENCLATURE 

x, y, z Cartesian co-ordinates 
a, b, h Length, width and thickness of plate respectively 
N Number of layers 
hk Thickness ordinate of kth layer  
u, v, w Displacements in x, y, z direction respectively 
u0, v0 Displacement of mid-plane (z = 0) in x and y direction respectively 
ub, us Bending and shear components of displacement in x- direction 
vb, vs Bending and shear components of displacement in y- direction 
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NOMENCLATURE (continuation) 

wb, ws Bending and Shear components of transverse displacement respectively 

x , y  Normal Strains 

, ,xy xz yz    Shear Strains 
,x y   In-plane normal Stresses 
, ,xy xz yz    Shear stresses 

E1, E2 Young’s moduli along and transverse directions of the fibre 
G12, G13, G23 In-plane and transverse shear moduli 

12 21,   Poisson’s ratios 

  Variational operator 
Qij Plane stress reduced elastic constants  
q(x, y) Transverse load 
qmn Coefficient of Fourier expansion 
q0 Maximum intensity of transverse load at the centre of plate 
[K] Stiffness matrix 
  Density of material 
  Natural frequency 

0 0 0
xx yy xyN ,N ,N  In-plane compressive forces 

N0 Maximum intensity of in-plane compressive forces 
u , v , w  Non-dimensional displacements 

,x y   Non-dimensional in-plane normal stresses 
, ,xy xz yz    Non-dimensional shear stresses 

  Non-dimensional frequency 
Ncr Critical buckling load 

 
1 INTRODUCTION 

Since the composite materials are increasingly being used in many engineering applications due to 
their attractive properties, such as stiffness, strength, weight reduction, corrosion resistance, thermal 
properties, fatigue life, and wear resistance. The plates made up of such materials are required accu-
rate structural analysis to predict the correct bending behaviour. 

The effect of transverse shear deformation is more significant in thick plates than in thin plates. 
Therefore, various plate theories have been developed by researchers to predict correct bending be-
haviour of thick plates. The classical plate theory (CPT) of Kirchhoff (1850) is not suitable for thick 
plate due to neglect of transverse shear deformation. The first order shear deformation theory (FSDT) 
developed by Mindlin (1951) is also not suitable for the analysis since it does not satisfy the zero 
stress conditions at top and bottom surfaces of the plate and required problem dependent shear 
correction factors. Therefore, many five variable and six variable plate theories have been developed 
for the analysis of plates (Reddy, 1984; Touratier, 1991; Soldatos, 1992; Karama et al., 2009; Sayyad 
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and Ghugal, 2012; Sayyad, 2013; Zenkour, 2006; Sayyad and Ghugal, 2013; 2014a; 2014b; Ghugal and 
Sayyad, 2010; 2013a; 2013b; Metin, 2009). 

In the last decade, a new class of plate theories has been developed by researchers in which 
displacement field involves only four unknowns. Shimpi and Patel (2006) were the first to present 
a plate theory involving two unknowns for bending and free vibration analysis of orthotropic plates. 
This theory is further extended by Thai and Kim (2010) for the free vibration analysis of cross-ply 
and angle-ply laminated plates considering four and five unknowns. Kim et al. (2009) also used this 
theory for the buckling analysis of orthotropic plates using the Navier solution technique. Thai and 
Kim (2011; 2012) employed Levy type solution for the bending and buckling analysis of orthotropic 
plates. After this, a lot of research is reported in the literature on different four variable plate 
theories. However, these theories are applied for bending, buckling and free vibration analysis of 
functionally graded plates only (Ameur, et al. 2011; Thai and Vo, 2013; Meiche et al., 2011; 
Daouadji et al., 2012; 2013; Zenkour, 2013). Recently Sayyad and Ghugal (2015) have presented a 
critical review of literature on refined shear deformation theories for the free vibration analysis of 
laminated composite and sandwich plates. Wherein, theories involving four or more than four are 
reviewed and discussed.    

