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Abstract 
The paper concerns topology and geometry optimization of stati-
cally determinate beams with an arbitrary number of pin supports. 
The beams are simultaneously exposed to uniform dead load and 
arbitrarily distributed live load and optimized for the absolute max-
imum bending moment. First, all the beams with fixed topology are 
subjected to geometrical optimization by genetic algorithm. Strict 
mathematical formulas for calculation of optimal geometrical pa-
rameters are found for all topologies and any ratio of dead to live 
load. Then beams with the same minimal values of the objective 
function and different topologies are classified into groups called 
topological classes. The detailed characteristics of these classes are 
described. 
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NOMENCLATURE 

n
ib , ib    assignment of lengths Bjl  to left or right side of supports, 1,2,...,i n  

Ec , Hc   number of external and internal cantilevers 

B jc    number of j -th cantilevers from the top of the beam interaction scheme, 

1,2, 1j n   

g      beam chromosome 

h      coordinates of hinges 
l , El , Hl , L  lengths of optimal beam segments and length of beam, see Fig. 1 

B jl    distance from intersection of optimal moment diagram (with maximum value n
iM  at the 

bottom) with beam axis to the nearest support, 1,2, 1j n  , see Fig. 1 and Fig. 2 

iM , n
iM  optimal moment value of topology it  and class n

iT  
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NOMENCLATURE (continuation) 

n      number of supports 
np , 2:np  number of topological classes in set nT  and n:2T  

q     dimensionless intensity of uniformly distributed gravity dead load for constant sum 

of gravity dead load and maximum gravity live load intensities, equal to one, 0 1q   

1 q   maximum dimensionless intensity of arbitrarily distributed live load for constant sum 

of both load intensities, equal to one  
R      equivalence relation of beam topologies 
s      coordinates of supports 

it      beam topology 

it      topological code of support i, 1,2,...,i n  
nT , 2:nT  set of all topologies with n supports and with two to n supports 
n
iT , 2:n

iT  topological class with n supports and with two to n supports 

x     axial coordinate 

iy      dimensionless length of cantilever, 1,2,...,i n  

iz      dimensionless length of span, 1,2,...,i n  

( )n , ( ) n
i  quantities in set nT  and class n

iT  

 
1 INTRODUCTION 

Structural optimization, which includes sizing, geometry, and topology optimization, has been a very 
common topic of research. Topology optimization is a relatively new but fast growing field of this 
research (Kirsch, 1989; Rozvany et al., 1995; Eschenauer and Olhoff, 2001; Fancello and Pereira, 2003; 
Marczak, 2008; Rozvany, 2009; Lopes et al., 2015). In recent years, structural topology optimization 
has received a boost due to the recognition that topological parameters can lead to a significant 
improvement in the quality of structures. Thanks to the widespread availability of high-speed com-
puters and the development of powerful computational methods for the structural analysis, scientists 
can return to problems considered to be investigated and can make new interesting discoveries. The 
topological optimization of statically determinate beams is such an insufficiently explored problem. 

Beams have been widely used in civil and mechanical engineering and their optimization has been 
extensively studied in the literature. Studies in beam optimization originated many years ago and are 
attributed to Galileo Galilei who dealt with an improvement in the shape of statically determinate 
beams (Timoshenko, 1953). Since then, many researchers were engaged in the optimization of stati-
cally determinate and indeterminate beams for different objective functions and loading conditions 
(Mróz and Rozvany, 1975; Imam and Al-Shihri, 1996; Wang and Chen, 1996; Dems and Turant,  
1997; Bojczuk and Mróz, 1998; Mróz and Bojczuk, 2003; Wang, 2004, 2006; Jang et al., 2009). But 
beam topology optimization problems concerning locations of supports relative to the ends of bars 
(hinges) have not yet been resolved completely. Previous articles of the author concerned only a part 
of the issue – topology and geometry optimization of statically determinate beams under fixed load 
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of different distributions (Rychter and Kozikowska, 2009; Kozikowska, 2011) and under the most 
unfavorably distributed load (Kozikowska, 2014). 

Beam loads are generally a combination of dead and live loads. Dead load is essentially constant 
and can be treated as uniformly distributed, especially for beams with constant cross-sections. Live 
load can vary during the life of the structure. In the paper both loads occur simultaneously. It is 
assumed that live load is characterized by a relatively slow increase of the magnitude and it is regarded 
as static (without dynamic effects). 

Beams are usually subjected to transverse loadings, which result in internal shear forces and 
bending moments. In the article we consider beams which are relatively long in comparison with their 
thickness and depth. Bending stresses have the greatest effect on the behavior of such beams and 
they can be designed mainly against bending moment resistance. Therefore the structural measure of 
beams is defined in the paper as the absolute maximum bending moment, like in Wang (2006). For 
beams with uniform cross-sections this measure corresponds to the design for minimum weight. The 
most adverse distributions of the live load for all cross-sections of a beam can be obtained with the 
help of influence lines for bending moment. 

