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Abstract 
The differential quadrature method (DQM) has been so far applied 
to a wide variety of fluid and/or structural problems. The results of 
many researchers reveal that the DQM is computationally efficient 
and is applicable to a large class of boundary value problems. How-
ever, there is little information about its applications to fluid-
structure interaction problems. Therefore, the purpose of this paper 
is to provide some information in this area and to develop proce-
dures based on the DQM for the numerical solution of fluid-
structure interaction problems. First, the governing partial differen-
tial equations of motion of the structure and fluid are discretized 
separately using the DQM. Then, by applying the boundary condi-
tion at fluid-structure interface, the governing eigenvalue equations 
of the coupled system are obtained which can then be solved for 
the eigenvalues of the system. The applicability of the proposed 
procedures is shown herein through the free vibration analysis of 
thin circular plates in contact with a cylindrical fluid-filled cavity. 
Issues related to the implementation of the regularity conditions at 
the center of the circular plate and the central line of the cylindri-
cal cavity are addressed. Two new regularity conditions are pro-
posed for the circular cylindrical fluid domain. The accuracy and 
efficiency of the proposed procedures are demonstrated by compar-
ing the obtained results with those available in the literature. It is 
shown that highly accurate converged results can be obtained by 
the proposed procedures using a small number of grid points. Three 
new dimensionless parameters and variables are also introduced for 
the free vibration of the coupled system. The influences of these 
parameters on dynamic behavior of the system are studied. 
 
Keywords 
DQM, fluid-structure interaction, pressure-based DQM, potential-based 
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1 INTRODUCTION 

The problem of plate-like structures interacting with a fluid has been an interesting research subject 
for a long time because this problem can be found in many applications such as offshore structures, 
nuclear reactors, micro pumps, storage tanks in airplanes and space vehicles and the like. Therefore, 
it is of great importance to accurately predict the dynamic behavior and vibration characteristics of 
such structures. 

Various analytical and numerical methods have been developed in the past to study the behav-
ior of plate-like structures interacting with a fluid. But most of the research efforts mainly focus on 
the free vibration analysis of plates in contact with an incompressible fluid. Kwak and Kim (1991) 
proposed an analytical procedure using the integral transformation technique in conjunction with 
the dual integration equation method to study the effect of fluid on the natural frequencies of circu-
lar plates vibrating axisymmetrically in contact with an incompressible fluid. They also introduced 
the concept of non-dimensionalized added virtual mass incremental (NAVMI) factor for fluid-loaded 
circular plates that reflects the increase of inertia due to the presence of the fluid. Bauer (1995) 
developed an analytical procedure to determine the coupled hydroelastic natural frequencies of cir-
cular membranes and plates backed by a cylindrical fluid-filled cavity. The fluid was assumed to be 
incompressible and frictionless. Amabili and Kwak (1999) proposed an analytical formulation using 
the perturbation technique in conjunction with the Hankel transformation method to investigate 
effects of free-surface waves on free vibrations of circular plates resting on a free fluid surface. In 
their study, the fluid was considered inviscid and incompressible. They showed that the effect of 
free-surface waves on the plate’s natural frequencies is significant only when the bulging and slosh-
ing modes of the system have close natural frequencies. Jeong and Kim (2005) developed an analyt-
ical algorithm by the Rayleigh–Ritz approach based on the Fourier–Bessel series expansion for the 
linear free vibration of a circular plate submerged in a bounded compressible fluid. They also solved 
the problem using the finite element method and studied the effects of fluid compressibility on nat-
ral frequencies of the coupled system. Chiba (1994), Amabili et al. (1995), Kwak (1997), Kwak and 
Han (2000), Jeong (2003), Ergin and Ugurlu (2004), Kim and Lee (2005), Gorman and Horáček 
(2007), Gorman et al. (2008), Jeong et al. (2009), Askari and Daneshmand (2010), Askari et al. 
(2013), Tariverdilo et al. (2013), and Shafiee et al. (2014) also solved various circular plate–fluid 
interaction problems using various analytical or approximate methods. 

The differential quadrature method (DQM), which was firstly introduced by Bellman and his 
associates (1971, 1972) in the early 1970s, is a powerful numerical method for the direct solution of 
partial differential equations that arise in various fields of engineering, mathematics, and physics 
(Bert and Malik, 1996; Tornabene et al., 2015). It is simple to use and also straightforward to im-
plement. Since its introduction, the DQM has been successfully applied to a wide variety of fluid 
and/or structural problems (Shu and Richards, 1992; Shu et al., 1995; Bert and Malik, 1996; Shu 
and Chew, 1999; Shu, 2000; Liu and Wu, 2001; Eftekhari and Jafari 2013; Fantuzzi et al., 2014). 
However, there are few studies on its applications to fluid-structure interaction problems. 