In the present study, an attempt is made to check the efficiency of four variable refined trigono-
metric shear deformation theory for the bending, buckling and free vibration analysis of cross-ply 
laminated composite plates. A trigonometric function in terms of thickness co-ordinate is used in the 
kinematics of the theory to account for shear deformation effects. The theory enforces cosine distri-
bution of transverse shear stresses and satisfies zero shear stress conditions at top and bottom surfaces 
of the plates. The theory does not need problem dependent shear correction factor. Governing equa-
tions and boundary conditions are obtained using the virtual work principle. A closed form solution 
is obtained by employing a double trigonometric series technique developed by Navier. Finally, the 
numerical results obtained by using present theory are compared with exact elasticity solutions given 
by Pagano (1970) for bending, Noor (1973) for free vibration and Noor (1975) for buckling analysis 
of laminated composite plates. 
 
2 MATHEMATICAL FORMULATION 

2.1 Laminated Plate Under Consideration 

A rectangular plate of the sides ‘a’ and ‘b’ and total thickness ‘h’ as shown in Figure 1 is considered. 
The plate consists of N number of homogenous layers. All the layers are perfectly bounded together 
and made up of linearly elastic and orthotropic material. The plate occupies the region 0 ≤ x ≤ a, 0 ≤ 
y ≤ b, -h/2 ≤ z ≤ h/2 in Cartesian coordinate system. The downward z-direction is taken as positive. 
The plate is subjected to transverse load q(x, y) on the upper surface of the plate (i.e. z = -h/2) or 
subjected to in-plane compressive forces (uniaxial/biaxial). 
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Figure 1: Geometry and co-ordinate system of laminated plate. 

 
2.2  Assumptions Made in Mathematical Formulation. 

Mathematical formulation of the present theory is based on the following assumptions. 
1. The displacements are small in comparison with the plate thickness and, therefore, strains 

involved are infinitesimal. 
2. The displacements u in x-direction and v in y-direction consist of extension (u0), bending 

(ub) and shear components (us). 
 

0 0andb s b su u u u v v v v       (1)
 

3. The transverse displacement w includes two components, i.e. bending  bw and shear  sw  
 

b sw w w   (2)
 

2.3 Kinematics and Constitutive Relations 

Based on the before mentioned assumptions the following displacement field associated with present 
theory is obtained. 
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 

 
(3) 

 

The non-zero normal and shear strain components are obtained using strain displacement rela-
tions given by Jones (1975). 
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 (4)

 

The constitutive relationships for the kth layer can be given as, 
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 (5)

 

where ijQ are the plane stress reduced elastic constants in the material axes of the plate, and are 

defined as: 
 

1 12 2 2
11 12 22 66 12 55 13 44 23

12 21 12 21 12 21

, , , , ,
1 1 1

E E EQ Q Q Q G Q G Q G
     

     
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 (6)

 

where E1, E2 are the Young’s moduli along and transverse direction of the fibre, G12, G13, G23 are the 
in-plane and transverse shear moduli and 12 21,   are the Poisson’s ratios. The force and moment 

resultants of a present theory can be obtained by integrating stresses given by Eq. (5) through the 
thickness and are as follows: 
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 (7)

 

where hk is the thickness ordinate of kth layer. The terms  , ,x y xyN N N and  , ,b b b
x y xyM M M are the in-

plane force and moment resultants associated with the classical plate theory whereas,  ,x yQ Q  and 
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 , ,s s s
x y xyM M M  are the transverse shear force and moment resultants associated with the transverse 

shear deformation. 
 
3 EQUATIONS OF MOTION 

The variationally consistent governing equations of motion and boundary conditions associated with 
the present theory can be derived using the principle of virtual work. The analytical form of the 
principle of virtual work can be written as: 
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(8)

 

where   be the variational operator. Integrating Eq. (8) by parts and collecting the coefficients of 

