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Abstract 
In this paper, the smoothed finite element method, incorporated 
with the level set method, is employed to carry out the topology 
optimization of continuum structures. The structural compliance is 
minimized subject to a constraint on the weight of material used. 
The cell-based smoothed finite element method is employed to im-
prove the accuracy and stability of the standard finite element 
method. Several numerical examples are presented to prove the va-
lidity and utility of the proposed method. The obtained results are 
compared with those obtained by several standard finite element-
based examples in order to access the applicability and effectiveness 
of the proposed method. The common numerical instabilities of the 
structural topology optimization problems such as checkerboard 
pattern and mesh dependency are studied in the examples. 
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1 INTRODUCTION 

The topology optimization design has become one of the most important approaches in the field of 
structural optimization. The purpose of the topology optimization is to achieve the best performance 
for a structure while satisfying various constraints such as a constraint on the weight of material used 
(Xie and Huang (2010)). For topology optimization of continuum structures, the homogenization 
method (Hassani and Hinton (1999)), the Solid Isotropic Microstructure with Penalization (SIMP) 
(Bendsøe and Sigmund (2003)), the evolutionary structural optimization (ESO) (Xie and Steven 
(1993)), the bi-directional evolutionary structural optimization (BESO) (Huang et al. (2006)), the 
topological derivative-based optimization (Amstutz et al. (2012); Lopes et al. (2015)) and the level 
set method (Dijk et al. (2013)) are often employed. The level set method has recently developed as 
an attractive alternative for topology optimization of continuum structures without homogenization. 
The significance of level set method is its simplicity and generality. 
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To date, the predominant numerical method used for topology optimization is the finite element 
method. The finite element method encounters some difficulties when dealing with problems such as 
large deformation or moving boundary problems. The standard finite element method often suffers 
from numerical instabilities, and its solving is sensitive to element distortion because of overestimation 
of the stiffness matrix. To overcome these difficulties, various numerical methods have been developed 
and achieved remarkable progress, such as meshfree methods (Monaghan (1992); Belytschko et al. 
(1994); Liu et al. (1995); Atluri and Zhu (1998)) and smoothed finite element method (Liu et al. 
(2007)). The meshfree methods do not require maintaining the integrity and desired shape of elements 
due to their meshfree nature. Therefore, large deformation and crack propagation problems can be 
effectively modelled with meshfree methods (Shobeiri (2015a, 2015b)). Though meshfree methods 
generally exhibit good numerical stability and accuracy, the complex field approximation considerably 
increases the computational cost. 

It is clear that methods which combine finite element method with meshfree methods can exhibit 
advantages of computational efficiency and simplicity. The smoothed finite element method is such a 
typical method. This new numerical method is rooted in meshless stabilized conforming nodal inte-
gration and exhibits a  number of attractive properties such as good numerical stability and accuracy, 
excellent convergence rate, and insensitivity to volumetric locking and mesh distortion (Liu et al. 
(2007)). The smoothed finite element method has been successfully applied to large variety of prob-
lems including 2D and 3D linear and nonlinear problems (Nguyen et al. (2009)), dynamic analysis 
(Luong-Van et al. (2014)), plate and shell structures (Nguyen-Xuan et al. (2008); Nguyen-Thanh et 
al. (2008)).  

In this paper, the smoothed finite element method is proposed to carry out the topology optimi-
zation of continuum structures using the level set method. The feasibility and efficiency of the pro-
posed method are illustrated with several 2D examples that are widely used in topology optimization 
problems. The optimized topologies are compared with those obtained by the standard finite element 
-based method in order to access the applicability and effectiveness of the proposed method. The 
common numerical instabilities of the structural topology optimization problems such as mesh de-
pendency and checkerboard patterns are studied in the examples. 
 
2 REVIEW OF CELL-BASED SMOOTHED FINITE ELEMENT METHOD (CS-FEM)  

In this section, a brief review of the cell-based smoothed finite element method (as a branch of the 
smoothed finite element method) is presented. Full details can be found in Liu et al. (2007). In the 
cell-based smoothed finite element method, the total design domain W  is first divided into eN

 
ele-

ments as in the finite element method. Depending on the necessity of stability, each element is then 
subdivided into a number of smoothing domains such that ( )

1
nc c
i=W = W  and ( ) ( )i jW W = , i j¹ . 