Due to the complexity of the geometric search space of statically determinate beam with any 
number of supports, geometry optimization of beams is performed using a genetic algorithm. This 
method of probabilistic optimization have been applied to a great variety of structural optimization 
problems (Wang and Chen, 1996; Castro and Partridge, 2006; Rychter and Kozikowska, 2009). 

Results of topology optimization, occurring in the literature, usually depend on an initial layout, 
which is adopted arbitrarily. The final solutions are then obtained by exploring only some parts of 
the full search space and they are not necessarily the best topological layouts. In the paper the space 
of all possible beam topologies is known, exhaustive search in this space is carried out and global 
optima are determined. Moreover, the paper presents not only globally optimal beam topologies, but 
classifies all topologies into equivalence classes with equal minimum values of the absolute maximum 
moment. Typical features of these classes are discussed. 
 
2 BEAM TOPOLOGY AND GEOMETRY 

The subject of the paper is the space of all statically determinate beams with different topologies, 
with two or more pin supports. The construction of all possible topologies of beams with n  pin 
supports, solved by Rychter (Rychter and Kozikowska, 2009), starts with the topology, where all n  
ends of all bars are supported. Then each support can be shifted from the end of a bar (first and last 
support), or the common hinged end of two adjacent bars (intermediate supports), into the interior 
of a bar, but not to a distant bar. The topology it  of an n -support statically determinate beam is 

represented by n  topological codes of supports it : 
 

{0,2}    for 1,
{0,1,2}  for {2, , 1},
{0,1}     for ,

i

i
t i n

i n


  
 

  (1) 

 

where it  is equal to 0 for no shift of support i, 1 for shift of support i to the left, and 2 for shift to 

the right. For example, the beam in Fig. 1 has the topology [2,2,1,1,1,0,…,0,2,1]. 
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The geometry of a beam is described by two sets of geometric parameters: iz  and iy . The param-

eters iz  are dimensionless lengths of spans between neighbour supports: 
 

0 1, {1, 2,..., 1}iz i n     (2)
 

The parameters iy  represent dimensionless lengths of external and internal cantilevers: 
 

1 1

0 if 0, {1,2,..., }
0 1 if 0, {1,2,..., }

1 if 1 2, {2,..., 2}

i i

i i

i i i i

y t i n
y t i n

y y t t i n 

  

   

      
 (3)

 

When support i  is at the end of the beam or at the hinge, no cantilever is created, and the parameter 

iy  equals zero – the first row in Eq. (3). Otherwise, the parameter iy  takes real value from the 

interval (0,1) – the second row in Eq. (3). The third row in Eq. (3) prevents the cantilevers from 
overlapping. For the external cantilevers the parameters 1 , ny y  are dimensionless lengths. For the 

internal cantilevers the parameters 2 1,..., ny y   are ratios of lengths of cantilevers to the lengths of 

spans in which the cantilevers reside. 
The total length of a beam is the sum of the lengths of all spans and the lengths of the external 

cantilevers. All beams have the same length, normalized to unity: 
 

1 1 2 1... 1n nL y z z z y        (4)
 

A more detailed description of the topological and geometrical parameters is given in Rychter 
and Kozikowska (2009). 
 
3 GEOMETRY OPTIMIZATION OF A BEAM WITH A FIXED TOPOLOGY 

3.1 Problem Formulation 

Beams are mainly used in flooring systems of buildings and bridges. In most of these applications 
beams are prismatic (straight with uniform cross-section) and loaded perpendicularly to the longitu-
dinal direction. Loads of the beams can be categorized into two groups: dead (fixed) loads and live 
(temporary) loads. Dead loads are gravity loads due to the self-weight of the beams and all other 
material and equipment permanently attached to them. The magnitude and spatial distribution of 
the dead loading are constant over time. Dead load is sometimes the most important part of the beam 
loading, particularly for beams with long spans and built of heavy materials. In some cases the im-
portance of this load can be reduced in relation to other loads, but this load should not be ignored. 
For prismatic beams this load is mainly uniformly distributed and this case is considered in the article. 
Live loads are usually gravity-type (possibly piecewise) loads of regularly or irregularly varying mag-
nitudes and/or varying positions caused by the use of the structure. Examples of temporary loads are 
stored items, furniture, occupants in buildings and pedestrians on footbridges. Although the loads are 
movable it is assumed in the paper that they are applied slowly and there is no dynamic amplification. 
In such a case, these moveable loads are considered as quasi-static arbitrarily distributed loads. Be-
cause of the variability of the load, we have to consider all possible live load combinations and find 
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the ones that result in the maximum values of bending moment. The issues discussed in the article 
do not depend on the absolute values of the dead and live load intensities, but only on their ratio. 
Therefore we normalize both intensities so that their sum is constant, equal to one. The intensity of 
dead load is equal to q  and the maximum intensity of live load is equal to 1 q . Each intensity can 

take values from 0 to 1. 
Beams under arbitrarily distributed transverse live loads, considered in the author's article 

(Kozikowska, 2014), had two most unfavorable load cases for the maximum bending moment. Each 
case included uniformly distributed load of maximum intensity on alternate spans. If we take dead 
and live load into account, we also have two load cases. One of the cases comprises uniform load of 
intensity 1 (sum of both loads) on odd spans and uniform dead load of intensity q  on even spans. 

