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Free vibration analysis of an embarked rotating composite shaft
using the hp- version of the FEM

Abstract

This paper presents the study of the vibratory behavior of

rotating composite shafts. The composite shaft contains

isotropic rigid disks and is supported by bearings that are

modeled as springs and viscous dampers. An hp- version

of the Finite Element Method (FEM) is used to model the

structure. A hierarchical finite element of beam type with

six degrees of freedom per node is developed. The assembly

is made by the standard version of the finite element method

for several elements. A theoretical study allows the estab-

lishment of the kinetic energy and the strain energy of the

system (shaft, disk and bearings) necessary to the result of

the equations of motion. In this study the transverse shear

deformation, rotary inertia and gyroscopic effects, as well as

the coupling effect due to the lamination of composite lay-

ers have been incorporated. A program is elaborate for the

calculation of the eigen-frequencies and critical speeds of the

system. The results obtained compared with those available

in the literature show the speed of convergence, the exacti-

tude and the effectiveness of the method used. Several exam-

ples are treated, and a discussion is established to determine

the influence of the various parameters and boundary condi-

tions.
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1 INTRODUCTION

The application of composite shafts has come a long way from early low speed automotive

driveshafts to helicopter tail rotors operating above the second critical speed. With operation

at supercritical speeds, a substantial amount of payoffs and net system weight reductions are

possible. At the same time, the rotordynamic aspects assume more importance, and detailed

analysis is required. There are some technological problems associated with implementation,

such as joints with bearings, affixing of lumped masses, couplings, provision of external damp-
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NOMENCLATURE

U(x, y, z) Displacement in x direction.
V(x, y, z) Displacement in y direction.
W(x, y, z) Displacement in z direction.
βx Rotation angles of the cross-section about the y axis.
βy Rotation angles of the cross-section, about the z axis.
ϕ Angular displacement of the cross-section due to the torsion deformation

of the shaft.
E Young modulus.
G Shear modulus.
(1, 2, 3) Principal axes of a layer of laminate
(x, y, z ) Cartesian coordinates.
(x, r, θ) Cylindrical coordinates.
Gc Centre of the cross-section.
(O, x, y, z ) Inertial reference frame.
(Gc, x1, y1, z1) Local reference frame is located in the centre of the cross-section.
C′ij Elastic constants.
ks Shear correction factor.
ν Poisson coefficient.
ρ Masse density.
L Length of the shaft.
D Mean radius of the shaft.
e Wall thickness of the shaft.
Rn The nth layer inner radius of the composite shaft.
Rn+1 The nth layer outer radius of the composite shaft.
k Number of the layer of the composite shaft.
η Lamination (ply) angle.
θ Circumferential coordinate.
ξ Local and non-dimensional co-ordinates.
ω Frequency, eigen-value.
Ω Rotating speed.
[N] Matrix of the shape functions.
f (ξ) Shape functions.
p Number of the shape functions or number of hierarchical terms.
t Time.
Ec Kinetic energy.
Ed Strain energy.
{qi} Generalized coordinates, with (i = U, V, W,βx,βy, ϕ)
[M] Masse matrix.
[K] Stiffness matrix.
[G] Gyroscopic matrix.
[Cp] Damping matrix.
Kyy0,Kyz0,Kzy0,Kzz0 Bearing stiffness coefficients in x = 0.
KyyL,KyzL,KzyL,KzzL Bearing stiffness coefficients in x = L.
Cyy0,Cyz0,Czy0,Czz0 Bearing damping coefficients in x = 0.
CyyL,CyzL,CzyL,CzzL Bearing damping coefficients in x = L.
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ing etc. The solutions proposed are just adequate, but require substantial refinements, which

might explain some of the differing experiences of various authors.

Zinberg and Symmonds [27] described a boron/epoxy composite tail rotor driveshaft for

a helicopter. The critical speeds were determined using equivalent modulus beam theory

(EMBT), assuming the shaft to be a thin walled circular tube simply supported at the ends.

Shear deformation was not taken into account. The shaft critical speed was determined by

extrapolation of the unbalance response curve which was obtained in the sub-critical region.

Dos Reis et al. [12] published analytical investigations on thin-walled layered composite

cylindrical tubes. In part III of the series of publications, the beam element was extended

to formulate the problem of a rotor supported on general eight coefficient bearings. Results

were obtained for shaft configuration of Zinberg and Symmonds. The authors have shown that

bending-stretching coupling and shear-normal coupling effects change with stacking sequence,

and alter the frequency values. Gupta and Singh [13] studied the effect of shear-normal coupling

on rotor natural frequencies and modal damping. Kim and Bert [15] have formulated the

problem of determination of critical speeds of a composite shaft including the effects of bending-

twisting coupling. The shaft was modeled as a Bresse-Timoshenko beam. The shaft gyroscopics

have also been included. The results compare well with Zinberg’s rotor [27]. In another study,

Bert and Kim [4] have analysed the dynamic instability of a composite drive shaft subjected to

fluctuating torque and/or rotational speed by using various thin shell theories. The rotational

effects include centrifugal and Coriolis forces. Dynamic instability regions for a long span

simply supported shaft are presented.

M- Y. Chang et al [8] published the vibration behaviours of the rotating composite shafts.

In the model the transverse shear deformation, rotary inertia and gyroscopic effects, as well

as the coupling effect due to the lamination of composite layers have been incorporated. The

model based on a first order shear deformable beam theory (continuum- based Timoshenko

beam theory). M- Y. Chang et al [7] published the vibration analysis of rotating composite

shafts containing randomly oriented reinforcements. The Mori-Tanaka mean-field theory is

adopted here to account for the interaction at the finite concentrations of reinforcements in

the composite material.

Additional recent work on composite shafts dealing with both the theoretical and experi-

mental aspects was reported by Singh [19], Gupta and Singh [13] and Singh and Gupta [20].