0 0 andb su , v , w w    , the governing equations of equilibrium and boundary conditions (Euler-La-

grange equations) associated with the present theory are obtained using fundamental lemma of  cal-
culus of variation. The governing equations of plate equilibrium are as follows: 
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Substituting the stress resultants in terms of displacement variables from Eq. (7) into the Eqs. 
(9) – (12), the governing equations of equilibrium can be rewritten as: 
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where ij ij ij ij ij ij ijA ,B , As ,D ,Bs , Ass , Acc  are the laminate stiffness coefficients and I0, I1, I2, I3 are the 

inertia constants which are given as: 
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k h /

hN
k

ij ij ij
k h /

A ,B ,As ,D Q , z, f z , z dz; i j , ,

Bs ,Ass Q f z z, f z dz; i j , ,

 

 

  

  

 

 
 (17)
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2

1 2

2 2 2
22

0 1 2 3
2 2 2

4 5

1

khN
k

ij ij
k h /

h / h / h /

h / h / h /

Acc Q g z dz i j ,

I , I , z dz, I z f z dz, I f z dz  

 

  

     

     

 

  

 

 

Where 
 

   sin and cosh z zf z z g z
h h
 


    (18)

 

This completes the mathematical formulation of the present trigonometric shear deformation 
theory. 
 
4 NAVIER SOLUTION TECHNIQUE 

The Navier solution technique (Szilard, 2004) is used for the bending, buckling and free vibration 
analysis of laminated composite plates simply supported at all four edges (pinned edges) satisfying 
the following boundary conditions: 
 

at x = 0 and x = a: 0 0b s
b s x xv w w M M      (19)

 

at y = 0 and y = b: 0 0b s
b s y yu w w M M      (20)

 
4.1 Bending Analysis of Laminated Composite Plates 

Following the Navier solution technique, the governing equations of the simply supported laminated 
composite plates in case of bending analysis are obtained by discarding in-plane compressive loads 
( 0 0 0

xx yy xyN ,N ,N ) and inertia terms (I0, I1, I2, I3) from Eqs. (13) – (16). 
 

   

 

2 2 2 3 3
0 0 0

11 66 12 66 11 12 662 2 3 2

3 3

11 12 663 2

2

2 0

b b

s s

u u v w wA A A A B B B
x y x y x x y

w wAs As As
x x y

    
      

      

 
   

  

 (21)

 

   

 

2 2 2 3 3
0 0 0

12 66 22 66 22 12 662 2 3 2

3 3

22 12 663 2

2

2 0

b b

s s

u v v w wA A A A B B B
x y y x y x y

w wAs As As
y x y

    
      

      

 
   

  

 (22)
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   

   11 12 66 22

3 3 3 3 4 4
0 0 0 0

11 12 66 22 12 66 11 223 2 3 2 4 4

4 4 4 4

12 66 2 2 4 2 2 4

2 2

2 2 2 2

b b

b s s s

u u v v w wB B B B B B D D
x x y y x y x y

w w w wD D Bs Bs Bs Bs q
x y x x y y

     
       

       

   
      

     

 (23)

 

   

   

4

11 12 66 22 12 66 11 22 4

12 66 11 12 66 22

43 3 3 3
0 0 0 0

3 2 3 2 4

4 4 4 4

2 2 4 2 2 4

2 2

2 2 2 2

bb

b s s s

wBs
y

Ass

wu u v vAs As As As As As Bs
x x y y x y x

w w w wBs Bs Ass Ass Ass q
x y x x y y





   

      
      

         
     

 (24)

 

The plate is subjected to transverse load q(x, y) at top surface i.e. z = -h/2. The transverse load 
is presented in double trigonometric series as given in Eq. (25). 
 

 
1,3,5 1,3,5

, sin sinmn
m n

q x y q x y 
 

 

    (25)

 

where m a  , n b   and qmn is the coefficient of Fourier expansion. The coefficient of Fourier 

expansion (qmn) is: 
 

0 Sinusoidally distributed Load (  = 1,  = 1)mnq q m n  (26)
 

where q0 is the maximum intensity of load at the center of plate. The following solution form is 
assumed for the unknown displacement variables 0u , 0v , bw and sw satisfying the boundary conditions 

of simply supported plates exactly. 
 