The second case also includes uniform loads: q  on odd spans and sum of loads equal to 1 on even 

spans. 
We assume that each beam is of unit length with a fixed topology it . The geometry optimization 

problem is defined as follows: 
 

[0,1]
Minimize  max | ( , , ) |i jx

M z y x


 (5) 
 

1 1 2 1

0 1 1,2, , 1
Subject to 0 1 for  0 1,2, ,

1

i

j j

n n

z i n
y t j n

y z z z y

   
    
      





 (6)

 

where 
[0,1]

max | ( , , ) |i jx
M z y x


 denotes the maximum of the absolute bending moment (objective function) 

for both load cases, iz  are span lengths given by Eq. (2), jy  are nonzero lengths of cantilevers, which 

are created by shifts of supports of nonzero topological codes jt  from ends of bars, given by Eq. (3), 

and x  is the axial coordinate. 
This geometry optimization has been carried out by a modified version of the genetic algorithm 

(Rychter and Kozikowska, 2009), written by the author in C/C++ programming language. 
 
3.2 Genetic Algorithm 

The genetic algorithm for the optimization of the geometry of statically determinate beams follows 
the general scheme of genetic algorithms (Goldberg, 1989). Populations of chromosomes are evolved 
over several generations, subject to random mutation, random crossover (recombination), and selec-
tion pressure. 

The chromosome g  representing a geometry of a n -support statically determinate beam with a 

fixed topology it  is a string of 1n   real genes iz  and ( )E Hc c  real nonzero genes jy : 
 

1 1[ , , ,..., ,...]n jz z yg   (7) 
 

where ,i jz y  are given by Eq. (2), (3), and (4). 
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The creation of an initial population involves the assignment of random real values from the 
interval (0,1) to all genes, and then the adjustment of the genes to the conditions contained in the 
third row of Eq. (3) and in Eq. (4). 

The designed chromosomes allow for easy random mutation and crossover, without producing 
incorrect beams. After these operations, the chromosomes only have to be adjusted to the conditions 
given in the third row of Eq. (3) and in Eq. (4). The most efficient versions of mutation, crossover 
and selection have been determined through extensive simulations. 

Gaussian mutation, in which a Gaussian distributed random value is added to the value of the 
chosen gene, has turned out to be the best mutation method. 

The performance of algorithm with single-point crossover was the same as with multi-point cross-
over. Yet the former is simpler and faster than the latter. Therefore, single-point recombination has 
been used where two parent chromosomes are cut in one random point, and both chromosome parts 
are swapped to produce two children. 

Three selection strategies have been studied: proportional roulette-wheel, proportional determin-
istic, and ranking tournament. The tournament selection involves running several tournaments 
(groups of chromosomes) chosen at random from population members. The winners of all tournaments 
go into the next population. Moreover, in the applied tournament strategy, the best beam must fall 
into at least one tournament group and so will always survive selection. Numerical simulations have 
shown the superiority of this tournament selection with binary tournaments over proportional selec-
tion methods. 

The minimal value of the absolute maximum bending moment iM  has been found for each to-

pology it  as a result of the optimization by this genetic algorithm. 

 
3.3 Optimization Results 

A beam with optimal geometry for the fixed topology is presented in Fig. 1. The beam is shown with 
two unique bending moment diagrams, drawn with a solid line or a dashed line, for both the most 
unfavorable load cases. The optimal envelope of the two moment diagrams has the same local extreme 
moment values equal to iM . These values are present over the supports which were moved away 

from ends of bars and at the bottom at mid spans or close to them. The envelope has zero values 
exclusively in hinges and at both ends of the beam and is equivalent to only one topology, unlike in 
the case of dead load alone (Kozikowska, 2011). 
 

 

Figure 1: A beam with optimal geometry for the fixed topology [2,2,1,1,1,0,…,0,2,1]. 
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We are interested in analytical expressions for optimal geometrical parameters for any topology, 
under stationary load and the most unfavorably distributed load. In order to determine the values of 
the parameters l , El , Hl , and for 1, 2, , 1B jl j n   (see Fig. 1) we solve the system of equations: 
 

1

1

( 1)
n

E E H H Bj Bj
j

n l c l c l c l L




      (8)

 

1 0
2 El l   (9)

 

2 24 4( ) 0H Hl ll l    (10)
 

1 1( ) ( ) 0B B H Hl l l q l l l    (11)
 

  2
( 1) ( 1)

1( ) ( ) ( ) 0
4B j Bj Bj H B j H Hl l l l l q l l l l l l         (12)

