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Abstract 
Using the third-order shear deformation theory (TSDT), an ana-
lytical solution for deformations and stresses of axisymmetric 
clamped-clamped thick cylindrical shells made of functionally 
graded material (FGM) subjected to internal pressure and thermal 
loading are presented. The material properties are graded along 
the radial direction according to power functions of the radial 
direction. It is assumed that Poisson’s ratio is constant across the 
cylinder thickness. The differential equations governing were gen-
erally derived, making use of TSDT. Following that, the set of 
non-homogenous linear differential equations for the cylinder with 
clamped-clamped ends was solved, and the effect of loading and 
supports on the stresses and displacements was investigated. The 
problem was also solved, using the finite element method (FEM), 
and the results of which were compared with those of the analyti-
cal method. Furthermore, the effect of increases in the tempera-
ture gradient on displacement and stress values has been studied. 
Finally, in order to investigate the effect of third-order approxima-
tions on displacements and stresses, a comparison between the 
results of first- and third-order shear deformation theory has been 
made. 
 
Keywords 
Thick cylinder, Clamped-clamped, Thermo-elastic; Third-order 
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1 INTRODUCTION 

In the 1980's, functionally graded materials (FGMs) were alternative materials initially used in 
ospace structural applications and fusion reactors because of their particular material properties 
which vary smoothly and continuously from one surface to the another (Yamanoushi et al. 1990; 
Koizumi 1993). FGMs represent a new generation of composite materials whose microstructure 
ies from one material to another with a specific gradient. This smooth variation of material proper-

H. Gharooni a,* 

M. Ghannad a 

M.Z. Nejad b 

 
a Faculty of Mechanical Engineering, 
Shahrood University of Technology, 
Shahrood, Iran. 
b Department of Mechanical Engineering, 
Yasouj University, Yasouj, Iran. 
 
Corresponding author:  
Gharooni.hamed@gmail.com 
 
http://dx.doi.org/10.1590/1679-78252254 
 
Received 27.06.2015 
In revised form 03.12.2015 
Accepted 11.01.2016 
Available online 17.02.2016 



H. Gharooni et al. / Thermo-Elastic Analysis of Clamped-Clamped Thick FGM Cylinders by Using TSDT     751 

Latin American Journal of Solids and Structures 13 (2016) 750-774 

ties significantly improves the mechanical strength and fracture toughness of FGMs (Cao et al. 
2012). Since thick cylindrical shells such as hollow cylinders are used in various industrial fields as 
structure materials, thermo-elastic analysis of these structures under mechanical and thermal loads, 
which may cause undesirable stress and deformation, has become important. In order to reduce 
these stresses and deformations, hollow cylindrical shells made up of FGMs have been widely used. 
Most of the existing literature deals with thermo-elastic analysis of FG shells. 