0

0

1 3 5 1 3 5

cos sin
sin cos

sin sin
sin sin

mn

mn

m , , n , ,b bmn

s smn

u u x y
v v x y
w w x y
w w x y

 
 
 
 

 

 

   
   
      
   
      

   (27)

 

where andmn mn bmn smnu ,v ,w w  are the unknown constants to be determined. In case of sinusoidally 

distributed load, positive integers are unity (m = 1, n = 1). Substitution of this form of solution and 
transverse load q(x, y) into the governing equations (21) - (24) leads to the set of algebraic equations 
which can be written in matrix form as follows. 
 

11 12 13 14

12 22 23 24

013 23 33 34

14 24 34 44 0

0
0

mn

mn

bmn

smn

uK K K K
vK K K K

qK K K K w
K K K K qw

    
    
                      

 (28)

 

where elements of stiffness matrix [K] are as follows: 
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   

 
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4 2 2 4 4
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    

   

     

    

         

       

             

      

 

2 2 4
12 66 22

4 2 2 4 2 2
44 11 12 66 22 55 44

21 12 31 13 32 23 41 14 42 24 43 34

2 2

2 2

Bs Bs Bs ,

K Ass Ass Ass Ass Acc Acc ,

K K , K K , K K , K K , K K , K K .

  

     

  

     

     

 
(29) 

 

 
From the solution of Eq. (28), unknown constants andmn mn bmn smnu ,v ,w w  can be obtained. Having 

obtained values of these unknown constants one can then calculate all the displacement and stress 

components within the plate using Eqs. (3) - (5). Transverse shear stresses  ,xz yz  are obtained by 

using constitutive relations  ,CR CR
xz yz  and integrating equations of equilibrium of theory of elasticity 

 ,EE EE
xz yz  to ascertain the continuity at layer interface. The following material properties are used for 

the bending analysis of simply supported anti-symmetric laminated composite square plates subjected 
to sinusoidally distributed load. 
 

2
1 2 12 13 2 23 2 12 21 12

1

25 0 5 0 2 0 25 EE E , G G . E , G . E , . ,
E

         (30)

 

The displacements and stresses are presented in the following non-dimensional form. 
 

 

2 3
2 2

3 4
0 0

22

2 2
0 0

2

2
0 00

1000, , , , ,0 ,
2 2 2 2

, , , , , ,
2 2 2 2 2 2

0,0, , 0, ,0 , ,0,0
2 2 2

yx
x y

xy yzxz
xy xz yz

u E h wh Eb h a bu w
q a q a

hha b h a b h
q a q a

h hhh b a
q a q aq a

        
   

           
   

                 
     

 (31)
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a/h Quantity 
Exact 

(Pagano, 1970)
Present 

SSNDT (Sayyad  
and Ghugal, 2014a)

HSDT 
(Reddy,1984)

FSDT 
(Mindlin,1951) 

CPT 
(Kirchhoff,1850)

4 u  --- 0.0114 0.0111 0.0114 0.0088 0.0088 

 w 2.0670 1.9793 1.9424 2.0256 1.9682 1.0636 

 x  0.8410 0.9154 0.9062 0.9172 0.7157 0.7157 

 y  0.1090 0.0890 0.0964 0.0932 0.0843 0.0843 

 xy  0.0591 0.0578 0.0562 0.0713 0.0525 0.0525 

 
CR
xz  0.1200 0.0660 0.1270 0.1270 0.0910 --- 

 
EE

xz  0.1200 0.1091 0.1120 0.1100 0.1220 0.1220 

 
CR
yz  0.1350 0.1276 0.1270 0.1270 0.0910 --- 

 
EE
yz  0.1350 0.1091 0.1120 0.1103 0.1220 0.1220 

        

10 u  --- 0.0093 0.0092 0.0095 0.0088 0.0088 

 w 1.2250 1.2135 1.2089 1.2479 1.2083 1.0636 

 x  0.7302 0.7484 0.7471 0.7652 0.7157 0.7157 

 y  0.0886 0.0851 0.0876 0.0889 0.0843 0.0843 

 xy  0.0535 0.0534 0.0530 0.0680 0.0525 0.0525 

 
CR
xz  0.1210 0.1270 0.1300 0.1310 0.0910 --- 

 
EE

xz  0.1210 0.1199 0.1200 0.1200 0.1220 0.1220 

 
CR
yz  0.1250 0.1306 0.1300 0.1310 0.0910 --- 

 
EE
yz  0.1250 0.1199 0.1200 0.1200 0.1220 0.1220 

Table 1: Comparison of non-dimensional displacements and stresses for the two layered (00/900)  
laminated composite square (b = a) plate subjected to sinusoidally distributed load. 