 

where El  and Hl  denote the lengths of nonzero external and internal cantilevers, respectively, l is the 

length of each segment with at least one of the two optimal moment diagrams at the bottom, with the 
maximum value of this moment equal to iM  and zero values of this moment at both ends of the 

segment,  for 1, 2, 1B jl j n   is the distance from intersection of optimal moment diagram (with 

maximum value iM  at the bottom) with beam axis to the nearest support, moreover there is no hinge 

in zero moment point. The lengths Bjl  neighbour on the external and internal cantilevers. The indices 

j  in Bjl  are consecutive numbers of these neighbouring cantilevers, counted from the top of the inter-

action scheme of the beam (see Fig. 2). The neighbouring cantilevers, which form consecutive levels 
(steps) in the interaction diagram, create sequences. The number of terms (cantilevers) in such a se-
quence is the length of the cantilever sequence. The pseudo code for an algorithm to assign the lengths 

Bjl  to supports on the basis of the beam topology is given in appendix A. The algorithm returns a vector 

ib  of n  integer elements kb . The element kb  is equal to j  if the length Bjl  is on the right side of the 

support k , is equal to j  if the length Bjl  is on the left side of the support k , and is equal to zero if 

there is no length Bjl  next to support k  (the support k  is at the end of the beam or under a hinge). 

For example, [1, 2, 3, 2, 1, 0, , 0,1, 1]i     b   for the beam from Fig. 2. 

 

 

Figure 2: Locations of lengths Bjl  depending on consecutive numbers of cantilevers  

in the interaction diagram of the beam. 
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Equation (8) describes the length of the beam as the sum of individual segment lengths. The 
parameters Ec , Hc ,  for 1, 2, 1B jc j n   are the numbers of the segments El , Hl , 

 for 1, 2, 1B jl j n  , respectively. The lengths of a cantilever and a simply supported beam with the 

same values of the absolute maximum moment under uniformly distributed dead and live load are 
compared in Eq. (9). The maximum bending moment value of a simply supported beam of the length 

2 Hl l  equals twice this moment value of a simply supported beam of the length l in accordance 

with Eq. (10). Eq. (11) is explained graphically in Fig. 3. The equation was established by comparing 
the moment value at the support calculated on the basis of the moment diagram on the left of the 
support with this moment value calculated according to the moment diagram on the right. Eq. (12) 
was found from the moment diagram, drawn with a solid line in Fig. 4. 
 

 

Figure 3: Graphic explanation of Eq. (11). 

 

 

Figure 4: Graphic explanation of Eq. (12). 

 
The solution to the system of equations (8)–(12) is given by: 

 

Ll
d

  (13)

 

2E
Ll
d

  (14)
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 2 1
2H
Ll
d

   (15)

 

 1   for 1, , 1
2Bj j
Ll B j n
d

     (16)

 

where 
 

 
1

1

1 1 1( 2 1) 1 1
2 2 2

n

E H j Bj
j

d n c c B c




        
 

 

1 1B q 
 

 

   ( 1)
( 1)

2 11 2 1 2   for 2, , -1
1j j

j

B q B j n
B 




     




 
 

The values of the parameters Ec  and Hc  can be determined from the beam topology it . The 

value of the parameter Ec  is equal to the number of nonzero elements in the first and last position 

of the code it . The value of the parameter Hc  is the number of nonzero elements in positions 2 

through 1n   of the code it . An algorithm to calculate the values of parameters  for 1,2, 1Bjc j n   

on the basis of the vector ib  (assigning the lengths Bjl  to supports) is given by a pseudo code in 

appendix B. The value of the absolute maximum bending moment iM  can be calculated as the 

moment in the centre of a simply supported beam of the length l under uniform load equal to the 
sum of both loads (intensity equal to one): 
 

2 8iM l  (17)
 

Algorithms to calculate the coordinates of supports and hinges (on the basis of the beam topology, 
the vector ib , and the lengths l , El , Hl , and for 1, 2, , 1B jl j n  ) are given by a pseudo code in 

appendix C. 
 
3.4 Dependence of Optimal Geometrical Parameters on Dimensionless Dead Load Intensity q  

The formulas (13)–(16) enable us to calculate the optimal lengths of the segments l , El , Hl , 

 for 1, 2, 1B jl j n   for any number of supports, for any topology, and for any value of the dimen-

sionless dead load intensity 0 1q  . For the extreme values of q , equal to 0 or 1, we receive special 

cases with specific values of B jl . 

For 0q   (only most unfavorably distributed load) regardless of the beam topology, the value of 

the parameter 1Bl  is equal to 0, and the values of the parameters for 2, 1B jl j n  , calculated from 

the formula (16), are less than 0. The negative value of the parameter Bjl  means that the segment 
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Bjl  is on the same side of the support as the segment Hl  (see Fig. 5a for the beam with the topology 

[2,2,1,1]). 
For 1q   (only fixed load) regardless of the beam topology, both load cases come down to one 

case with dead load on the entire beam, and all segments for 1, 1B jl j n   have the same length 

equal to the length Hl  (see Fig. 5c for the beam with the topology [2,2,1,1]). 