Reddy and Liu (1985) developed a simple third-order shear deformation shell theory, in which 
the transverse shear strains are assumed to be parabolically distributed across the shell thickness 
and which contains the same number of dependent unknowns as in the first-order shear deformation 
theory. Moreover, this theory requires no shear correction factors. Fukui and Yamanaka (1992) 
the Navier solution to derive the governing equation for a thick-walled FGM tube under internal 
pressure and solved the equations obtained numerically by means of the Runge-Kutta method. 
Eipakchi et al. (2003) investigated the governing equations of homogeneous cylinders with variable 
thickness, using FSDT and presented the solution of the equations, using perturbation theory. They 
further extended their previous work by considering homogenous and isotropic conical shells with 
variable thickness, using FSDT and SSDT (second-order shear deformation theory) and solved the 
conducted equations by perturbation theory (Eipakchi et al. 2008). Xiang et al. (2006) obtained the 
exact solution of FGM hollow cylinders in the state of plane strain with exponential function of 
elasticity modulus along the radius. Shi et al. (2007) analyzed heterogeneous cylindrical shells with 
power function of elasticity modulus by using multilayer method with homogeneous layers. Thick-
walled FGM cylinders in plane strain state with exponentially-varying material properties were 
solved by Tutuncu (2007) using Frobenius method. Shao and Ma (2008) solved the governing dif-
ential equations of functionally graded circular hollow cylinders with exponential variation of mate-
rial properties under mechanical loads and linearly increasing boundary temperature, using series 
expansion. Nejad, Rahimi, and Ghannad (2009) developed a 3-D set of field equations of FGM thick 
shells of revolution in curvilinear coordinate system by tensor calculus. Ghannad and Nejad (2010) 
presented the general method of derivation and the analysis of internally pressurized thick-walled 
cylinders with clamped-clamped ends. Eipakchi (2010) calculated stresses and displacements of a 
thick conical shell with varying thickness under non-uniform internal pressure analytically, using 
third-order shear deformation theory. Arefi and Rahimi (2010) conducted thermo-elastic analysis of 
a functionally graded cylinder under internal pressure, using first-order shear deformation theory for 
plane strain condition. Arani et al. (2011) investigated the effect of material inhomogeneity on elec-
tro-thermo-mechanical behaviors of FG piezoelectric rotating cylinders under internal and external 
pressure with varying properties of power function. Keles and Conker (2011) indicated transient 
hyperbolic heat condition in thick-walled FGM cylinders and spheres with exponentially-varying 
properties. Jabbari et al. (2011) indicated mechanical and thermal stresses in an functionally graded 
porous material (FGPM) hollow cylinder subjected to radially symmetric thermal loads and solved 
the governing equations by using Fourier series. Ghannad et al. (2012) presented a closed-form ana-
lytical solution for clamped-clamped thick cylindrical shells with variable thickness subjected to 
constant internal pressure based on the first-order shear deformation theory (FSDT). Ghannad et 
al. (2013) investigated the elastic analysis of pressurized thick cylindrical shells with variable thick-
ness made of functionally graded materials. They used the matched asymptotic method (MAM) of 
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the perturbation theory in order to convert the resultant equations into a system of algebraic equa-
tions and two systems of differential equations with constant coefficients. Three dimensional free 
vibration and transient response of a cylindrical panel made of two directional functionally graded 
materials based on three dimensional equations of elasticity and subjected to internal impact load-
ing is considered by Zafarmand et al. (2015). Nejad et al. (2015) presented a semi-analytical solu-
tion for the purpose of elastic analysis of rotating thick truncated conical shells made of FGM under 
non-uniform pressure by using the first-order shear deformation theory (FSDT) and multilayer 
method (MLM). Ghannad and Gharooni (2015) investigated displacements and stresses in pressur-
ized thick FGM cylinders with exponential variation of material properties based on TSDT. 

Most of the studies reviewed have investigated the heat transfer and gradient temperature of 
FGM cylinders and have presented no accurate solution especially the ones which use shear defor-
mation theory. The results of previous analyses of the cylindrical shells show that FSDT is not an 
appropriate theory for the purpose of stress analysis, suggesting that the accuracy of the stresses 
(especially radial stresses), unlike displacements which have been calculated directly by SDT, are 
not acceptable. Furthermore, it could be seen that the thermo-elastic analysis of pressurized thick 
FGM cylinders based on third-order shear deformation theory has not been studied in the litera-
ture. On the other hand, other theories such as classical theories or plane elasticity theories (PET) 
have not acceptable results because of failing to take into account shear stresses. 

In order to improve the approximation of shear deformation theory (especially under thermal 
loading) and to take into account the effect of shear stresses and strains, the general method of 
derivation and thermo-elastic analysis of pressurized thick-walled cylindrical shells under the effect 
of gradient temperature has been presented in this paper by using HSDT. The material of the cyl-
inder is assumed to be isotropic and heterogeneous with radially varying mechanical and physical 
properties continuously along the thickness with a power function and constant Poisson’s ratio. The 
coefficient matrices of the governing equations have been derived in the unique abbreviated form. 
The obtained equations are solved under the generalized clamped-clamped conditions. Furthermore, 
the effects of loading, temperature gradient and inhomogeneity of FG materials on the stresses and 
displacements have been investigated. The analytical results of shear deformation theory are com-
pared with the numerical results of FEM. Finally, the higher efficiency and accuracy of the third-
order shear deformation theory, compared with the lower one, have been shown. 
 
2 PROBLEM FORMULATION 

In shear deformation theory (SDT), the straight lines perpendicular to the central axis of the cylin-
der do not necessarily remain unchanged after loading and deformation, suggesting that the defor-
mations are axisymmetric and change along the longitudinal direction of cylinder. This means that 
the elements have rotation, and the shear strain is not zero. 

The parameter r is the radius of every layer of cylinder which can be replaced in terms of radi-
us of mid-plane ( )R and distance of every layer with respect to mid-plane ( )z , as follows (Figure 

1): 
 

r R z  (1)
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The parameters x and z are the length and the thickness variables which vary in the following 
intervals: 
 

0 ,
2 2
h h

x L z       (2) 

 

where h  and L are the thickness and the length of the cylinder. 
The displacement field is assumed as a polynomial of a variable ( )z through the thickness. As 

the number of terms in the polynomial function increases, the approximate solution is improved as 
well. The high-order shear deformation theory (HSDT) is employed to simulate the deformation of 
every layer of the cylinder. 
 