Here, (  or )i jW  is the domain of thi  or thj  smoothing domain and nc  is the total number of cells 

inside the design domain. Fig. 1 shows the smoothing domains relating to various number of cells in 
the cell-based smoothed finite element method. For each smoothing domain ( )cW  associated with cell 
c, the smoothing strain S

 
can be written as: 
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(2.1)

 

 
Figure 1: Division of quadrilateral element into smoothing domains in the cell-based smoothed finite element  

method: (a) nSC  = 1; (b) nSC = 2; (c) nSC = 3; (d) nSC = 4; (e) nSC = 8; (f) nSC = 16. 

 

 
Figure 2: Design domain of the cantilever beam. 

 
where F  is the smoothing function written as: 
 

( ) ( )
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where 
( )

( ) d
c

cA
W

= Wò  is the area of smoothing cell ( )cW . The element area is the sum of element cell 

areas: 
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c
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where nSC  is the number of cells for each element. Note that this kind of smoothing is also employed 
in the smoothed particle hydrodynamics method (Monaghan (1992)). Substituting F  into Eq. (2.1), 
the smoothing strain can be written as: 
 

( )

( )
( )

1
n (x)u(x)d (x )d

c n

c
u uI c Ic

I N

S
A ÎG

= G = åò B  (2.4)

 

where ( )cG
 
is the boundary of the smoothing cell ( )cW , nN  is the number of nodes per element, 

(x )uI c
B  is smoothing strain matrix of the domain ( )cW , and ( )n cu

 
is the normal outward vector on the 

boundary ( )cG . The vectors of (x )uI c
B and ( )n cu

 
are obtained as: 
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Figure 3: Optimization results obtained from different mesh discretizations  

with different number of smoothing cells. 
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In the above equations, nb  is the total number of boundary sections of ( )c
bG , xgb  is the midpoint 

(Gauss point) of the each smoothing domain boundary segment ( )c
bG , and ( )c

bl
 
is the length of each 

segment of ( )c
bG . It can be pointed out from Eq. (2.6) that unlike the finite element method, there is 

no derivative of shape function in the smoothing strain matrix. By employing the current formulation 
of the smoothed finite element method, the discrete equation for the cell-based smoothed finite ele-
ment method is given as: 
 

CS-FEM =  K U f (2.7)
 

where U
 
is the vector of nodal displacements, f  is the vector of nodal forces, and CS-FEMK  is the 

global smoothed stiffness matrix: 
 

Figure 4: Evolution histories of the objective  
function over iterations, example 1. 

Figure 5: Evolution histories of the objective  
weight over iterations, example 1. 

 

CS-FEM ( ) T ( ) ( )( )
nSC

c c c
e u u

c

AK B DB= å    (2.8)

 

where D is the stress-strain relationship matrix. It should be noted that nodal shape functions con-
structed in cell-based smoothed finite element method have the Delta function property. Therefore, 
essential boundary conditions are imposed as in the finite element method. 
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3 FORMULATION OF TOPOLOGY OPTIMIZATION PROBLEM  

3.1 Optimization Problem  

The objective of topology optimization is the optimal distribution of material in the design domain 
to minimize the cost functionals under various constraints such as stress, displacement or weight 
constraints. In this study, the aim is to find the stiffest structure subject to a given structural weight. 
Therefore, the optimization problem can be formulated as: 
 

CS-FEM T CS-FEM

1

Minimize      ( )=

Subject to :  ( )=

               :   0 or 1    =1,...,

eN

e e e e
e

req

e e

C x

W W

x e N

Tx U K U = u K u

x
=

= "

å   

 (3.1)

 

where ( )C x  is the structural compliance, ( )W x

 

is the weight of the current topology, reqW  is the 

prescribed weight and 1=( ,..., )
eN

x xx  is the vector of element densities. The design variable ex  indi-

cates the presence (1) or absence (0) of an element, where e  is the element index. eu  is the element 

displacement vector and CS-FEM
eK  is the element stiffness matrix for element e . In this study, the 

discrete level set method is employed to find the solution for the optimization problem. The discretized 
level set function y  can be defined as: 
 

( ) 0    if  1,

( ) 0    if  0.
e e

e e

x

x

y
y

c

c

ìï < =ïíï > =ïî
 (3.2)