Rotordynamic formulation based on equivalent modulus beam theory was developed for a

composite rotor with a number of lumped masses, and supported on general eight coefficient

bearings. A layerwise beam theory was derived by Singh and Gupta [13] from an available

shell theory, with a layerwise displacement field, and was then extended to solve a general

composite rotordynamic problem. The conventional rotor dynamic parameters as well as criti-

cal speeds, natural frequencies, damping factors, unbalance response and threshold of stability

were analyzed in detail and results from the formulations based on the two theories, namely,

the equivalent modulus beam theory (EMBT) and layerwise beam theory (LBT) were com-

pared [20]. The experimental rotordynamic studies carried by Singh and Gupta [18, 22] were

conducted on two filament wound carbon/epoxy shafts with constant winding angles (±45o
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and ±60o). Progressive balancing had to be carried out to enable the shaft to traverse through

the first critical speed. Inspire of the very different shaft configurations used, the authors

have shown that bending-stretching coupling and shear-normal coupling effects change with

stacking sequence, and alter the frequency values.

Some practical aspects such as effect of shaft disc angular misalignment, interaction between

shaft bow, which is common in composite shafts and rotor unbalance, and an unsuccessful

operation of a composite rotor with an external damper were discussed and reported by Singh

and Gupta [18]. The Bode and cascade plots were generated and orbital analysis at various

operating speeds was performed. The experimental critical speeds showed good correlation

with the theoretical prediction. Other types of complicated effects are treated such as the

delamination phenomenon. H.L. Wettergren in his paper [25] studied this effect in composite

rotors using the standard version of the finite element method.

This paper deals with the p- version, hierarchical finite element method applied to free

vibration analysis of rotating composite shafts. The hierarchical concept for finite element

shape functions has been investigated during the past 25 years. BabuEka et al. [1] established

a theoretical basis for p- elements, where the mesh keeps unchanged and the polynomial degree

of the shape functions is increased; however, in the standard h- version of the finite element

method the mesh is refined to achieve convergence and the polynomial degree of the shape

functions remains unchanged. Since then, standard forms of the hierarchical shape functions

have been represented in the literature elsewhere; see for instance [23, 24].

Meirovitch and Baruh [16] and Zhu [26] have shown that the hierarchical finite element

method yields a better accuracy than the h- version for eigen-values problems. The hierarchical

shape functions used by Bardell [2] are based on integrated Legendre orthogonal polynomials;

the symbolic computing is used to calculate the mass and stiffness matrices of beams and

plates. Coté and Charron [11] give the selection of p- version shape functions for plate vibration

analysis.

In the presented composite shaft model, the Timoshenko theory will be adopted. The

purpose of this present work is to study dynamic characteristics such as natural frequencies,

whirling frequencies and the critical speeds of the rotating composite shaft. In the model the

transverse shear deformation, rotary inertia and gyroscopic effects, as well as the coupling

effect due to the lamination of composite layers have been incorporated. To determine the

rotating shaft system’s responses, the hp- version of the finite element method (combination

between the conventional version of the finite element method (h- version and the hierarchical

finite element method (p- version ) with trigonometric shape functions [6, 14]) is used here to

approximate the governing equations by a system of ordinary differential equations.

2 EQUATIONS OF MOTION

2.1 Kinetic and strain energy expressions of the shaft

The shaft is modeled as a Timoshenko beam, that is, first-order shear deformation theory

with rotary inertia and gyroscopic effect is used. The shaft rotates at constant speed about
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its longitudinal axis. Due to the presence of fibers oriented than axially or circumferentially,

coupling is made between bending and twisting. The shaft has a uniform, circular cross section.

The following displacement field of a rotating shaft (one beam element) is assumed by

choosing the coordinate axis x to coincide with the shaft axis:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

U(x, y, z, t) = U0(x, t) + zβx(x, t) − yβy(x, t)
V (x, y, z, t) = V0(x, t) − zϕ(x, t)
W (x, y, z, t) =W0(x, t) + yϕ(x, t)

(1)

Where U, V and W are the flexural displacements of any point on the cross-section of the

shaft in the x, y and z directions respectively, the variables U0, V0 and W0 are the flexural

displacements of the shaft’s axis, while βx and βy are the rotation angles of the cross-section,

about the y and z axis respectively. The ϕ is the angular displacement of the cross-section

due to the torsion deformation of the shaft (see figure 1).
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Figure 1 a) The elastic displacements of a typical cross-section of the shaft, b) k–layers of the composite
shaft.

The various components of strain energy of the shaft are presented as follow (one beam

element) [6]:
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Where Aij and Bij are given in Appendix.

The kinetic energy of the rotating composite shaft (one beam element) [6], including the

effects of translatory and rotary inertia, can be written as

Eca =
1

2
∫

L

0
[Im (U̇2

0 + V̇ 2
0 + Ẇ 2

0 ) + Id (β̇2
x + β̇2

y) − 2ΩIpβxβ̇y + 2ΩIpϕ̇ + Ipϕ̇2+

Ω2Ip +Ω2Id (β2
x + β2

y)] dx
(3)

where Ω is the rotating speed of the shaft which is assumed constant, L is the length of

the shaft, the 2ΩIpβxβ̇y term accounts for the gyroscopic effect, and Id (β̇2
x + β̇2

y) represent

the rotary inertia effect. The mass moments of inertia Im, the diametrical mass moments of

inertia Id and polar mass moment of inertia Ip of rotating shaft per unit length are defined

in the appendix. As the Ω2Id (β2
x + β2

y) term is far smaller than Ω2Ip, it will be neglected in

further analysis.