 

 

Figure 1: Geometry of the thick cylindrical shell under internal pressure and temperature gradient. 

 
Based on HSDT, every component of deformation can be stated by variables that include the 

displacement and rotation. For an axisymmetric cylindrical shell, axial and radial components of 
displacement field are assumed to be in the following form: 
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where 0 ( )u x  and 0 ( )w x  are the displacement components of the middle surface. ( )iu x  and 

( )iw x  for 0,1, 2,3i   are the unknown functions of x which are used to determine the displace-

ment field. 
The kinematic relations in the cylindrical coordinates system for an axisymmetric cylinder are: 
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Considering the dimensionless radial coordinate  r  as the ratio of radial coordinate  r  upon 

internal radius  ir : 
 

i

r
r

r
  (5)

 

Mechanical and physical properties of inhomogenous and isotropic material (FGM) including 
modulus of elasticity  E , thermal expansion coefficient   and thermal conductivity coefficient 

 K  are supposed to be a power function of dimensionless radial coordinate: 
 

 ( ) n

iE r E r  (6a)
 

 ( ) n

ir r   (6b)
 

 ( ) n

iK r K r  (6c)
 

Here iE , i  and iK are the modulus of elasticity, thermal expansion coefficient and thermal 

conductivity coefficient at the inner surface  ir of the cylinder and n  is the inhomogeneity con-

stant of FG material determined empirically. Generally speaking, the Poisson’s ratio    for a thick-

walled cylindrical pressure vessel of isotropic FGM varies in a small range. Furthermore, its effects 
on mechanical stresses are insignificant. For simplicity, the Poisson’s ratio is assumed to be con-
stant. 

The distribution of material properties from Eqs. (6) can be re-written as a function of z by 
substituting r from Eq. (1) into Eq. (5): 
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Figure 2 shows the distribution of dimensionless material properties  iX X with respect to the 

dimensionless radius in a heterogeneous cylinder for integer values of n which vary in the range of 
2 2n    . 
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Figure 2: Distribution of dimensionless material properties in an FGM cylinder. 

 
On the basis of the constitutive equations for inhomogeneous and isotropic materials, the stress 

components based on components of mechanical and thermal strain are as follows: 
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(8)

 

where   and   are the Lame’s constants. Considering variable elasticity modulus for the FGM 

materials, these two parameters are as follows: 
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 
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 (9) 

 

 
( )

12
E z







 (10)

 

Furthermore, ( )T z is the distribution of temperature gradient along the thickness of the cyl-

inder in the one-dimensional steady state heat transfer condition. 
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The axial forces based on normal components of stress are as follows: 
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  (11)

 

The bending moments based on normal components of stress are as follows: 
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The higher-order bending moments based on normal components of stress are as follows: 
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The shear force based on shear stress is as follows: 
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The torsional moment based on shear stress is as follows: 
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The higher-order torsional moments based on shear stress are as follows: 
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3 VIRTUAL WORK PRINCIPLE 

Based on the principle of virtual work, the variation of strain energy of the elastic body  U  is 

equal to the variation of external work due to pressure  W . 
 

U W  (19)
 

The strain energy is 
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and the external work consists of internal and external pressure ( iP and oP ) , which is: 
 

 

    z

sf
S

o oi isf

W dS dS d dx

P U

rf u

dS r P r d dxf u





  


 






 

 

,
 (21)

 

where 
sff


 is the surface force of the pressurized cylinder. 

The bounds of integrals for x and z  variables have been defined in Eq. (2). 
Variation of the strain energy can be expressed as follows: 
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and the variation of the external work is: 
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Substituting Eqs. (4), (7) and (8) into Eqs. (22) and (23), using Eq. (19) and carrying out the 
integration by parts, the equilibrium equations for the cylindrical shell with constant thickness un-
der one-dimensional heat transfer and uniform internal and external pressure are obtained in the 
form of: 
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(24)

 

where PF and TF stand for non-homogeneity of the governing equations which have resulted from 

the loading of pressure and temperature, respectively. The subscripts x  and z  in the right terms 
of each equation show the components of PF and TF along the axial and radial direction, respec-

tively. 
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The boundary conditions at the two ends of the cylinder are: 
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Eqs. (24) express the main governing equations based on the HSDT for the cylindrical shells 
under mechanical and thermal loading. Eq. (27) is the boundary conditions which should be satis-
fied at the two ends of the cylinder. 
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4 HEAT TRANSFER EQUATION 