In the literature, one may refer to the work done by Koohkan et al. (2010) or the recent studies 
by Eftekhari and Jafari (2014) and Eftekhari (2016). Koohkan et al. (2010) proposed a combined 
application of the DQM and the finite difference method to study the transient responses of dam-
reservoir systems under ground motion. In their study, the dam structure has been modeled as an 
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Euler-Bernoulli beam while the reservoir modeled as a semi-infinite fluid. Eftekhari and Jafari 
(2014) proposed a mixed modal-DQM formulation to study the free and forced vibrations of beams 
in contact with fluid. It has been claimed that the mixed method can produce much better accuracy 
than the finite element method (FEM) using less computational time. Most recently, Eftekhari 
(2015) proposed a coupled Ritz-DQM formulation for the dynamic analysis of Timoshenko beams in 
contact with fluid. It has been concluded that the conditioning of the resulting eigenvalue (or ordi-
nary differential) equations of the potential-based formulation is considerably better than that of 
the pressure-based formulation. As it can be seen from above literature survey, all of above-
mentioned works are limited to beam-fluid interaction problems. Besides, the formulations 
in Eftekhari and Jafari (2014) and Eftekhari (2015) require the help of another method (modal 
technique or Ritz method) to handle the fluid-structure interaction problem. Therefore, the purpose 
of this paper is to provide some more information in this area and to develop general procedures 
based on the DQM for the numerical solution of fluid-structure interaction problems. 

In this study, two general procedures based on the DQM, i.e., the pressure-based and potential-
based DQMs, are proposed to study the free vibration of thin circular plates in contact with a 
bounded compressible fluid. First, the governing partial differential equation of motion of the circu-
lar plate and that of the fluid are discretized separately using the DQM. Then, by applying the 
boundary condition at fluid-structure interface, the governing eigenvalue equations of the coupled 
system are obtained which can then be solved for the eigenvalues of the system. The proposed pro-
cedures, in general, enjoy from simplicity and high accuracy of the DQM. Their reliability and effi-
ciency are shown through numerical simulations. 
 
2 DQM 

Let w(ζ) be an arbitrary function and ζ1, ζ2, …, ζn be a set of grid points in the ζ-direction. Accord-
ing to the DQM, the qth-order derivative of the function w(ζ) at any grid point can be approximat-
ed by the following formulation 
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The weighting coefficients of the higher-order derivatives can be computed from the following 
recurrence relationship (Bert and Malik, 1996) 
 

,][][][][][ )1()1()1()1()(   qqq AAAAA  1q  (4)
 

In this work, the DQM grid points are taken nonuniformly spaced and are given by the follow-
ing equations (Bert and Malik, 1996) 
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3 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

The geometry and coordinate system for a circular thin plate backed by a cylindrical fluid-filled 
cavity is shown schematically in Figure 1. The circular cylindrical cavity of diameter 2a and height 
H is filled with a compressible and inviscid fluid of density ρf. The cavity bottom at z = H and the 
side wall at r = a are considered as rigid walls, while the fluid surface at z = 0 is covered with a 
flexible circular plate. The fluid motion is assumed to be irrotational and of small amplitude. The 
governing partial differential equations of the coupled system can be expressed in terms of different 
variables of the fluid such as displacement, pressure, and velocity potential. In this study, we are 
interested to describe them in terms of pressure and velocity potential variables. The details are 
given in the following subsections. 
 

 

Figure 1: Geometry and coordinate system for a circular plate in contact with a fluid-filled cylindrical cavity. 
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3.1 Governing Equations and Boundary Conditions for Pressure-Based Procedure 

When pressure variable is used to formulate the present fluid–structure interaction problem, the 
governing partial differential equations of the coupled system can be expressed as 
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where D is bending (or flexural) stiffness of the plate, ),,( trw   is the deflection of the plate, ρs is 

the mass density of the structure (plate), h is thickness of the plate, ),,,( tzrp   is the hydrodynamic 

pressure distributions in excess of the hydrostatic pressure, and cf is the speed of sound in fluid. 
Furthermore, 
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In this study, the free vibration of fluid-loaded circular plates with clamped edge is considered. 
The boundary conditions of the plate for this case are (Rao, 2007) 
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The boundary conditions of the fluid cavity are assumed to be in the form of Neumann-type 
boundary conditions. In other words, 
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where ρf is the mass density of the fluid. For free vibration of the coupled system, the variables w 
and p are assumed to be harmonic as 
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where ω is the circular frequency. It is advantageous to introduce the following parameters and 
variables 
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where λ is the mass ratio, θ is the slenderness ratio, c is the speed ratio, cs is the speed of sound in 
structure (circular plate), and Ω is the dimensionless natural frequency of the coupled system. Now, 
substituting Eqs. (12) and (13) into Eqs. (6) and (7) gives 
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Consequently, the boundary conditions of the fluid cavity becomes 
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It can be clearly seen from Eqs. (14)-(16) that the natural frequencies of the coupled system can 
be characterized by means of the following three dimensionless parameters 
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3.2 Governing Equations and Boundary Conditions for Potential-Based Procedure 