2.2 Kinetic energy of the disk

The disk fixed to the composite shaft (see figure 2) is assumed rigid and made of isotropic

material. According to Equation (3) the kinetic energy of the disk can be expressed as

EcD =
1

2
[IDm (U̇2

0 + V̇ 2
0 + Ẇ 2

0 ) + IDd (β̇2
x + β̇2

y) − 2ΩIDp βxβ̇y + 2ΩIDp ϕ̇ + IDp ϕ̇2+

Ω2IDp +Ω2IDd (β2
x + β2

y)]
(4)

where Im, Id and Ip are the mass, the diametrical mass moment of inertia and the polar

mass moment of inertia of the disk. As the Ω2IDp (β2
x + β2

y) term is far smaller than Ω2IDp , it

will be neglected in further analysis.
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Figure 2 Various positions of the disk on the rotating shaft (one element).

2.3 Virtual work of the bearings

The bearings are characterized by values of stiffness and viscous damping following the y and

z directions and the cross terms (see Figures 3 and 4). The stiffness and damping effects of

the bearings are modeled using springs and viscous dampers.
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Figure 4 Rotating shaft (one element) supported by two bearings.

The virtual work δA done by these external forces can be written as

δA = FV0
δV0
+ FW0

δW0
(5)

Where FV0
and Fw0

are the generalized forces expressed by:

{ FV0

FW0

} = − [ Cyy Cyz

Czy Czz
]{ V̇0

Ẇ0
} − [ Kyy Kyz

Kzy Kzz
]{ V0

W0
} (6)

2.4 Hierarchical beam element formulation

The spinning flexible beam is descretised by hierarchical beam elements. Each element with

two nodes 1 and 2 is shown in Figure 5. The element’s nodal d.o.f. at each node are

U0 , V0 , W0 , βx , βy and ϕ. The local and non-dimensional co-ordinates are related by

ξ = x/L Avec(0 ≤ ξ ≤ 1). (7)
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Figure 5 Beam element with two nodes.

The vector displacement formed by the variables U0 , V0 , W0 , βx , βy and ϕ can be

written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U0 = [NU ] {qU} = ∑pU

m=1 xm (t) ⋅ fm (ξ)
V0 = [NV ] {qV } = ∑pV

m=1 ym (t) ⋅ fm (ξ)
W0 = [NW ] {qW } = ∑pW

m=1 zm (t) ⋅ fm (ξ)
βx = [Nβx

] {qβx
} = ∑pβx

m=1 βxm
(t) ⋅ fm (ξ)

βy = [Nβy
] {qβy

} = ∑
pβy

m=1 βym
(t) ⋅ fm (ξ)

ϕ = [Nϕ] {qϕ} = ∑
pϕ

m=1 ϕm (t) ⋅ fm (ξ)

(8)

where [N ] is the matrix of the shape functions, given by

[NU,V,W,βx, βy, ϕ] = [f1 f2 . . . . . . fpU , pV , pW , pβx , pβy , pϕ
] (9)

where pU , pV , pW , pβx
, pβy

and pϕ are the numbers of hierarchical terms of displacements

(are the numbers of shape functions of displacements). In this work, pU = pV = pW = pβx
=

pβy
= pϕ = p.
The vector of generalized coordinates given by

{ q } = { qU , qV , qW , qβx
, qβy

, qϕ }
T

(10)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ qU } = { x1, x2, x3, ...., xpU
} T

exp (jω t)
{ qV } = { y1, y2, y3, ...., ypV

} T
exp (jω t)

{ qW } = { z1, z2, z3, ...., ypW
} T

exp (jω t)
{ qβx

} = {βx1
, βx2

, βx3
, ...., βxpβx

}
T
exp (jω t)

{ qβy
} = { βy1

, βy2
, βy3

, ...., βypβy
}

T
exp (jω t)

{ qϕ } = { ϕ1, ϕ2, ϕ3, ...., ϕpϕ
} T

exp (jω t)

(11)

The group of the shape functions used in this study is given by
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f1 = 1 − ξ
f2 = ξ
fr+2 = sin (δr ξ)
δ r = rπ ; r = 1 , 2 , 3 , ...

(12)

The functions (f1, f2) are those of the finite element method necessary to describe the

nodal displacements of the element; whereas the trigonometric functions fr+2 contribute only

to the internal field of displacement and do not affect nodal displacements. The most attractive

particularity of the trigonometric functions is that they offer great numerical stability. The

shaft is modeled by elements called hierarchical finite elements with p shape functions for each

element. The assembly of these elements is done by the h- version of the finite element method.

After modelling the rotating composite shaft using the hp- version of the finite element

method and applying the Euler-Lagrange equations, the motion’s equations of free vibration

of spinning flexible shaft can be obtained.

[M] {q̈} + [ [G] + [Cp] ] {q̇} + [K] {q} = {0} (13)

[M] and [K] are the mass and stiffness matrix respectively, [G] is the gyroscopic matrix

and [Cp] is the damping matrix of the bearing (the different matrices of the equation (13) are

given in the appendix).

3 RESULTS

A program based on the formulation proposed to resolve the resolution of the equation (13).

3.1 Convergence

First, the mechanical properties of boron-epoxy are listed in Table 1, and the geometric pa-

rameters are L =2.47 m, D =12.69 cm, e = 1.321 mm, 10 layers of equal thickness (90o,

45o,-45o,0o6, 90
o). The shear correction factor ks =0.503 and the rotating speed Ω =0. In this

example, the boron-epoxy rotating shaft is modeled by one element of length L, then by two

elements of equal length L/2.

Table 1 Properties of composite materials [5].

Boron-epoxy Graphite-epoxy

E11 (GPa) 211.0 139.0

E22 (GPa) 24.1 11.0

G12 (GPa) 6.9 6.05

G23 (GPa) 6.9 3.78

ν12 0.36 0.313

ρ (kg/m3) 1967.0 1578.0
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The results of the five bending modes for various boundary conditions of the composite

shaft as a function of the number of hierarchical terms p are shown in Figures 6, 7 and 8.

Figures clearly show that rapid convergence from above to the exact values occurs when the

number of hierarchical terms increased.