According to Figure 1, heat transfer in the form of conduction along the thickness of the cylinder 
under the effect of heat sources at the internal and external surface causes thermal strains. For 
thermo-elastic analysis of the cylinder, the function of temperature gradient distribution along the 
longitudinal direction should be determined by the solution of heat transfer equation. Fourier’s heat 
transfer law in general form is: 
 

  2 K r T q C T     (28)
 

where T ,  K r , q ,   and C  are temperature distribution, thermal conduction coefficient, heat 

generation rate, density and specific heat, respectively. 
In cylindrical coordinate system, the Eq. (28) could be re-written in the form of: 

 

     2
1 1

p
T T T

K r K r K r q C T
r r x

r
r r xr




  
 

  

                    
  (29) 

 

Axisymmetric thermal load in cylindrical coordinate system causes just radial flow in the cylin-
der. Therefore, Eq. (29) for radial temperature distribution in steady-state condition without any 
heat generation has been simplified as: 
 

( ) 0T
K r r

r r

      
 (30)

 

Thermal boundary conditions, as shown in Figure 1, consist of temperatures at the internal and 
external surfaces of the cylinder: 
 

( ) , ( )
i or r i r r oT r T T r T    (31)

 

Solution of differential Eq. (30) by applying thermal boundary conditions according to Eq. (31) 
and considering coefficients of thermal conduction from Eqs. (6- c) yield to the temperature distri-
bution along the thickness of the cylinder as a function of radius: 
 

 
 

( )
n

i o o i o i
n n nn n

i oi o

r r T T T T
T r

r r rr r

                 
 (32) 

 

Since the terms of temperature gradient distribution appear in the thermal part of non-

homogeneity in Eq. (26)  TF , Eq. (32) should be re-written in the terms of ( )T z : 
 

 
 

( )
( )

n
oi o oi i

n n nn n
oioi

r r T T TT
T z

R z r rr r

     
     
      

     


 (33) 
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where iT  and oT  are the temperature gradients between the environment of the cylinder and 

internal and external surfaces, respectively. Considering refT as the temperature of environment 

(reference), we have: 
 

,i i ref o o refT T T T T T       (34)

 
5 ANALYTICAL SOLUTION 

Eqs. (24) are the set of differential equations. In order to solve these equations, forces and moments 
could be written by using Eqs. (11) to (18) in terms of stresses. The stresses could be written in 
terms of strains by substituting Eqs. (7– a and b) into Eq. (8) and using Eq. (33). By using Eqs. 
(4), the strains are converted into the displacement filed components. Finally, a set of linear non-
homogenous differential equations with constant coefficients would result, as follows: 
 

            
2

2

d d
A y B y C y F

dx dx
    (35)

 

where  8 8
A


,  8 8

B


 and  8 8
C


 are the coefficient matrices and  F is the force vector, which can 

be expressed as the set of non-homogeneity of differential equations'.  y is the unknown vector 

including the components of displacement field as: 
 

   0 1 2 3 0 1 2 3

T
y u u u u w w w w  (36)

 

Matrix C   in the Eq. (35) whose reverse would be needed in the next calculations is irreversi-

ble. In order to make 1
C


   , the first equation in the set of Eqs. (24) has been integrated. 

 

0xRN C  (37)
 

In Eqs. (24), it is apparent that 0u  does not exist, but 0du dx  does. In order to calculate de-

formations in Eqs. (4), 0du dx  is needed. Therefore, by assuming 0du dx   as a new parameter 

which could be indicated in the following terms, we have: 
 

0 15u vdx C   (38)
 

Applying the mentioned changes, the unknown vector  y in the set of differential Eqs. (24) 

would be rewritten as follows: 
 

   1 2 3 0 1 2 3

T
y v u u u w w w w  (39)

 

Non-homogeneity of the differential Eqs. (24) would be derived as follows: 
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 
 
  
 
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 
 
 
 
 
  

 
















 
(40)

 

The corresponding coefficient matrices  A ,  B  and  C  of the new differential Eqs. (35) 

have been defined in appendices. 
The solution of Eqs. (35) consists of general and particular parts: 

 

     
g p

y y y   (41)
 

For the general solution,     mx

g
Vy e  is substituted in homogeneous Eq. (26). 

 

   2 0mxe m A m B C V                (42)
 

Considering that mxe  is not equal to zero, the following determinant which is equal to zero 
would result. 
 