 
 
 

 

Figure 2: Through thickness distribution of in-plane displacement ( u ) for two layered (00/900)  

laminated composite plate subjected to sinusoidally distributed load (b = a, a/h = 10). 
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Figure 3: Through thickness distribution of in-plane normal stress ( x ) for two layered (00/900)  

laminated composite plate subjected to sinusoidally distributed load (b = a, a/h = 10). 

 

 

Figure 4: Through thickness distribution of transverse shear stress ( EE
xz ) for two layered (00/900)  

laminated composite plate subjected to sinusoidally distributed load (b = a, a/h = 10). 

 
4.2 Buckling Analysis of Laminated Composite Plates 

In this section, an analytical solution for the buckling analysis of plate is developed using Navier 
solution technique. The governing equations of the plate in case of static buckling are obtained by 
discarding transverse load (q) and inertia terms (I0, I1, I2, I3) from Eqs. (13) – (16). The in-plane 
compressive ( 0 0 0andxx yy xyN ,N N ) forces now represents loads instead of reaction forces, as there is no 

transverse load. The values of in-plane compressive forces are taken as 0
1 0xxN k N  , 0

2 0yyN k N  and
0 0xyN  . The governing equations for static buckling are as follows: 
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(35)

 

where N0 is the intensity of in-plane compressive force. After substituting Eq. (27) into Eqs. (32) – 
(35), the following system of equations in matrix form is obtained. 
 

11 12 13 14

12 22 23 24
0 2 2 2 2

13 23 33 34 1 2 1 2
2 2 2 2

14 24 34 44 1 2 1 2

0 0 0 0 0
0 0 0 0 0
0 0 0
0 0 0

mn

mn

bmn

smn

uK K K K
vK K K K

N
K K K K k k k k w
K K K K k k k k w

   
   

        
        
                                       

 (36)

 

where the element of stiffness matrix [Kij] are given in Eq. (29). For nontrivial solution, the determi-
nant of the coefficient matrix in Eq. (36) must be zero. For each choice of m and n, there is a 
corresponding unique value of N0. The critical buckling load is the smallest value of N0(m, n). A 
simply supported laminated composite square and rectangular plates subjected to the uniaxial and 
biaxial loading conditions, as shown in Figure 5, is considered to illustrate the accuracy of the present 
theory in predicting the buckling behaviour. The following material properties are used in the numer-
ical study. 
 

2
1 2 12 13 2 23 2 12 21 12

1

/ open, G G 0.6 , G 0.5 , 0.25, EE E E E
E

         (37)

 

Critical buckling loads are presented in the following non-dimensional form: 
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   2 3
0 2/crN N a E h  (38)

  
(a) Uniaxial compression (b) Biaxial compression 

Figure 5: A simply supported plate subjected to in-plane compressive forces. 

 