The bending modes are the same for a number of hierarchical finite elements, equal 1 then

2. This shows the exactitude of the method even with one element and a reduced number of

the shape functions. It is noticeable in the case of low frequencies, a very small p is needed

(p=4 sufficient), whereas in the case of the high frequencies, and in order to have a good

convergence, p should be increased.
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Figure 6 Convergence of the frequency ω for the 5 bending modes of the simply supported- simply supported
(S-S) shaft as a function of the number of hierarchical terms p.

3.2 Validation

In the following example, the critical speeds of composite shaft are analyzed and compared with

those available in the literature to verify the present model. In this example, the composite

hollow shafts made of boron-epoxy laminae, which are considered by Bert and Kim [5], are

investigated. The properties of material are listed in Table 1. The shaft has a total length

of 2.47 m. The mean diameter D and the wall thickness of the shaft are 12.69 cm and 1.321

mm respectively. The lay-up is [90o/45o/-45o/0o6/90
o] starting from the inside surface of the

hollow shaft. A shear correction factor of 0.503 is also used. The shaft is modeled by one

element. The shaft is simply-supported at the ends. In this validation, p =10.

The result obtained using the present model is shown in Table 2 together with those of

referenced papers. As can be seen from the table our results are close to those predicted by

other beam theories. Since in the studied example the wall of the shaft is relatively thin,

models based on shell theories [15] are expected to yield more accurate results. In the present

example, the critical speed measured from the experiment however is still underestimated by
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Figure 7 Convergence of the frequency ω for the 5 bending modes of the clamped-clamped (C-C) shaft as a

function of the number of hierarchical terms p.
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Figure 8 Convergence of the frequency ω for the 5 bending modes of the clamped-supported (C-S) shaft as a

function of the number of hierarchical terms p.

using the Sander shell theory while overestimated by the Donnell shallow shell theory. In

this case, the result from the present model is compatible to that of the Continuum based

Timoshenko beam theory of M-Y. Chang et al [8]. In this reference the supports are flexible

but in our application the supports are rigid.

In our work, the shaft is modeled by one element with two nodes, but in the model of

the reference [8] the shaft is modeled by 20 finite elements of equal length (h- version). The

rapid convergence while taking one element and a reduced number of shape functions shows
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the advantage of the method used. One should stress here that the present model is not only

applicable to the thin-walled composite shafts as studied above, but also to the thick-walled

shafts as well as to the solid ones.

Table 2 The first critical speed of the boron-epoxy composite shaft.

L=2.47 m, D =12.69 cm, e =1.321 mm, 10 layers of equal thickness (90o, 45o,-45o,0o6,90
o)

Theory or Method Ωcr1 (tr/mn)

Zinberg and Symonds [27] Measured experimentally 6000

EMBT 5780

Dos Reis et al. [12] Bernoulli–Euler beam theory with stiffness

determined by shell finite elements

4942

Kim and Bert [15] Sanders shell theory 5872

Donnell shallow shell theory 6399

Bert [3] Bernoulli–Euler beam theory 5919

Bert and Kim [5] Bresse–Timoshenko beam theory 5788

Singh and Gupta [13] EMBT 5747

LBT 5620

M.-Y. Chang et al [8] Continuum based Timoshenko beam the-

ory

5762

Present Timoshenko beam theory by the hp- ver-

sion of the FEM

5760

The first eigen-frequency of the boron-epoxy rotating shaft calculated by our program in

the stationary case (the rotating speed is null) is 96.0594 Hz on rigid supports and 96.0575

on two elastic supports of stiffness 1740 GN/m. In the reference [9], they used the shell’s

theory for the same shaft studied in our case and on rigid supports; the frequency is 96 Hz. In

this example, is not noticeable the difference between shaft bi-supported on rigid supports or

elastic supports because the stiffness of the supports are very large.

3.3 Results and interpretations

In this study, the results obtained for various applications are presented. Convergence towards

the exact solutions is studied by increasing the numbers of hierarchical shape functions for

two elements. The influence of the mechanical and geometrical parameters and the boundary

conditions on the eigen-frequencies and the critical speeds of the embarked rotating composite

shafts are studied. In this study, p = 10

3.3.1 Influence of the gyroscopic effect on the eigen-frequencies

In the following example, the frequencies of a graphite- epoxy rotating shaft are analyzed. The

mechanical properties of shaft are shown in Table 1, with ks = 0.503. The ply angles in the

various layers and the geometrical properties are the same as those in the first example. The
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Campbell diagram, for the first five pairs of bending whirling modes of the rotating composite

shaft bi-simply supported (S-S) is shown in figure 9. The intersection point of the line (Ω = ω)

with the bending frequency curves, indicate the speed at which the shaft will vibrate violently

(i.e., the critical speed Ωcr). The first 10 eigen-values correspond to 5 forward (F) and 5

backward (B) whirling bending modes of the shaft.

Figure 10 shows the variation of the bending fundamental frequency ω as a function of

rotating speed Ω (Campbell diagram) for different boundary conditions. The gyroscopic effect

inherent to rotating structures induces a precession motion. When the rotating speed increase,

the forward modes (1F) increase, whereas the backward modes (1B) decrease.

The gyroscopic effect causes a coupling of orthogonal displacements to the axis of rotation,

and by consequence separate the frequencies in two branches: backward precession mode and

forward precession mode. In all cases, the forward modes increase with increasing rotating

speed however the backward modes decrease.
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 Figure 9 The Campbell Diagram of a graphite- epoxy shaft ((F) forward modes, (B) backward modes).