2 0m A m B C              (43)
 

The above determinant is a sixteen-order polynomial which is a function of m . The determi-
nant's roots are the eigenvalues 

im consisting of eight pairs of conjugated roots where a pair of the 

roots is zero. Substituting the calculated eigenvalues in Eq. (42), the corresponding eigenvectors 

 i
V are obtained. Therefore, the general solution has been obtained. 

 

   
14

1

im x
ig i

i
y C V e


  (44)

 

Given that  F  in Eq. (35) consists of constant parameters, the non-homogenous part of the so-

lution for axisymmetric cylinder with constant thickness under uniform pressure is not the function 
of x . Therefore, the particular solution can be expressed as follows. 
 

          1

pp
C y F y C F


    (45)

 

Considering Eq. (27), clamped-clamped boundary conditions at two ends of the cylinder are as 
follows: 
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







 (46)

 

Applying eight boundary conditions at each end of the cylinder, one can calculate sixteen con-
stants comprised of 1 14, ,C C  in the general solution and 0 15,C C  in the particular solution. Final-

ly, the unknown vector  y  which consists of displacement field components would be obtained in 

terms of x variable based on Eq. (41) by determining unknown constants. Using Eq. (3) would 
yield radial and axial displacements. Stress distribution would be obtained by using Eqs. (4) and 
(8). 
 

6 NUMERICAL RESULTS AND DISCUSSIONS 

As a case study, a thick heterogeneous cylinder under uniform internal pressure and heat conduc-
tion resulting from temperature gradient of internal and external surfaces and clamped-clamped 
boundary conditions at the two ends with the following characteristics could be considered: 

40 mmir   , 20 mmh   and 0.8 mL  . The values of elasticity modulus, thermal expansion coeffi-

cient and thermal conductivity coefficient at the internal radius are 200 GPaiE  , 
6 o C12 10i
   and W m.K20iK  , respectively. The value of Poisson’s ratio is 0.3  . The 

applied internal pressure is 80 MPaiP  . The temperatures of internal and external surfaces are 
oC125iT   and oC25oT  , respectively. The environment (reference) temperature is oC25refT  . 

The analytical solution has been carried out by writing the program in MAPLE 17. 
In order to demonstrate the potentials of the presented analytical solution for the purpose of 

analyzing an FG cylinder, a numerical solution is investigated. The ANSYS 14.5 package is used in 
the static analysis of thick hollow cylinder with constant thickness. The PLANE82 element in the 
axisymmetric mode, which is an element with eight nodes and two translational degrees of freedom 
in the axial and radial directions per each node, has been used to model the mechanical part of the 
analysis. For the thermal part of the analysis, the appropriate element is PLANE77, which is com-
patible with initial element for superposing the thermal and mechanical results. The length and the 
thickness of the cylinder have been divided into 1600 and 40 parts, respectively. The quadratic 
mapped meshing has been applied for each section of the cylinder. In order to consider power-law 
varying elastic modulus along the thickness of the cylindrical shell, the thickness of the cylinder has 
been divided into some homogeneous layers. As applying more than 40 layers along the thickness 
shows no significant effect in FEM results, the thickness of the cylinder is divided into 40 homoge-
neous layers. Each layer's properties have been defined as a power function of the distance of layer's 
middle from the internal layer. Finally, the cylindrical shell consists of some coherent homogeneous 
layers. In order to merge the layers, the properties of contact location of the layers have been de-
fined the average of left and right limits of the boundaries of the two adjacent layers. For thermal 
boundary conditions, the temperature gradient values of the inner and outer surfaces with the envi-
ronment temperature have been applied to the corresponding nodes. Clamped boundary conditions 
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have been exerted by preventing the nodes around the two ends of the cylinder from movement. In 
the next sections, the numerical and analytical results have been investigated. 
 
6.1 Loading and Inhomogeneity Effect 

The distribution of the dimensionless radial displacement resulting from the numerical and analyti-
cal solution in the middle of a cylinder under o100 C temperature gradient is depicted in Figures 3 