 

where ec  is the center position of element e . Here,   is initialized as a signed distance function and 

an upwind finite difference scheme is employed to accurately solve the evolution equation. The dis-
crete level set function is updated to find new structure using the following equation: 
 

 

Figure 6: Results obtained by the SIMP method from different mesh sizes  

without and with sensitivity filtering. 
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where t  indicates time, u  is scalar field on the design domain, w  is a positive parameter that 
specifies the influence of g , and g  is a forcing term that determines the nucleation of new holes 

within the structure. Note that to satisfy the weight constraint, two parameters u  and g  are obtained 

based on the shape and topological sensitivities of the Lagrangian framework.  
 
4 NUMERICAL EXAMPLES  

In this section, three widely studied examples in the field of topology optimization are presented to 
show the effectiveness of the proposed method. Poisson’s ratio 0.3m =  and Young’s modulus of 

1E =  are used for all examples. 
 
4.1 Example 1 

Fig. 2 shows the design domain of a cantilever beam with a length to height ratio of 2:1. The objective 
function is to minimize the compliance and the objective weight is 45% of the total weight of the 
design domain.  
 

  

Figure 7: Design domain of beam with fixed support. 

 

Figure 8: Evolution histories of the objective  
function over iterations, example 2. 

Figure 9: Evolution histories of the objective  
weight over iterations, example 2. 
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To determine the optimal structural layout, the design domain is discretized using 3618, 48

24, 6030 and 7236 quadrilateral elements. And to study the effects of the number of the smoothing 
cells, each element is subdivided into different number of smoothing cells using 2nSC = , 4nSC = , 

8nSC =  and 16nSC = . The optimization results obtained from different mesh sizes with different 
number of smoothing cells are shown in Fig. 3, from which it can be seen that the final solutions 
obtained from 4nSC = , 8nSC =  and 16nSC =  with different mesh sizes are almost identical, 
and are different from those obtained from 2nSC = . The optimization results obtained using 

2nSC =  show the so-called mesh dependency effect, for which different optimal topologies are gen-
erated from different mesh sizes. It can be found that the use of four ( 4nSC = ) or more than four 
smoothing domains can be good choices for topology optimization problems to overcome numerical 
instabilities such as mesh dependency phenomenon.  

Figs. 4 and 5 illustrate the history of objective function and objective weight using 4nSC =  
based on different mesh sizes over iterations, respectively. It can be seen from Figs. 4 and 5 that the 
number of iterations for mesh sizes of 3618, 4824, 6030 and 7236 are 65, 57, 53 and 47, respec-
tively and their corresponding compliances are calculated as 70.71, 71.35, 68.60 and 68.96, respec-
tively. It can be also seen from these results that for different mesh sizes, their convergence charac-
teristics are very similar.  
 

 

Figure 10: Results obtained by the present method with different mesh discretizations. 

 
To verify the present method, the above problem using the same mesh sizes is solved by the Solid 

Isotropic Microstructure with Penalization (SIMP) method (Sigmund (2001)) (standard finite ele-
ment-based method). The optimal structural layouts without and with sensitivity filtering are shown 
in Fig. 6, from which it can be seen that with and without using a filter, the topologies obtained from 
the SIMP method are quite different. Note that the SIMP method using a filter generates similar 
topologies to the designs obtained by the present method using 4nSC = , 8nSC =  and 16nSC =
. It can be also observed that numerical instabilities such as checkerboard patterns and mesh-depend-
ency exist in the results of the SIMP method if no filtering is employed, while for the present method 
no such problem can be seen. 
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Figure 11: Evolution of topology at various mesh discretizations:  

(a) 40 20; (b) 80 40; (c) 100 50. 

 
4.2 Example 2 

Fig. 7 shows the design domain of a beam with fixed supports. The beam length to height size ratio 
is 2:1. The objective function is to minimize the compliance, and the target weight is 30% of the total 
weight of the design domain. The division of the element into four smoothing domains ( 4nSC = ) is 
used as default in this example. 
 

  
Figure 12: Results obtained by the SIMP method from different mesh  

sizes without and with sensitivity filtering. 