3.3.2 Influence of the boundary conditions on the eigen-frequencies

In the following example, the boron-epoxy shaft is modeled by two elements of equal length

L/2. The frequencies of the rotating shaft are analyzed. The mechanical properties of shaft

are shown in table 1, with ks = 0.503. The ply angles in the various layers and the geometrical

properties are the same as those in the preceding example. Figure 11 shows the variation of the

bending fundamental frequency ω according to the rotating speeds Ω (diagram of Campbell)

for various boundary conditions. Table 3 gives the first critical speed (rpm) of the rotating

shaft analyzed for various boundary conditions. According to these found results, it is noticed

that, the boundary conditions have a very significant influence on the eigen-frequencies and

the critical speeds of a rotating composite shaft. For example, by adding a support to the

mid-span of the rotating shaft, the rigidity of the shaft increases which implies the increase in

the eigen-frequencies and the critical speeds.
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 Figure 10 The first backward (1B) and forward (1F) bending mode of a graphite- epoxy shaft for different
boundary conditions and different rotating speeds (S: simply-supported; C: clamped; F: free).
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Figure 11 The first backward (1B) and forward (1F) bending mode of a boron- epoxy shaft for different

boundary conditions and different rotating speeds. L =2.47 m, D =12.69 cm, e =1.321 mm, 10
layers of equal thickness (90o, 45o,-45o,0o6, 90

o).

3.3.3 Influence of the lamination angle on the eigen-frequencies

By considering the same preceding example, the lamination angles have been varied in order

to see their influences on the eigen-frequencies of the rotating composite shaft. Figure 12

shows the variation of the bending fundamental frequency ω according to the rotating speeds Ω

(Campbell diagram) for various ply angles. According to these results, the bending frequencies

and the critical speeds of the composite shaft decrease when the ply angle increases and vice

versa.
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Table 3 The first critical speed of the boron- epoxy shaft for different boundary conditions.

Boundary conditions Figure of the rotating shaft Ωcr1 (rpm)
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Figure 12 The first backward (1B) and forward (1F) bending mode of a boron- epoxy shaft (S-S) for different
lamination angles and different rotating speeds. L =2.47 m, D =12.69 cm, e =1.321 mm, 10 layers
of equal thickness.
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3.3.4 Influence of the ratios L/D, e/D and η on the critical speeds and rigidity

In figure 13, the first critical speeds of the graphite-epoxy composite shaft (the properties are

listed in Table 1, with ks =0.503) are plotted according to the lamination angle for various

ratios L/D and various boundary conditions (S-S, C-C). From figure 13, the first critical speed

of shaft bi-simply supported (S-S) has the maximum value at η = 0o for a ratio L/D = 10, 15

and 20, and at η = 15o for a ratio L/D = 5. For the case of a shaft bi-clamped (C-C), the

maximum critical speed is at η = 0o for a ratio L/D = 20 and at η = 15o for a ratio L/D =

10 and 15, and at η = 30o for a ratio L/D = 5. In figure 14, the second critical speeds of the

same graphite-epoxy composite shaft are plotted according to the lamination angle for various

ratios L/D and various boundary conditions (S-S, C-C). From figure 14, the second critical

speed for a shaft bi-simply supported has the maximum value at η = 0o for a ratio L/D = 15

and 20, at η = 15o for a ratio L/D = 10 and at η = 30o for a ratio L/D = 5. For the case

of a shaft bi-clamped, the maximum critical speed is at η = 15o for a ratio L/D = 15 and 20,

and at η = 30o for a ratio L/D = 5 and 10.

Above results can be explained as follows. The bending rigidity reaches maximum at

η = 0o and reduces when the lamination angle increases; in addition, the shear rigidity reaches

maximum at η = 30o and minimum with η = 0o and η = 90o. A situation in which the

bending rigidity effect predominates causes the maximum to be η = 0o. However, as described

by Singh ad Gupta [21], the maximum value shifts toward a higher lamination angle when the

shear rigidity effect increases. Therefore, while comparing the phenomena of figure 13 and 14,

the constraint from boundary conditions would raise the rigidity effect. A similar is observed

for short shafts.
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Figure 13 The first critical speed Ω1cr of rotating composite shaft according to the lamination angle η for
various ratios L/D and various boundary conditions (S-S, C-C).
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Figure 14 The second critical speed Ω2cr of rotating composite shaft according to the lamination angles η for
various ratios L/D and various boundary conditions (S-S, C-C).

In figures 15, 16, 17 and 18, the first and second critical speeds according to ratio L/D of

the same graphite-epoxy shaft bi-simply supported (S-S) and the same graphite-epoxy shaft

bi- clamped (C-C) for various lamination angles. It is noticeable, if ratio L/D increases, the

critical speed decreases and vice versa. Figures 19 and 20 plots the variation of first and second

critical speeds successively of the same graphite-epoxy composite shaft with ratio L/D = 20

according to the lamination angle for various e/D ratios and various boundary conditions. It

is noticed the influence of the e/D ratio on the critical speed is almost negligible; the curves

are almost identical for the various e/D ratios of each boundary condition. In figures 21, 22,

23 and 24, the same remark is observed; in spite of the variation of the ratio e/D, the critical

speed is slightly increased. This is due to the deformation of the cross section is negligible, and

thus the critical speed of the thin-walled shaft would approximately independent of thickness

ratio e/D.

According to above results, while predicting which stacking sequence of the rotating com-

posite shaft having the maximum critical speed, we should consider L/D ratio and the type

of the boundary conditions. I.e., the maximum critical speed of a rotating composite shaft is

not forever at ply angle equalizes zero degree, but it depends on the L/D ratio and the type

the boundary conditions.

Figures 25 and 26 plots the variation of first and second critical speeds successively of the

same graphite- epoxy composite shaft with various ply angles, and a rotating steel shaft (E

= 207 GPa, G = 79.6 GPa, ν = 0.3, ρ = 7680 kg/m3 ) [10] according to ratio L/D and

various boundary conditions. It is noted, if ratio L/D increases the critical speed decreases

and vice versa. The curves of the steel shaft are located between the curves of the composite

shafts of lamination angle 30o and 60o. For example, in the case of a shaft bi-simply supported
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Figure 15 The first critical speed Ω1cr of rotating composite shaft bi- simply supported (S-S) according to

ratio L/D for various lamination angles η.
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Figure 16 The second critical speed Ω2cr of rotating composite shaft bi- simply supported (S-S) according to

ratio L/D for various lamination angles η.
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Figure 17 The first critical speed Ω1cr of rotating composite shaft bi- clamped (C-C) according to ratio L/D
for various lamination angles η.
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Figure 18 The second critical speed Ω2cr of rotating composite shaft bi- clamped (C-C) according to ratio
L/D for various lamination angles η.
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Figure 19 The first critical speed Ω1cr of rotating composite shaft according to the lamination angle η for
various ratios e/D and various boundary conditions (S-S, C-C).