When velocity potential variable is used to formulate the present fluid–structure interaction prob-
lem, the governing partial differential equations of the coupled system can be expressed as 
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where ),,( tr   is the velocity potential of the fluid. In this case, the boundary conditions of the 

fluid cavity are 
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For free vibration of the coupled system, the variables w and φ are assumed to be harmonic as 
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Introducing Eqs. (13), (21) and 
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At this stage, the DQM can be employed to discretize the dimensionless differential equations of 
the fluid and plate. However, there are some important issues related to regularity conditions at R 
= 0 (or at r = 0) that need to be addressed first. The details on regularity conditions are given in 
the following section. 
 
4 REGULARITY CONDITIONS AT R = 0 

It can be seen from Eqs. (14) and (15) (or Eqs. 23 and 24) that the governing partial differential 
equation of the circular plate is of order four with respect to R coordinate variable while that of the 
fluid is of order two with respect to this coordinate variable. The motion of the plate in R-direction 
is also subjected to two boundary conditions (see Eq. 10) while that of the fluid is subjected to one 
boundary condition (see Eq. 16 or 25). It is well known that an arbitrary qth-order differential equa-
tion should involve q number of boundary conditions. In the present problem, however, the number 
of boundary conditions is smaller than the order of differential equation for both the circular plate 
and circular cylindrical fluid-filled cavity. Therefore, difficulty arises when trying to solve such type 
of problem using numerical algorithms like the DQM. 

The above-mentioned difficulty has also been reported before when solving similar problems us-
ing the DQM. For instance, in solving the free vibration problem of circular plates, Wu and Liu 
(2001) also Wu et al. (2002) have also addressed this difficulty. They pointed out that some regular-
ity conditions should be applied at the plate center in order to solve such type of problems. They 
assumed the deflection of the plate in the form 
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The numerical results presented in Wu and Liu (2001) and Wu et al. (2002) showed that the 
above regularity conditions can give accurate solutions for natural frequencies of circular plates. In 
this study, the above regularity conditions are applied at the center of the fluid-loaded circular 
plate. In addition, some regularity conditions should also be applied at the center line of the circular 
cylindrical fluid-filled cavity. Let 
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The following regularity conditions are introduced for the fluid domain 
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Our numerical experiments showed that the above regularity conditions can produce accurate 
solutions for natural frequencies of fluid-loaded circular plates. 
 
5 PRESSURE-BASED DQM PROCEDURE 

The governing partial differential equations for free vibration of the coupled system are given in 
Eqs. (14) and (15). The solutions to these equations are first assumed to be in the forms of Eqs. 
(26) and (29). Substituting Eqs. (26) and (29) into Eqs. (14) and (15) gives 
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At this stage, the DQM will be used to discretize Eqs. (32) and (33). The details are given in 
the following subsections. 
 
5.1 Discretization of Governing Differential Equation of the Structure 

Consider n grid points with coordinates R1, R2, …, Rn in the R-direction. Satisfying Eq. (32) at any 
grid point R = Ri (i = 1, 2, …, n) and substituting the quadrature rule into results gives 
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where ][ sM  and ][ s
kK  are structural mass and stiffness matrices, }{ kW  is the displacement vector, 

and }{ I
kP  is the load vector due to fluid-structure interaction. ][ sM , ][ s

kK , }{ kW  and }{ I
kP  are 

given by 
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where in [I] is an identity matrix of order n × n, and [A](q) (q = 1, 2, 3, 4) are the DQM weighting 
coefficient matrix of the qth-order R-derivative. 
 