For 0 1q   (fixed load and most unfavorably distributed load acting simultaneously) regardless 

of the beam topology, all optimal segment lengths have different values. The segments B jl  are shorter 

than Hl , while l , El  are longer than Hl . The value of the parameter 1Bl  is more than zero, but for 

small values of q  (less than about 0.2) the lengths for 2, 1Bjl j n   are less than zero. 

The lengths of the optimal beam segments can also be calculated in case of live load alone using 
the formulas presented in Kozikowska (2014) and in case of dead load alone using the formulas given 
in Kozikowska (2011). The sets of optimal geometrical parameters which have been used in the pre-
vious author's articles consist of a smaller number of parameters than the set used in this paper. 
Therefore, the sets used in Kozikowska (2014, 2011) cannot be applied to describe the optimal geom-
etry of the statically determinate beams for 0 1q  . 

 

 

Figure 5: The beam with optimal geometry for the topology [2,2,1,1] and for different values of the  

dimensionless dead load intensity q : (a) 0q  , (b) 1 2q  , (c) 1q  . 
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The dependence of optimal segment lengths on values of q  is illustrated in Fig. 6 with regard to 

the beam from Fig. 5 (with the topology [2,2,1,1]). The values of the parameters l , El , Hl  are more 

than zero for all values of 0 1q  , and the values l , El , Hl  are the biggest for 0q  . For 0q  , 

the value of the parameter 1Bl  is equal to zero, but 2Bl  is less than zero. Next, the values of the 

parameters l , El , Hl  decrease with increasing q , 1Bl  and 2Bl  increase with increasing q , and 1Bl  

and 2Bl  reach the value Hl  for 1q  . For q  greater than zero but less than a value of about 0.2, the 

value of the parameter 2Bl  is less than 0. The dependence of the parameters l , El , Hl , 

 for 1,2, 1Bjl j n   on q  is the same for beams with any number of supports and any topology. 

 

 

Figure 6: Lengths l , El , Hl , 1Bl , and 2Bl  of the beam from Fig. 5 (with the topology [2,2,1,1])  

for different values of the dimensionless dead load intensity q . 

 
4 TOPOLOGY OPTIMIZATION OF BEAMS WITH A FIXED NUMBER OF SUPPORTS FOR 0 < q < 1 

Topology optimization of beams with a fixed number of supports for 0q   (live load alone) is pre-

sented in Kozikowska (2014) and for 1q   (dead load alone) in Kozikowska (2011). 

 
4.1 Equivalence Relation of Beam Topologies 

T  is the set of n -support beam topologies: nT  or 2:nT . Any two topologies it  and jt  of the set T  

are equivalent with respect to the relation R  if the minimal values of the absolute maximum moments 

iM  and jM  of these topologies are equal: 
 

ifi R j i jM M t t  (18)
 

Based on this relation R , the set nT  can be divided into disjoint equivalence classes of beam 
topologies called topological classes n

iT , and the set 2:nT  into topological classes 2:n
iT . 
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4.2 Features of Beam Topologies in a Topological Class 

All optimal bending moment diagram pairs from the topological class 6
18T  (the eighteenth class of all 

six-support classes ordered by increasing values of moments n
iM ), under a fixed uniformly distributed 

load and the most unfavorably piece-wisely distributed load, are shown in Fig. 7. 
 

 

Figure 7: All optimal envelopes of moment diagrams in the class 6
18T : 6

18 1E,c  , 6
18 4H,c  ,  

6
118 3B ,c  , 6

2 18 1B ,c  , 6
3 18 1B ,c  , 6

4 18 0B ,c  , 6
5 18 0B ,c  . 

 

All topologies in the topological class n
iT  have the same values of moment n

iM  and lengths n
il , 

n
E,il , n

H,il ,  for 1,2, 1n
Bk,il k n  . The lengths n

il , n
E,il , n

H,il , for 1,2, 1n
Bk,il k n  , given by Eq. (13)–

(16), depend on the number of supports, the values of the param1eters n
E,ic , n

H,ic , and 

 for 1,2, 1n
Bk,ic k n  , and the value of q . Thus for two topologies it  and jt  of the set nT  under 

a fixed and the most unfavorably distributed load the equivalent condition from Eq. (18) can be 
expressed as: 
 

, , , , , ,if           for 1, , 1i R j E i E j H i H j Bk i Bk jc c c c c c k n       t t   (19)
 

where ,E ic , ,H ic , , for 1,2, 1Bk ic k n  , ,E jc , ,H jc , , for 1,2, 1Bk jc k n   are the numbers of the 

appropriate segments for the topology it  and jt , respectively. 