 

   

0

5000

10000

15000

20000

25000

30000

0 15 30 45 60 75 90

η  [°]

Ω
2c

r 
[r

pm
]

e/D=0,02; S-S
e/D=0,04; S-S
e/D=0,06; S-S
e/D=0,08; S-S
e/D=0,02; C-C
e/D=0,04; C-C
e/D=0,06; C-C
e/D=0,08; C-C

  

 
Figure 20 The second critical speed Ω2cr of rotating composite shaft according to the lamination angles η for

various ratios e/D and various boundary conditions (S-S, C-C).
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Figure 21 The first critical speed Ω1cr of rotating composite shaft bi- simply supported (S-S) according to
ratio e/D for various lamination angles η (L/D=20).
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Figure 22 The second critical speed Ω2cr of rotating composite shaft bi- simply supported (S-S) according to
ratio e/D for various lamination angles η (L/D=20).
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Figure 23 The first critical speed Ω1cr of rotating composite shaft bi- clamped (C-C) according to ratio e/D
for various lamination angles η (L/D=20).
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Figure 24 The second critical speed Ω2cr of rotating composite shaft bi- clamped (C-C) according to ratio

e/D for various lamination angles η (L/D=20).
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(S-S), the same first or second critical speed for a composite shaft with a lamination angle η

= 30o, a steel shaft is needed for a length lower than that of the composite shaft. The steel

shaft bi- clamped (C-C) has the highest first critical speed when LID is less than 7.5. The

case where L/D between 7.5 and 20, the first critical speed with η =30o is largest that the

others. In figures 27 and 28, in spite of the change of the e/D ratio, the critical speed is slightly

increased. This is due to the deformation of the cross section is negligible, and thus the critical

speed of the thin-walled shaft would approximately independent of thickness ratio e/D. The

critical speeds of steel shaft are between those of the composite shaft which have successively

the lamination angles 30o and 60o.
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Figure 25 The first and second critical speed of rotating composite shaft for various lamination angles, and

rotating steel shaft, bi- simply supported (S-S) according to ratio L/D.

3.3.5 Influence of the stacking sequence on the eigen-frequencies

In order to show the effects of the stacking sequence on the eigen-frequencies, a rotating carbon-

epoxy shaft is mounted on two rigid supports; the mechanical and geometrical properties of

this shaft are [22]:

E11 = 130 GPa, E22 = 10 GPa, G12 = G23 = 7 GPa, ν12 = 0.25, ρ = 1500 Kg/m3

L =1.0 m, D = 0.1 m, e = 4 mm, 4 layers of equal thickness, ks = 0.503

A four-layered scheme was considered with two layers of 0o and two of 90o fibre angle.

The flexural frequencies have been obtained for different combinations (both symmetric and

unsymmetric) of 0o and 90o orientations (see figures 29 and 30). These figures, respectively

plots the Campbell diagram of the first and the second eigen-frequency of a rotating shaft

for various stacking sequences. It can be observed from these figures that, for symmetric
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Figure 26 The first and second critical speed of rotating composite shaft for various lamination angles, and
rotating steel shaft, bi- clamped (C-C) according to ratio L/D.
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Figure 27 The first and second critical speed of rotating composite shaft for various lamination angles, and

rotating steel shaft, bi- simply supported (S-S) according to ratio e/D (L/D=20).
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Figure 28 The first and second critical speed of rotating composite shaft for various lamination angles, and
rotating steel shaft, bi- clamped (C-C) according to ratio e/D (L/D=20).
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Figure 29 First bending eigen-frequency of the rotating carbon- epoxy shaft bi- simply supported (S-S) for
various stacking sequences according to the rotating speed.
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Figure 30 Second bending eigen-frequency of the rotating carbon- epoxy shaft bi- simply supported (S-S) for
stacking sequences according to the rotating speed.

configurations, the frequency values of the rotating composite shaft are very close, and does

have a slight dependence on the relative positioning of the 0o and 90o layers.

3.3.6 Influence of the disk’s position according to the rotating shaft on on the eigen-frequencies

This part begins with a validation in the case of a stationary embarked shaft bi- simply

supported (the rigid disk at the mid-span), the mechanical and geometrical properties of the

shaft and the steel disk are as follows: E = 207 GPa, ν = 0.3, ρ = 7800 kg/m3

• Shaft: Length = 457 mm, Interior ray = 12.7 mm, External ray = 17.7 mm.

• Disk: External ray = 88.5 mm; Thickness = 4.425 mm.

The first frequency of the system (shaft + disk) calculated by our program in the stationary

case (the rotating speed is null) is 310 Hz on rigid support (with ks=0.56). In the reference

[17] they used a thick three-dimensional cylindrical element by applying the theory 3D for the

same shaft studied in our case but with a flexible disk, the found frequency is 288 Hz. In this

application, is noticeable the difference between the two works because the various theories

applied, and the flexibility of the disk.

By considering another example, the eigen-frequencies of a graphite-epoxy shaft system are

analyzed. The material properties are those listed in table 1. The lamination scheme remains

the same as example 1, while its geometric properties, the properties of a uniform rigid disk

are listed in table 4. The disk is placed at the mid-span of the shaft. The shaft system is

shown in figure 31. For the finite element analysis, the shaft is modeled into two elements of

equal lengths. The first element is simply-supported - free (S-F) and the second element is

free- simply-supported (F-S). The disk is placed at the free boundary (F).
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Figure 31 System; embarked hollow rotating shaft.