Layup Compression (k1, k2) Source 
E1 / E2 

20 30 40 

(00/900/00) Uniaxial (1, 0) Present 15.215 20.428 24.977 

   SSNDT (Sayyad and Ghugal, 2014b) 15.003 19.002 22.330 

   HSDT (Reddy, 1984) 15.300 19.675 23.339 

   FSDT (Mindlin, 1951) 14.985 19.027 22.315 

   CPT (Kirchhoff, 1850) 19.712 27.936 36.160 

   Exact (Noor, 1975) 15.019 19.304 22.880 

 Biaxial (1, 1) Present 7.6075 10.214 12.488 

   SSNDT (Sayyad and Ghugal, 2014b) 7.5014 9.5009 11.165 

   HSDT (Reddy, 1984) 7.6500 9.8376 11.669 

   FSDT (Mindlin, 1951) 7.4925 9.5135 11.157 

   CPT (Kirchhoff, 1850) 9.8560 13.968 18.080 

   Exact (Noor, 1975) 7.5095 9.6520 11.440 

(00/900/00/900/00) Uniaxial (1, 0) Present 16.234 21.435 25.976 

   SSNDT (Sayyad and Ghugal, 2014b) 15.828 20.643 24.756 

   HSDT (Reddy, 1984) 15.783 20.578 24.676 

   FSDT (Mindlin, 1951) 15.736 20.485 24.547 

   CPT (Kirchhoff, 1850) 19.712 27.936 36.160 

   Exact (Noor, 1975) 15.653 20.466 24.593 

 Biaxial (1, 1) Present 8.117 10.717 12.988 

   SSNDT (Sayyad and Ghugal, 2014b) 7.9140 10.321 12.378 

   HSDT (Reddy, 1984) 7.8915 10.289 12.338 

   FSDT (Mindlin, 1951) 7.8680 10.240 12.273 

   CPT (Kirchhoff, 1850) 9.8560 13.968 18.080 

   Exact (Noor, 1975) 7.8265 10.466 12.296 

Table 2: Comparison of critical buckling load (Ncr) for simply supported laminated composite square  
plates under uniaxial and biaxial compression (b = a, a/h = 10). 



530     A.S. Sayyad et al. / Bending, Vibration and Buckling of Laminated Composite Plates Using a Simple Four Variable Plate Theory 

Latin American Journal of Solids and Structures 13 (2016) 516-535 
 

Compression (k1, k2) a/h Source 
b / a 

1.0 2.0 3.0 4.0 

Uniaxial (1, 0) 5 Present 14.181 9.950 9.091 8.778 

   SSNDT (Sayyad and Ghugal, 2014b) 11.986 8.780 8.463 8.382 
   FSDT (Mindlin, 1951) 12.146 8.673 8.357 8.279 
   CPT (Kirchhoff, 1850) 36.160 29.833 29.259 29.102 

  10 Present 25.908 19.785 18.705 18.313 
   SSNDT (Sayyad and Ghugal, 2014b) 23.387 18.500 18.057 17.941 
   FSDT (Mindlin, 1951) 23.453 18.398 17.962 17.849 

   CPT (Kirchhoff, 1850) 36.160 29.833 29.259 29.102 
  100 Present 36.016 29.682 29.094 28.931 
   SSNDT (Sayyad and Ghugal, 2014b) 35.961 29.652 29.080 28.924 

   FSDT (Mindlin, 1951) 35.956 29.648 29.077 28.921 
   CPT (Kirchhoff, 1850) 36.160 29.833 29.259 29.102 

Biaxial (1, 1) 5 Present 7.0900 7.9600 8.1820 8.2620 

   SSNDT (Sayyad and Ghugal, 2014b) 5.9934 7.0244 7.6171 7.8896 
   FSDT (Mindlin, 1951) 6.0730 6.9387 7.5216 7.7928 
   CPT (Kirchhoff, 1850) 18.080 23.866 26.333 27.390 

  10 Present 12.954 15.828 16.834 17.236 
   SSNDT (Sayyad and Ghugal, 2014b) 11.694 14.800 16.251 16.886 
   FSDT (Mindlin, 1951) 11.726 14.719 16.166 16.799 

   CPT (Kirchhoff, 1850) 18.080 23.866 26.333 27.390 
  100 Present 18.008 23.746 26.185 27.229 
   SSNDT (Sayyad and Ghugal, 2014b) 17.980 23.722 26.172 27.223 

   FSDT (Mindlin, 1951) 17.978 23.718 26.169 27.219 
   CPT (Kirchhoff, 1850) 18.080 23.866 26.333 27.390 

Table 3: Comparison of critical buckling load (Ncr) for simply supported four layered (00/900/900/00)  
laminated composite rectangular plates under uniaxial and biaxial compression. 