 
4.3 Comparison of Topological Classes 

The whole sets of topological classes under a fixed uniform and the most unfavorably distributed load, 
with all optimal envelopes of moment diagrams are presented in Fig. 8 (for three support and equal 
intensities of dead and live loads, 21q ), Fig. 9 (for three support and live load intensity eight 

times greater than dead load intensity, 1 9q  ), and Fig. 10 (for four support and equal intensities 

of dead and live loads, 21q ). 
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Figure 8: All three-support topological classes with their optimal envelopes of moment diagrams:  

(a) 3
1T , (b) 3

2T , (c) 3
3T , (d) 3

4T , (e) 3
5T , (f) 3

6T , (g) 3
7T  ( 1 2q  ). 

 

 

Figure 9: All three-support topological classes with their optimal envelopes of moment diagrams:  

(a) 3
1T , (b) 3

2T , (c) 3
3T , (d) 3

4T , (e) 3
5T , (f) 3

6T , (g) 3
7T  ( 1 9q  ). 



788     A. Kozikowska / Geometry and Topology Optimization of Statically Determinate Beams under Fixed and Most Unfavorably Distributed Load 

Latin American Journal of Solids and Structures 13 (2016) 775-795 

 

Figure 10: All four-support topological classes with their optimal envelopes of moment diagrams:  

(a) 4
1T , (b) 4

2T , (c) 4
3T , … , (p) 4

16T  ( 1 2q  ). 

 
The division of beam topologies into topological classes does not depend on the value of the dead 

to live load ratio. This ratio only affects the optimal values of the geometrical parameters, which can 

be calculated from the formulas (13)–(16). The lengths n
E,il , n

H,il , n
il , and the moment value n

iM are 

greater for smaller values of the ratio (for smaller values of dimensionless dead load intensity q ) for 

all classes except for the last class whose optimal moment is independent of q . The dependence of 

values n
iM  on q  in three-support classes is shown in Fig. 11. It is observed that the growth of q  

(smaller share of live load) makes moment values decrease, except for the last class 3
7T . 
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Figure 11: Optimal moments in three-support topological classes for different values  

of the dimensionless dead load intensity q . 

 
The division of all topologies into topological classes depends on the number of cantilevers and 

their locations in the interaction diagram of the beam (see Fig.2). The topological classes are the 
better, the more cantilevers their beams have (the more external cantilevers for the same total number 
of cantilevers) and the shorter the lengths of the cantilever sequences are in the interaction schemes. 
In other words, better classes have larger values of the parameters n

E,ic  and n
H,ic  (have larger values of 

the parameters n
E,ic  than the parameters n

H,ic  for the same sum of n
E,ic  and n

H,ic ), and have more zero 

parameters n
Bj,ic . The values of the parameters n

E,ic , n
H,ic , and for 1, 1n

Bj,ic j n   for the three-support 

classes (from Fig. 8 and Fig. 9) and for the four-support classes (from Fig. 10) are given in Table 1 
and Table 2, respectively. The best topological class with an odd number of supports have 1n   
topologies, each with a single one-hinged span (see Fig. 8a and Fig. 9a). The best single topology in 
the first class with an even number of supports does not have any one-hinged spans (see Fig. 10a). 
 

3
iT

 
3

1T  3
2T  3

3T
 

3
4T  3

5T
 

3
6T

 
3
7T

 

3
E,ic  2 2 1 1 1 0 0 

3
H,ic  1 0 1 1 0 1 0 

3
1,iBc  2 2 2 1 1 1 0 

3
2 ,iBc  1 0 0 1 0 0 0 

Table 1: Values of the parameters 3
E,ic , 3

H,ic , 3 for 1,2Bj,ic j   in three-support topological classes. 
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4
iT

 
4

1T  4
2T 4

3T
 

4
4T 4

5T
 

4
6T 4

7T 4
8T 4

9T 4
10T 4

11T 4
12T 4

13T
 

4
14T  4

15T
 

4
16T

 
4
E,ic  2 2 2 2 2 1 2 1 1 1 1 0 1 0 0 0 

4
H,ic  2 2 2 1 1 2 0 2 2 1 1 2 0 2 1 0 

4
1,iBc  4 2 2 3 2 3 2 2 1 2 1 2 1 1 1 0 

4
2 ,iBc  0 2 1 0 1 0 0 1 1 0 1 0 0 1 0 0 

4
3 ,iBc  0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 

Table 2: Values of the parameters 4
E,ic , 4

H,ic  and 4 for 1,2,3Bj,ic j   in four-support topological classes. 
 