The Campbell diagram containing the frequencies of the second pairs of bending whirling

modes of the above composite system is shown in figure 32. Denote the ratio of the whirling

bending frequency and the rotation speed of shaft as γ. The intersection point of the line

(γ=1) with the whirling frequency curves indicate the speed at which the shaft will vibrate

violently (i.e., the critical speed). In figure 32 the second pair of the forward and backward

whirling frequencies falls more wide apart in contrast to other pairs of whirling modes. This

might be due to the coupling of the pitching motion of the disk with the transverse vibration

of shaft. Note that the disk is located at the mid-span of the shaft, while the second whirling

forward and backward bending modes are skew-symmetric with respect to the mid-span of the

shaft. The size of the curve of the first pairs of the bending frequencies is increased in order

to view better (see figure 33). Figure 34 shows the Campbell diagram of the first two bending

frequencies of the embarked graphite- epoxy shaft for various disk’s positions (x) according

to the shaft (see figure 31). It is noted that when the disk approaches the support, the first

bending frequency decreases and the second bending frequency increases and vice versa.

Table 4 Properties of the system (shaft + disk).

Properties Shaft Disk

L (m) 0.72

Interior ray (m) 0.028

External ray (m) 0.048

ks 0.56

Im (kg) 2.4364

Id (kg m2) 0.1901

Ip (kg m2) 0.3778

3.3.7 Influence of the geometrical form of the rotating shaft on the eigen-frequencies

By considering the same preceding disk and varying the geometrical form of the graphite-

epoxy shaft, the geometrical properties and the lamination scheme of the shaft (not staged
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Figure 32 Campbell diagram of the first two bending frequencies of the embarked graphite-epoxy shaft.
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Figure 33 Campbell diagram of the first bending frequency of the embarked graphite-epoxy shaft.
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Figure 34 Campbell diagram of the first two bending frequencies of the graphite-epoxy shaft for various disk’s

positions (x) according to the shaft.

and staged) are given by table 5. The properties of a uniform rigid disk are listed in table 4.

The disk is placed at the free end of the shaft. Figure 35 shows the studied systems. For

the finite element analysis, the shaft is modeled into two elements of equal lengths. The first

element (Stage 1) is bi-simply supported (S-S) and the second element (Stage 2) is simply

supported - free (S-F). The disk is placed at the free boundary (F). Figure 36 shows the

Campbell diagram of the first two bending frequencies of the systems; embarked graphite-

epoxy shaft for the various geometrical forms of the shaft (see figure 35).

It is noted that the eigen-frequencies in the case of a shaft not staged are lower than those

of a staged shaft.

Table 5 Geometrical properties of the rotating shafts.

Dimension

Staged shaft
Not staged shaft

Stage 1 Stage 2

L (m) 0.360 0.360 0.720

D (m) 0.048 0.038 0.038

e (m) 0.020 0.010 0.010

Numbers

layers (with

equal thick-

nesses)

20 10 10

η (o) 90o, 45o,-45o,0o6,

90o, 90o,

45o,-45o,0o6, 90
o

90o, 45o,-45o,0o6, 90
o 90o, 45o,-45o,0o6, 90

o
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Figure 35 System; embarked hollow rotating shaft.
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Figure 36 Campbell diagram of the first two bending frequencies of the embarked graphite- epoxy shaft for

the various geometrical forms of the shaft.
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4 CONCLUSION

The analysis of the free vibrations of the rotating composite shafts using the hp-version (hierar-

chical finite element method (p-version) with trigonometric shape functions combined with the

standard finite element method (h-version)), is presented in this work. The results obtained

agree with those available in the literature. Several examples were treated to determine the

influence of the various geometrical and physical parameters of the embarked rotating shafts.

This work enabled us to arrive at the following conclusions:

1. Monotonous and uniform convergence is checked by increasing the number of the shape

functions p, and the number of the hierarchical finite elements. The convergence of the

solutions is ensured by the element beam with two nodes. The results agree with the

solutions found in the literature.

2. The gyroscopic effect causes a coupling of orthogonal displacements to the axis of ro-

tation, and by consequence separates the frequencies in two branches, backward and

forward precession modes. In all cases the forward modes increase with increasing rotat-

ing speed however the backward modes decrease. This effect has a significant influence

on the behaviours of the rotating shafts.

3. The rotating composite shafts must cross several critical speeds in acceleration and de-

celeration.

4. The dynamic characteristics and in particular the eigen-frequencies, the critical speeds

and the bending and shear rigidity of the rotating composite shafts are influenced appre-

ciably by changing the ply angle, the stacking sequence, the length, the mean diameter,

the materials, the rotating speed and the boundary conditions.

5. The critical speed of the thin-walled rotating composite shaft is approximately indepen-

dent of the thickness ratio and mean diameter of the rotating shaft.

6. The critical speeds of the rotating steel shaft are between those of the rotating composite

shafts which have successively the ply angle 30o and 60o.

7. The dynamic characteristics of the system (shaft + disk + support) are influenced ap-

preciably by changing disk’s positions according to the the shaft and the section of the

shaft.

8. The determination of the dynamic characteristics of the embarked rotating composite

shaft of variable sections with various disk’s positions is ensured by our calculation pro-

gram.