 

Figure 13: Design domain for Michelle type structures.  
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In order to show that the optimum structural layout is mesh independent and checkerboard free, 
the design domain is discretized using 4020, 8040 and 10050 quadrilateral elements. Fig. 8 shows 
the evolution history of the objective function over iterations based on different mesh sizes. It can be 
observed from Fig. 8 that the number of iterations for mesh sizes of 4020, 8040 and 10050 are 
50, 53 and 46, respectively and their corresponding compliances are calculated as 13.75, 14.32 and 
14.92, respectively. Fig. 9 shows the curves of convergence of the objective weight based on different 
mesh sizes. The almost monotonic and uniform convergence can be seen from this figure. 

The optimization results obtained by the present method are shown in Fig. 10, the topology 
optimization history at various iterations is shown in Fig. 11, and the optimization results obtained 
by the Solid Isotropic Microstructure with Penalization (SIMP) method (Sigmund (2001)) (standard 
finite element-based method) without and with sensitivity filtering are shown in Fig. 12. From these 
results it can be seen that the SIMP method using a filter produces similar topologies to the present 
method, and the present method can effectively remove numerical instabilities such checkerboard 
pattern and mesh dependency phenomena. The number of iterations of the SIMP method for mesh 
sizes of 4020, 8040 and 10050 are 41, 96 and 123 respectively and their corresponding compli-
ances are respectively calculated as 15.14, 15.12 and 14.53. It is confirmed that the number of itera-
tions of the present method is less than the SIMP method, and a smoother optimization result can 
be obtained by the present method. 
 
4.3 Example 3 

The design domain of a simply supported Michelle type structure with a length to height ratio of 6:1 
is shown in Fig. 13. The objective function of this example is to minimize the compliance and the 
objective weight is 50% of the total weight of the design domain. 
 

 

Figure 14: Evolution histories of the objective  
function over iterations, example 3. 

Figure 15: Evolution histories of the objective  
weight over iterations, example 3. 
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Figure 16: Results obtained by the present method with different mesh discretizations. 

 

In order to show that the solution is mesh independent and checkerboard free, the design domain 
is discretized using 8414, 12020 and 18030 quadrilateral elements. Each element is subdivided 
into four smoothing domains ( 4nSC = ). Fig. 14 shows the evolution history of the objective function 
over iterations, and Fig. 15 gives the curves of convergence of the objective weight based on different 
mesh sizes. The number of iterations for mesh sizes of 8414, 12020 and 18030 are 65, 63 and 55, 
respectively and their corresponding compliances are calculated as 96.15, 94.82 and 95.82, respectively. 
It should be noted that the occasional jumps in Fig. 14 may be attributed to a remarkable alteration 
of topology due to the elimination of one or more bars in a single iteration. 

The optimum structural layouts and the topology optimization history at various mesh sizes are 
shown in Figs. 16 and 17, respectively. The optimization results obtained by the Solid Isotropic 
Microstructure with Penalization (SIMP) method (Sigmund (2001)) (standard finite element-based 
method) are given in Fig. 18. A comparison between the final solutions shown in Figs. 16 and 18 
shows that the two different optimization methods generate similar topologies and the present method 
can avoid numerical instabilities such as checkerboard pattern and mesh dependency phenomena. 
The compliances of the solutions of the SIMP method for mesh sizes of 8414, 12020 and 18030 
are respectively calculated as 101.92, 103.81 and 100.22 which are higher than those of the present 
method. These differences may be due to the over-estimated strain energy of elements in the solutions 
of the SIMP method. 
 

 

Figure 17: Evolution of topology at various mesh discretizations: (a) 84 14; (b) 120 20; (c) 180 30. 
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Figure 18: Results obtained by the SIMP method from different mesh sizes without and with sensitivity filtering. 

 
4 CONCLUSIONS 

In this paper, the smoothed finite element method is combined with the level set method to develop 
an efficient approach for topology optimization of continuum structures. The cell-based smoothed 
finite element method is employed to improve the accuracy and stability of the standard finite element 
method. Several numerical examples were presented to show the validity and feasibility of the pro-
posed method. The examples have shown the effectiveness of the proposed method to overcome nu-
merical instabilities such as checkerboard patterns and mesh dependency phenomena. As a future 
research work, the proposed approach can be efficiently used to solve structural topology optimization 
problems with other objective functionals and constraints such as stress or displacement constraints. 
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