The set of all n -support topological classes is described by the set of all possible ( 1)n  -element 

sequences ,( , ,  for 1,2, 1)n n n
E,i H i B j,ic c c j n   where {0,1,2}n

E,ic  , {0,1, , 2}n
H,ic n  , and values of the 

parameters  for 1,2, 1n
B j,ic j n   meet the following conditions: 

 

  ,1,2, , 1 0n
B j ij n c     (20)

 

1, ,
n n
B i E ic c  (21)

 

  , 1,1,2, , 2 n n
B j i B j ij n c c      (22)

 

 , , 1,2 2 is evenn n n
E i H i B ic c n c      (23)

 
1

, , ,
1

n
n n n
Bj i E i H i

j
c c c





   (24)

 

The numbers of j-th cantilevers from the top of the interaction scheme n
Bj,ic  are nonnegative (see 

Eq. (20)). External cantilevers are always at the top of the interaction diagram (they are always the 
first from the top of the interaction scheme) in accordance with Eq. (21). The number of j-th canti-

levers from the top of the interaction diagram must be equal to or larger than the number of ( 1)j 
-th cantilevers because ( 1)j  -th cantilevers are below j-th cantilevers according to Eq. (22). A bar 

with two supports is always at the bottom of the interaction diagram. For beams with the maximum 
number of external and internal cantilevers equal to n , the first cantilever is on both sides of each 
two-support bar, at the top of a cantilever sequence. Thus, if the number of external and internal 
cantilevers is maximal, then the number of the first cantilevers 1,

n
B ic  is equal to double the number 

of two-support bars which means that 1,
n
B ic  is even (see Eq. (23)). Eq. (24) compares the number of 

cantilevers in the interaction scheme and in the topology. The total number of classes np  can be 

calculated by an algorithm that counts the number of the sequences ,( , ,  for 1,2, 1)n n n
E,i H i B j,ic c c j n   

and is given by a pseudo code in appendix D. The numbers of n -support topological classes for 

 2,3, ,16n   are shown in Table 3. 
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supports 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

topological classes 3 7 16 28 49 78 123 183 272 390 556 774 1072 1459 1977 

Table 3: Number of supports vs number of topological classes. 

 
5 TOPOLOGY OPTIMIZATION OF BEAMS WITH A DIFFERENT NUMBER OF SUPPORTS 

Assume 2:nT  is the set of beam topologies with two to n  supports and 2:n
iT  is the topological class 

from this set. 
For 0q   (only live load) or 1q   (only dead load), some classes 2:n

iT  contain topologies with 

two successive numbers of supports. Such a class 2:n
iT  is then the sum of k -support class k

iT  and 

( 1)k  -support class 1k
i
T  for 2 1k n   . It happens because the length of parameter 1Bl  is equal to 

zero for 0q  , and the lengths of all parameters for 1, 1B jl j n   are equal to Hl  for 1q  . There-

fore, the total number of topological classes 2:np  in the set 2:nT  is for these loads less than the sum 

of numbers of classes in all sets from 2T  to nT : 
 

2:

2

for 0 1
n

n i

i
p p q q



     (25)

 

For 0 1q  , all classes 2:n
iT  consist of topologies with only one number of support. Therefore, 

the total number of topological classes 2:np  in the set 2:nT  is for these loads equal to the sum of 

numbers of classes in all sets from 2T  to nT : 
 

2:

2

for 0 1
n

n i

i
p p q



    (26)

 
6 CONCLUSIONS 

The paper presents results of geometry and topology optimization of statically determinate beams 
with an arbitrary number of supports. The beams are exposed to uniform dead load and live load of 
the most unfavorable distribution. The fixed topology problem involving the geometry optimization 
for a given topology is solved for each beam. The absolute maximum bending moment is the objective 
function in this optimization. For this function, it suffices to consider only two load cases, each with 
dead load on all spans and uniform live load of the maximum possible intensity on alternate spans. 
Exact formulas for optimal geometrical parameters have been obtained for all topologies and for any 
dead to live load ratio on the basis of properties of the optimal moment diagram envelopes. Beams of 
different topologies and equal minimum values of the absolute maximum moment have been assigned 
to the same topological classes. It has been found that the division of the beam topologies into the 
topological classes depends on the number of beam cantilevers and their locations in beam interaction 
diagrams. It has also been found that this division does not depend on the dead to live load ratio for 
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0 1q  . Topologies with the maximum number of external and internal cantilevers and with mini-

mal lengths of cantilever sequences in interaction schemes have been found to be the best options. 
The article provides some practical guidelines on how to design statically determinate beam struc-

tures with the minimum weight. The examination of all topologically different beams provides tremen-
dous design opportunities because it offers a variety of satisfactory solutions, not only the best ones. 
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Appendix A - Pseudo Code for the Algorithm to Assign the Lengths lBj to Supports for Beam Topology 

FUNCTION assigning_lengths_lB_to_supports() 
INPUT: the topological code of beam: n-element vector t 
OUTPUT: n parameters assigning lengths lBj to supports: n-element vector b 

FOR i starts at 1, i < n, increment i DO ASSIGN to bi the value of 0 

END FOR 
(* assigning lengths lB to supports for topological codes 2 *) 
ASSIGN to i the value of 1 
WHILE i is less than or equal to n DO 
 IF ti is equal to 2 THEN 

  ASSIGN to bi the value of 1 

  WHILE (i is less than n) and (ti+1 is equal to 2) DO 

   ADD 1 to i 
   ASSIGN to bi the value of bi–1+1 

  END WHILE 
  ADD 1 to i 
 ELSE ADD 1 to i 
 END IF 
END WHILE 
(* assigning lengths lB to supports for topological codes 1 *) 
ASSIGN to i the value of n 
WHILE i is greater than or equal to 1 DO 
 IF ti is equal to 1 THEN 