 
4.3 Free Vibration Analysis of Laminated Composite Plates 

According to Navier solution technique, the governing equations of the plate in case of free vibration 
analysis are obtained by discarding transverse load (q) and in-plane compressive forces ( 0 0 0

xx yy xyN ,N ,N ) 

from Eq. (13) – (16). These equations are as follows: 
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(39)
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(42) 

 

The following solution form is assumed for unknown displacement variables 0u , 0v , bw and sw  
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Substituting Eq. (43) into the Eqs. (39) – (42), the following system of equations is obtained.  
 

11 12 13 14 0

12 22 23 24 02
2 2 2 2

13 23 33 34 1 0 2 0
2 2 2 2

14 24 34 44 2 0 3 0

0 0 0 0
0 0 0 0
0 0 0
0 0 0

mn

mn

bmn

smn

uK K K K I
vK K K K I

K K K K I ( ) I I ( ) I w
K K K K I ( ) I I ( ) I w


   
   

       
       
                                        

 (44)

 

The elements of stiffness matrix [K] are given in Eq. (29). From the solution of Eq. (44) lowest 
natural frequencies for laminated composite plates can be obtained. The material properties given by 
Eq. (37) are used for the numerical study. Natural frequencies are presented in the following non-
dimensional form: 
 

2
2/h E    (45)
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Lay-up Source 
E1 / E2 

10 20 30 40 
00/900 Present 0.27987 0.31354 0.34128 0.36498 

 SSNDT (Sayyad and Ghugal, 2015) 0.28060 0.31415 0.34181 0.36543 
 HSDT (Reddy, 1984) 0.27955 0.31284 0.34020 0.36348 
 FSDT (Mindlin, 1951) 0.27757 0.30824 0.33284 0.35353 
 CPT (Kirchhoff, 1850) 0.30968 0.35422 0.39335 0.42884 
 Exact (Noor, 1973) 0.27938 0.30698 0.32705 0.34250 
      

00/900/00 Present 0.34261 0.40623 0.44502 0.47162 
 SSNDT (Sayyad and Ghugal, 2015) 0.32696 0.37037 0.39498 0.41176 
 HSDT(Reddy, 1984) 0.33095 0.38112 0.41094 0.43155 
 FSDT (Mindlin, 1951) 0.32739 0.37110 0.39540 0.41158 
 CPT (Kirchhoff, 1850) 0.42599 0.55793 0.66419 0.75565 
 Exact (Noor, 1973) 0.32841 0.38241 0.41089 0.43006 
      

00/900/900/00 Present 0.3422 0.4055 0.4441 0.4706 
 SSNDT (Sayyad and Ghugal, 2015) 0.3319 0.3821 0.4119 0.4324 
 HSDT(Reddy, 1984) 0.3308 0.3810 0.4108 0.4314 
 FSDT (Mindlin, 1951) 0.3319 0.3826 0.4130 0.4341 
 CPT (Kirchhoff, 1850) 0.4260 0.5579 0.6642 0.7556 
 Exact (Noor, 1973) 0.3284 0.3824 0.4108 0.4300 
      

00/900/00/900/00 Present 0.3430 0.4063 0.4449 0.4715 
 SSNDT (Sayyad and Ghugal, 2015) 0.3384 0.3950 0.4287 0.4518 
 HSDT(Reddy, 1984) 0.3399 0.3994 0.4350 0.4592 
 FSDT (Mindlin, 1951) 0.3368 0.3930 0.4271 0.4506 
 CPT (Kirchhoff, 1850) 0.4259 0.5579 0.6641 0.7556 
 Exact (Noor, 1973) 0.3408 0.3979 0.4314 0.4537 

Table 4: Comparison of non-dimensional natural frequencies of simply supported square  
laminated composite plates (b = a, a/h = 5). 