Prospects for future studies can be undertaken following this work: a study which takes

into account damping interns in the case of a functionally graded material rotor with flexible

disks, supported by supports with oil and subjected to disturbing forces like the air pockets

or seisms, etc.
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APPENDIX

The terms Aij , Bij of the equation (2) and Im, Id, Ip of the equation (3) are given as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A11 = π∑k
n=0C

′
11n(R2

n+1 −R2
n)

A55 = π
2 ∑

k
n=0C

′
55n(R2

n+1 −R2
n)

A66 = π
2 ∑

k
n=0C

′
66n(R2

n+1 −R2
n)

A16 = 2π
3 ∑

k
n=0C

′
16n(R3

n+1 −R3
n)

B11 = π
4 ∑

k
n=0C

′
11n(R4

n+1 −R4
n)

B66 = π
2 ∑

k
n=0C

′
66n(R4

n+1 −R4
n)

(A1a)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Im = π∑k
n=0 ρn (R2

n+1 −R2
n)

Id = π
4 ∑

k
n=0 ρn (R4

n+1 −R4
n)

Ip = π
2 ∑

k
n=0 ρn (R4

n+1 −R4
n)

(A1b)

Where k is the number of the layer, Rn−1 is the nth layer inner radius of the composite

shaft and Rn it is the nth layer outer of the composite shaft. L is the length of the composite

shaft and ρn is the density of the nth layer of the composite shaft.

The indices used in the matrix forms are as follows:

a: shaft; D: disk; e: element; P: bearing (support)

The various matrices of the equation (13) which assemble the elementary matrices of the

system as follows:

Shaft

[Me
a] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[MU ] 0 0 0 0 0

0 [MV ] 0 0 0 0

0 0 [MW ] 0 0 0

0 0 0 [Mβx
] 0 0

0 0 0 0 [Mβy
] 0

0 0 0 0 0 [Mϕ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A2)

[Ke
a] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[KU ] 0 0 0 0 [K1]
0 [KV ] 0 [K2] [K3] 0

0 0 [KW ] [K4] [K5] 0

0 [K2] T [K4] T [Kβx
] [K6] 0

0 [K3] T [K5] T [K6] T [Kβy
] 0

[K1] T 0 0 0 0 [Kϕ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A3)
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[Ge
a] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 [G1] 0

0 0 0 − [G1] T 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A4)

[MU ] = ImL∫
1

0
[NU ] T [NU ] dξ (A5a)

[MV ] = ImL∫
1

0
[NV ] T [NV ] dξ (A5b)

[MW ] = ImL∫
1

0
[NW ] T [NW ] dξ (A5c)

[Mβx
] = IdL∫

1

0
[Nβx

] T [Nβx
] dξ (A5d)

[Mβy
] = IdL∫

1

0
[Nβy

] T [Nβy
] dξ (A5e)

[Mϕ] = IpL∫
1

0
[Nϕ] T [Nϕ] dξ (A5f)

[KU ] =
1

L
A11∫

1

0
[N ′U ]

T [N ′U ] dξ (A5g)

[KV ] =
1

L
ks(A55 +A66)∫

1

0
[N ′V ]

T [N ′V ] dξ (A5h)

[KW ] =
1

L
ks(A55 +A66)∫

1

0
[N ′W ]

T [N ′W ] dξ (A5i)

[K1] =
1

L
ksA16∫

1

0
[N ′ϕ]

T [N ′U ] dξ (A5j)

[K2] = −
1

2L
ksA16∫

1

0
[N ′V ]

T [N ′βx
] dξ (A5k)

[K3] = −ks(A55 +A66)∫
1

0
[Nβy

] T [N ′V ] dξ (A5l)

[K4] = ks(A55 +A66)∫
1

0
[Nβx

] T [N ′W ] dξ (A5m)

[K5] = −
1

2L
ksA16∫

1

0
[N ′W ]

T [N ′βy
] dξ (A5n)

[K6] = [
1

2
ksA16∫

1

0
[Nβy

] T [N ′βx
] dξ] − [1

2
ksA16∫

1

0
[Nβx

] T [N ′βy
] dξ] (A5o)

[Kβx
] = [ 1

L
B11∫

1

0
[N ′βx

] T [N ′βx
] dξ] + [Lks(A55 +A66)∫

1

0
[Nβx

] T [Nβx
] dξ ] (A5p)
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[Kβy
] = [ 1

L
B11∫

1

0
[N ′βy

]T [N ′βy
] dξ] + [Lks(A55 +A66)∫

1

0
[Nβy

]T [Nβy
] dξ ] (A5q)

[Kϕ] =
1

L
B66∫

1

0
[N ′ϕ]

T [N ′ϕ] dξ (A5r)

[G1] = ΩIpL∫
1

0
[Nβx

]T [Nβy
] dξ (A5s)

Where [N ′i] =
∂[Ni]
∂ξ

, with (i = U, V, W,βx,βy, ϕ).

Disc

[Me
D] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[IDm] 0 0 0 0 0

0 [IDm] 0 0 0 0

0 0 [IDm] 0 0 0

0 0 0 [IDd ] 0 0

0 0 0 0 [IDd ] 0

0 0 0 0 0 [IDp ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A6)

[Ge
D] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 Ω [IDp ] 0

0 0 0 −Ω [IDp ]
T

0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A7)

Bearings

[Ke
P ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 [Kyy] [Kyz] 0 0 0

0 [Kzy] [Kzz] 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A8)

[Ce
P ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 [Cyy] [Cyz] 0 0 0

0 [Czy] [Czz] 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A9)

The elementary matrices of the system are:

Latin American Journal of Solids and Structures 7(2010) 105 – 141



A. Boukhalfa et al / Free vibration analysis of an embarked rotating composite shaft using the hp- version of the FEM 141

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[Me] = [Me
a] + [Me

D]
[Ge] = [Ge

a] + [Ge
D]

[Ke] = [Ke
a] + [Ke

P ]
[Ce

P ]

(A10)

The various matrices (globally matrices) which assemble the elementary matrices, according

to the boundary conditions as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[M] = [Ma] + [MD]
[G] = [Ga] + [GD]
[K] = [Ka] + [KP ]
[CP ]

(A11)

The terms of the matrices are a function of the integrals: Jαβ
mn = ∫

1
0 f

α
m (ξ) fβn (ξ) dξ (m,

n) indicate the number of the shape functions used, and (α,β) is the order of derivation.
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