  ASSIGN to bi the value of -1 

  WHILE (i is greater than 1) and (ti–1 is equal to 1) DO 

   SUBTRACT 1 from i 
    ASSIGN to bi the value of bi+1 –1 

  END WHILE 
  SUBTRACT 1 from i 
 ELSE SUBTRACT 1 from i 
 END IF 
END WHILE 
END FUNCTION 
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Appendix B - Pseudo Code for the Algorithm to Calculate the Parameters cBj for j = 1,2,…n–1 for Beam Topology 

FUNCTION calculating parameters cB() 
INPUT: n parameters assigning lengths lBj to supports: n-element vector b 

OUTPUT: (n – 1)-element vector cB 

FOR i starts at 1, i < n, increment i DO ASSIGN to cBi the value zero 

END FOR 
FOR i starts at 1, i < n, increment i DO 
 IF bi is not equal to 0 THEN ADD 1 to cB|bi| 

 END IF 
END FOR 
END FUNCTION 

 
Appendix C - Pseudo Code for the Algorithms to Calculate the Coordinates of Supports and Hinges of Optimal Beam 
in a One-Dimensional Coordinate System with the Origin at the Left End of the Beam 

FUNCTION calculating_support_coordinates() 
INPUT: n parameters assigning lengths lBj to supports: n-element vector b; the lengths l, lE, lH, lBj  for j = 1,2,…, n 

– 1 
OUTPUT: n coordinates of supports: n-element vector s 
IF b1 is equal to 0 THEN ASSIGN to s1 the value zero 

ELSE ASSIGN to s1 the value lE 

END IF 
FOR i starts at 2, i < n, increment i DO 
 IF bi–1 is equal to 0 THEN 

  IF bi is equal to 0 THEN ASSIGN to si the value si–1 + l 

  ELSE IF bi is greater than 0 THEN ASSIGN to is  the value si–1 + l  + lH 

  ELSE ASSIGN si the value si–1 + l + lB|bi| 

 ELSE IF bi–1 is greater than 0 THEN 

  IF bi is equal to 0 THEN ASSIGN to si the value si–1 + lBbi–1 + l 

  ELSE IF bi is greater than 0 THEN ASSIGN to si the value si–1 + lBbi–1 + lH  

  ELSE ASSIGN si the value si–1 + lBbi–1 + l + lB|bi| 

 ELSE 
  IF bi is equal to 0 THEN ASSIGN to si the value si–1 + lH + l  

  ELSE IF bi is greater than 0 THEN ASSIGN to si the value si–1 + l + 2lH  

  ELSE ASSIGN si the value si–1 + lH + l + lB|bi| 

 END IF 
END FOR 
END FUNCTION 
FUNCTION calculating_hinge_coordinates() 
INPUT: the topological code of beam: n-element vector t; n coordinates of supports: n-element vector s; the length lH 

OUTPUT: n – 2 coordinates of hinges: (n – 2)-element vector h 
FOR i starts at 1, i < n – 1, increment i DO 
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 IF tn+1 is equal to 0 THEN ASSIGN to hn the value sn+1  

 ELSE IF tn+1 is equal to 2 THEN ASSIGN to hn the value sn+1 – lH  

 ELSE ASSIGN to hn the value sn+1 + lH  

 END IF 
END FOR 
END FUNCTION 

 
Appendix D - Pseudo Code for the Algorithm to Count the Number of Topological Classes 

FUNCTION counting_number_of_classes() 
INPUT: the number of supports n 

OUTPUT: the number of classes pn 

ASSIGN to pn the value 0  
CREATE an empty vector cB 

FOR cE  starts at 0 , cE < 2, increment cE DO 

 FOR cH  starts at 0 , cH < n – 2, increment cH  DO 

  FOR cB1 starts at cH, cB1 < cE + cH, increment cB1 DO 

   IF (cE  is equal to 2 ) and (cH  is equal to n – 2) and (cB1 is odd) THEN 

    SKIP to the next iteration of the loop 
   END IF 
   CALL generating_parameters_cB(cE + cH, cB1) 

  END FOR 
 END FOR 
END FOR 
END FUNCTION 
FUNCTION generating_parameters_cB(expected_sum,current_sum) 
(* Function generates parameters cBj for j = 2,… n – 1 *) 

IF vector cB has n – 1 elements THEN  

 IF expected_sum is equal to current_sum THEN ADD 1 to pn 
 END IF 
 RETURN 
END IF 
IF expected_sum is less than current_sum THEN RETURN 
END IF 
FOR i starts at last element of vector cB, i > 0, decrease i DO 

 ADD i at the end of vector cB 

 ADD i to current_sum 
 CALL generating_parameters cB(expected_sum,current_sum) 
 DELETE last element of vector cB  

 SUBTRACT i from current_sum 
END FOR 
END FUNCTION 