 
5 DISCUSSION OF NUMERICAL RESULTS 

5.1 Bending Analysis of Laminated Composite Plates 

In this example the efficacy of present theory is proved for the bending analysis of simply supported 
two layered (00/900) anti-symmetric laminated composite square plates subjected to sinusoidally dis-
tributed load. The non-dimensional displacement and stresses obtained using present theory are com-
pared and discussed with those obtained by classical plate theory (CPT) of Kirchhoff (1850), first 
order shear deformation theory (FSDT) of Mindlin (1951), higher order shear deformation theory 
(HSDT) of Reddy (1984), sinusoidal shear and normal deformation theory (SSNDT) of Sayyad and 
Ghugal (2014a) and exact elasticity solution given by Pagano (1970). The non-dimensional numerical 
results are summarized in Table 1. It is observed that the in-plane displacement predicted by present 
theory is in good agreement with other theories.  In-plane displacement is maximum in 900 layer 
whereas minimum in 00 layer (Figure 2). The present theory underestimates the value of transverse 
displacement for aspect ratio 4 but it is in good agreement with exact solution and other higher order 
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theories for aspect ratio 10. Figure 3 shows that, in-plane normal stress  x  predicted by present 

theory is in close agreement with that of other theories. The present theory predicts exact values of 
transverse shear stress  xz  for aspect ratios 4 and 10 when obtained via equations of equilibrium 

 EE
xz . Through thickness distribution of this stress is shown in Figure 4. 

 
5.2 Buckling Analysis of Laminated Composite Plates 

A comparison of the critical buckling load parameters obtained by the present theory for a three 
layered (00/900/00) and five layered (00/900/00/900/00) symmetric cross-ply laminated composite 
square plates subjected to uniaxial and biaxial compressions for various modular ratios (E1/E2) is 
presented in Table 2. All the layers are of equal thickness. The results of present theory are compared 
with HSDT of Reddy (1984), SSNDT of Sayyad and Ghugal (2014b) FSDT of Mindlin (1951) and 
CPT of Kirchhoff (1850) and exact elasticity solution given by Noor (1975). The material properties 
used for this example are shown in Eq. (37). From the examination of Table 2 it is observed that the 
present results are in excellent agreement with exact solution as well as HSDT of Reddy (1984). It is 
also observed that the buckling loads predicted by CPT are significantly higher than those obtained 
by the present theory. This is the consequence of neglecting the transverse shear deformation effect 
in the CPT. It can be seen from Table 2 that the critical buckling loads in case of biaxial compression 
are exactly half of those of uniaxial compression for square plates. Table 3 shows the critical buckling 
load parameter for four layered (00/900/900/00) symmetric laminated composite rectangular plate. 
The numerical results are obtained for various values of b/a ratios and a/h ratios. From Table 3 it is 
observed that the critical buckling load increases with respect to increase in ‘b/a’ and ‘a/h’ ratios. It 
is also pointed out that the present theory is in excellent agreement while predicting the buckling 
behaviour of rectangular laminated composite plates. 
 
5.3 Free Vibration Analysis of Laminated Composite Plates 

In Table 4, non-dimensional natural frequencies of simply supported square laminated composite 
plates for various modular ratios (E1/E2) are presented and compared with those obtained by SSNDT 
of Sayyad and Ghugal (2015), HSDT of Reddy (1984), FSDT of Mindlin (1951) and CPT of Kirchhoff 
(1850). In all the lamination schemes, the layers are of equal thickness. The material properties are 
shown in Equation (37). The exact elasticity solution for free vibration analysis of laminated compo-
site plates given by Noor (1973) is used for the purpose of comparison. From the Table 8 it is observed 
that the present theory is in excellent agreement while predicting the natural frequencies of laminated 
composite plates. The CPT overestimates the natural frequencies because of neglect of the transverse 
shear deformation effect. It is also observed that the natural frequencies of laminated composite plates 
increase with respect to increase in modular ratios (E1/E2).  
 
6 CONCLUSIONS 

In the present study, a refined trigonometric shear deformation theory is applied for the bending, 
buckling and free vibration analysis of laminated composite plates. The most important feature of 
the present theory is that it involves only four unknowns which are five in case of first order shear 
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deformation theory and other higher order theories. The present theory satisfies the traction free 
conditions at top and bottom surfaces of plates without using shear correction factor. From the 
mathematical formulation of present theory, it is observed that, due to four unknown variables, the 
present theory requires less computational efforts compared to five and six variable shear deformation 
theories. From the numerical results and discussion it is concluded that present theory is in good 
agreement while predicting the bending, buckling and free vibration behaviour of laminated composite 
plates. 
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