and 4 without and with internal pressure, respectively. It is evident that radial displacement under 
temperature gradient for negative values of n is higher than the homogenous materials at layers 
close to the internal surface while at the outer surface, reverse holds true. For positive values of n, 
the reverse holds true, which means that the heterogonous materials have lower values of radial 
displacement than the homogenous ones at inner surfaces and the higher values of displacement at 
outer surfaces. The variation in the displacement of heterogeneous materials is similar to that of 
homogenous materials close to the middle layer. Under thermal and mechanical loads for negative 
values of n, the displacements of FGM cylinders are higher than those of the homogeneous cylinder. 
For positive values of n, the situation is reverse, i.e. the displacement is lower. Figure 4 shows that 
radial displacements for different values of n increase from internal layer to the middle layer while 
in the external half of the cylinder's thickness, they decrease around the middle layer to the exter-
nal layer. Variation of inhomogeneity constants from negative to the positive causes maximum dis-
placement of cylinder's thickness to appear around the external layer. Furthermore, adding internal 
pressure to the temperature gradient causes uniform displacement along the radial direction. From 
the viewpoint of low level and small variation of displacements, using materials with negative in-
homogeneity constants for thermal loading and positive for mechanical loading is recommended. 
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Figure 3: Dimensionless radial displacement distribution in the middle of the cylinder  

under temperature gradient  o100 CT  . 
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Figure 4: Dimensionless radial displacement distribution in the middle of the cylinder  

under internal pressure and temperature gradient  o100 CT  . 

 

Figures 7 and 8 show the distribution of the dimensionless circumferential stress resulting from 
the numerical and analytical solution at 2x L  for o100 C temperature gradient under pressurized 

and non-pressurized cylinder, respectively. For both loadings, the circumferential stress for negative 
values of n is higher than the homogenous materials at layers close to the internal surface while at 
the outer surface, reverse holds true. For positive values of n, the reverse holds true, suggesting that 
the heterogonous materials have less values of circumferential stress than the homogenous ones at 
inner surfaces and the higher values of stress at outer surfaces. Considering more uniform stress 
distribution of the layers and less maximum values of stress for 0n   under combined loading, it is 
interesting to use FG materials with negative values of n. Internal pressure causes an increase in the 
values of circumferential stresses, which would result in positive values of stresses around the inter-
nal layer. 
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Figure 5: Dimensionless circumferential stress distribution in the middle of the cylinder  

under temperature gradient  o100 CT  . 
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Figure 6: Dimensionless circumferential stress distribution in the middle of the cylinder under  

internal pressure and temperature gradient  o100 CT  . 

 
Distribution of von Mises stress resulting from numerical and analytical solution in the middle 

of the cylinder for thermal loading  o100 CT  is illustrated in Figure 7. It can be seen that von 

Mises stresses at internal layer are equal for different inhomogeneities and for negative ones a de-
crease in the value of stresses appears along the thickness relative to external layer. 0n   causes 
higher values of von Mises stresses relative to the homogenous materials while for 0n   the reverse 
hold true. Considering temperature gradient, von Mises stress at the internal half of the cylinder 
decreases along the thickness from the internal layer to the external one for all inhomogenous mate-
rials, while it increases for positive values of n and is constant for negative ones at the external half. 
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Figure 7: Dimensionless von Mises stress distribution in the middle of the cylinder  

under temperature gradient  o100 CT  . 
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Figure 8 shows the numerical and analytical distribution of von Mises stress under combined 
loading at 2x L . The comparison of Figures 7 and 8 clearly shows that adding internal pressure 

to the temperature gradient results in different values of von Mises stress at the internal layer, i.e. 
around the internal layer. Corresponding stress of negative inhomogeneous materials has maximum 
values while around the external layer, materials with positive inhomogeneities have maximum val-
ues. Applying internal pressure to the cylinder under temperature gradient causes less values of von 
Mises stress around the internal layer and more values around the external one for 0n  . It could 
easily be seen that FGMs with negative values of n are more appropriate from the viewpoint of less 
von Mises stress. 
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Figure 8: Dimensionless von Mises stress distribution in the middle of the cylinder  

under internal pressure and temperature gradient  o100 CT  . 

 
 

Figure 9 shows the distribution of shear stress resulting from analytical solution along the longi-
tude of cylinder under combined load for 1n    in different layers. It can be seen that there are 
shear stresses near the two ends of the cylinder under the effect of clamped boundary conditions, 
which has been considered in shear deformation theory. Dimensionless radial displacement and von 
Mises stress distribution under combined load at 2z h  for different materials are illustrated in 

Figures 10 and 11, respectively. It could be observed that displacement and stress along the longi-
tudinal direction are uniform except the layers around the clamped boundaries. Therefore, PET 
results are valid through the length of the cylinder far away from clamped boundaries. 
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Figure 9: Shear stress distribution in different layers under internal pressure and  

temperature gradient  o100 CT   for 1n   . 
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Figure 10: Dimensionless radial displacement distribution at 2z h  under  

internal pressure and temperature gradient  o100 CT  . 
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Figure 11: Dimensionless von Mises stress distribution at 2z h  under  

internal pressure  and temperature gradient  o100 CT  . 
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6.2 Temperature Gradient Effect 

The effect of temperature gradient on radial displacement for 1n    has been investigated in Fig-
ure 12. It could be observed that for 1n   , the same graph is obtained. It can be seen that in-
creasing temperature gradient leads to increment in values of radial displacements. This increment 
is equal from the internal layer to the external one for lower gradient temperature while it is higher 
in the external layers for upper gradient temperature for inhomogenous materials. 

The effect of temperature gradient on von Mises stress has been investigated in Figures 13 and 
14 for 1n   . The von Mises stresses, as the radial displacements, for both positive and negative 
values of n are uniform through the thickness in lower temperature gradient. The increment of 
temperature gradient yields higher stress values. Upper temperature gradient has brought about 
higher values of stresses around the internal and external layers and low levels of stresses around 
the middle layer for 1n   while it causes reductions in stresses from the internal to the external 
layer for 1n   . Therefore, the increment of temperature gradient yields higher displacement and 
stress along the thickness of the cylinder. 
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Figure 12: Dimensionless radial displacement distribution in the middle of the cylinder  

under different temperature gradient for 1n   . 
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Figure 13: Dimensionless von Mises stress distribution in the middle of the cylinder  

under different temperature gradient for 1n   . 
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Figure 14: Dimensionless von Mises stress distribution in the middle of the cylinder  

under different temperature gradient for 1n   . 

 

6.3 Third-order Approximation Effect 

Tables 1 and 2 present the radial and von Mises stresses of different layers resulting from different 
solutions in the middle of heterogeneous cylinder ( 2x L ) under internal pressure, respectively. 

The radial and von Mises stresses of different layers resulting from different solutions in the middle 
of the heterogeneous cylinder ( 2x L ) under o100 C temperature gradient are presented in Tables 

3 and 4, respectively. The stresses resulting from internal pressure increase from the external layer 
to the internal one whereas FG materials with positive inhomogeneities yield lower values of the 
maximum stresses. It has been shown that FSDT method has acceptable results for displacements, 
but the radial and von Mises stresses resulting from FSDT show a significant difference once com-
pared with the results calculated from HSDT and FEM solution. This difference increases at layers 
close to the boundaries and the greatest difference occurs in the internal surface  2z h  while 

using HSDT yields the values of -80 and 0 for radial stresses at the internal and external layer, re-
spectively, which is compatible with applying pressure. In the cylinder under temperature gradient, 
the radial stresses at different layers have negative values which are inconsiderable relative to the 
stresses of pressurized cylinder. 
 

,MPar  
1n     0n    1n    

HSDT FSDT FEM HSDT FSDT FEM HSDT FSDT FEM 

/ 2z h   -77.751 7.228 -80.000 -77.211 6.738 -80.000 -76.347 6.114 -80.000 

/ 4z h   -47.322 -14.019 -46.514 -50.836 -12.349 -49.782 -54.364 -10.700 -52.920 
0z   -24.759 -27.337 -24.826 -28.158 -27.619 -28.164 -31.723 -27.516 -31.610 

/ 4z h  -9.633 -35.801 -10.198 -11.321 -40.112 -12.168 -13.014 -44.331 -14.333 

/ 2z h  -1.135 -41.180 0.000 -1.754 -50.523 0.000 -2.824 -61.146 0.000 

Table 1: Radial stress of different layers under internal pressure at 2x L  based on SDT and FEM. 
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,MPaVon
 

1n     0n    1n    

HSDT FSDT FEM HSDT FSDT FEM HSDT FSDT FEM 

/ 2z h   291.64 246.61 289.50 249.67 204.72 250.90 212.26 167.66 216.12 

/ 4z h   209.60 193.12 209.27 199.50 180.35 199.01 188.01 166.16 187.31 

0z   154.72 155.25 154.84 161.98 161.09 162.04 167.47 164.90 167.48 

/ 4z h  117.48 127.53 117.73 134.46 145.56 134.84 151.79 163.89 152.36 

/ 2z h  92.090 93.477 92.412 115.00 132.83 114.31 141.79 163.14 139.48 

Table 2: von Mises stress of different layers under internal pressure at 2x L  based on SDT and FEM. 

 

,MPar  
1n     0n    1n    

HSDT FSDT FEM  HSDT FSDT FEM HSDT FSDT FEM 

/ 2z h   -10.428 247.200 0.000  -6.941 248.026 0.000 -5.055 249.363 0.000 

/ 4z h   -9.267 216.230 -13.032  -12.319 244.071 -14.964 -15.101 276.114 -17.096 

0z   -13.412 192.083 -13.109  -16.728 240.910 -16.742 -21.064 302.866 -21.228 

/ 4z h  -10.237 172.744 -7.630  -12.852 238.319 -10.720 -16.786 329.617 -14.973 

/ 2z h  5.263 156.915 0.000  4.440 236.161 0.000 3.892 356.369 0.000 

Table 3: Radial stress of different layers under o100 C  temperature gradient at 2x L  based on SDT and FEM. 

 

,Von MPa
 

1n     0n    1n    

HSDT FSDT FEM HSDT FSDT FEM HSDT FSDT FEM 

/ 2z h   257.43 118.58 255.81 260.66 118.97 264.34 263.22 119.31 273.28 

/ 4z h   137.60 101.86 136.02 165.15 114.97 163.95 197.88 129.77 196.94 

0z   86.270 89.181 86.172 112.19 111.84 112.11 148.31 140.32 148.24 

/ 4z h  81.040 79.259 80.329 108.86 109.34 108.41 146.90 150.94 146.70 

/ 2z h  84.500 71.294 87.278 130.83 107.29 132.63 201.17 161.62 201.17 

Table 4: von Mises stress of different layers under o100 C  temperature gradient at 2x L  based on SDT and FEM. 

 
 It is generally observed that modifying initial approximation of displacement field components 

in comparison with FSDT, HSDT yields error reduction. The reason is that FSDT assumes linear 
distribution for the radial displacement while according to the Lame's theory (PET), the variation 
of radial displacement along the thickness of the cylinder has hyperbolic distribution. 
 

2
1( )r

C
U r C r

r
   (47)

 

Figure 15 illustrates the effect of third and first-order shear deformation theories in the middle 
of the cylinder under temperature gradient T and internal pressure  iP  for 1n   . It could easi-
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ly be seen that around the middle layer, lower approximation has acceptable results. However, 
around the internal and external layers, FSDT yields different distributions resulting from Eq. (47). 
This phenomenon intensifies for thermal loading because displacement distribution along the thick-
ness changes from linear status to nonlinear one. The polynomial distribution of displacement in 
third-order approximation improves the accuracy of the results. The calculus of stresses from dis-
placements and strains by using constitutive relations intensifies the initial error appearing in dis-
placements. 
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Figure 15: Dimensionless radial displacement distribution in the middle of the  

cylinder based on HSDT, FSDT and FEM for 1n   . 

 
7 CONCLUSIONS 

In this study, the heterogeneous hollow cylinders with power-law varying elastic modulus along 
radial direction have been solved by HSDT and FEM, and have been compared with homogenous 
cylinders. At the boundary areas of a thick-walled cylinder with clamped-clamped ends under ther-
mal and mechanical load, use cannot be made of PET, and SDT must be used instead. The shear 
stress in boundary areas cannot be ignored, but in areas further away from the boundaries, it could 
be. Therefore, the non-uniform displacements and stresses at points close to the boundaries are dif-
ferent from the other areas under the effect of shear stresses resulting from boundary conditions 
and, thus, the PET can be used, provided that the shear strain is zero. It was observed that using 
negative inhomogeneities in the cylinder causes small decreases under thermal load and considerable 
increase under mechanical load in radial displacements while the positive inhomogeneities are ap-
propriate under combined loading since less radial displacements appear in the cylinder. In general, 
the effect of inhomogeneity constants on displacement distribution along the thickness for different 
temperature gradients is inconsiderable compared with internal pressure. It is observed that the 
stresses are the function of longitudinal and radial direction. Because of low level and small varia-
tion of circumferential stresses, using materials with negative inhomogeneities is more suitable. Un-
like the displacements, von Mises stresses are strongly affected by the temperature gradient varia-
tions and inhomogeneity constants. Using materials with negative n for the cylinder under thermal 
or combined loading causes less von Mises stresses. Furthermore, temperature gradient increment 
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causes the external layer to be critical from the viewpoint of displacement and internal layer from 
the viewpoint of stress. It can be concluded that using FSDT for thermoelastic analysis of cylindri-
cal shells, because of disregarding third approximation terms in displacement field components, is 
not appropriate. Therefore, third-order approximation yields improved accuracy, especially around 
the boundary layers. Because the terms resulting from pressure and temperature gradient have been 
revealed in the non-homogeneity part of the set of governing differential equations, the superposi-
tion principle could be utilized for the effect of combined loading on the basis of linear elasticity. In 
fact, the non-homogeneity vector F  appears as a force vector in the governing equations. 
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where the parameters   and k  are as follows 
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