5.2 Discretization of Governing Differential Equation of the Fluid 

Consider n grid points with coordinates R1, R2, …, Rn in the R-direction and m grid points with 
coordinates Z1, Z2, …, Zm in the Z-direction. Satisfying Eq. (33) at any grid point R = Ri (i = 1, 2, 
…, n) and substituting the quadrature rule into results gives 
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where in {0} is a zero vector of order n × 1, and 
 

 Tnkkkk ZRPZRPZRPZ ),(),(),()}({ 21 P (44)
 

Now, satisfying Eq. (43) at any grid point Z = Zi (i = 1, 2, …, m) and using the quadrature 
rule yields 
 

}~{}]{[Ω}]{[ 2 0 k
f

k
f
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where ][ fM  and ][ f
kK are the mass and stiffness matrices of the fluid, }{ kP  is the vector of pressure 

values, and }~{0  is a zero vector of order nm × 1. The n × n sub-matrices ][ f
ijM  and ][ f

ijk,K  are 
given by 
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where ijI  are the elements of m × m identity matrix, and )2(
ijA  are the DQM weighting coefficients 

of the second-order Z-derivative. Furthermore, 
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where in the vector )}({ ZkP  is defined in Eq. (44). 

 
5.3 Implementation of Boundary and Regularity Conditions 

There are different approaches to incorporate the boundary conditions in the DQM resultant matrix 
equations. The technique recently proposed by the present author (Eftekhari, 2015) is used here to 
implement the boundary conditions of the problem. According to this new approach, the quadrature 
analog equations of the boundary conditions are first directly substituted in the resultant matrix 
equations of the DQM. The degrees of freedom correspond to the Dirichlet-type boundary equations 
are then removed from the final matrix equations. 
 
5.3.1 Quadrature Analogs of the Boundary and Regularity Conditions of the Circular Plate 

The boundary and regularity conditions of the circular plate are given in Eqs. (10), (27) and (28). 
The quadrature analogs of the plate boundary conditions are simply 
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Similarly, the quadrature analogs of the regularity conditions are obtained as 
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5.3.2 Quadrature Analogs of the Boundary and Regularity Conditions of the Fluid 

The boundary and regularity conditions of the fluid are given in Eqs. (16), (30) and (31). The quad-
rature analogs of the fluid boundary conditions are simply 
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Similarly, the quadrature analogs of the regularity conditions are obtained as 
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5.4 Solution of Resulting System of Coupled Eigenvalue Equations 

Substituting Eq. (55) into Eq. (45) gives 
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Eq. (34) can also be rewritten as 
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As it can be seen, the added mass and stiffness matrices due to fluid-structure interaction (i.e., 
the matrices ][ *M  and ][ *K ) have very simple forms. Now, combining Eq. (58) with Eq. (60) gives 
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(62)

 

After substituting the remaining quadrature analog equations (given in Eqs. 49-52, 53, 54, 56 
and 57) into Eq. (62), one can solve the resulting eigenvalue problem for the eigenvalues Ω. 
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6 POTENTIAL-BASED DQM PROCEDURE 

Substituting Eqs. (26) and (29) into Eqs. (23) and (24) gives 
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The procedure for discretizing Eqs. (63) and (64) and the corresponding regularity and bounda-
ry conditions is similar to that described in Section 5. To save the space, only the resultant system 
of eigenvalue equations is given in this section. That is, 
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where the matrices ]~[ fM , ][ sM , ]~[ f
kK  and ][ s

kK are exactly the same as those defined in Section 5. 

Furthermore, 
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where in the matrices ][ *M and ][ *K  are defined in Section 5. 

 
7 COMPARISON OF THE TWO PROCEDURES 

It can be seen from Eq. (62) that the effect of fluid-structure interaction in pressure-based formula-
tion is appeared in the form of added mass and stiffness matrices ][ *M  and ][ *K . In general, the 

elements of matrix ][ *K  are not in the same order of magnitude as compared with those of matrix 

][ s
kK . For instance, they may be much smaller than those of matrix ][ s

kK . Similarly, the order of 

elements of matrix ][ *M  may be very different in magnitude as compared with that of matrix 

]~[ fM . As a result, the eigenvalue problem (62) may become ill-conditioned particularly when the 

dimensional differential equations of the fluid and structure are handled using the DQM. 
The above-mentioned difficulty can be easily overcome by the help of potential-based formula-

tion. This can be clearly seen from Eq. (65) wherein the effect of fluid-structure interaction is ap-
peared in the form of added damping matrices ][ *C  and ][ **C . As a result, the problem of ill-
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conditioning is fully eliminated in the potential-based formulation even if the dimensional differen-
tial equations of the problem are discretized using the DQM. 
 
8 NUMERICAL RESULTS AND DISCUSSION 

8.1 Verification and Validation of Numerical Results 

To validate the proposed procedures for free vibration analysis of fluid-loaded circular plates, appli-
cation is made to a numerical example given by Tariverdilo et al. (2013). Tariverdilo et al. (2013) 
proposed two analytical approaches, i.e., the Fourier–Bessel series method and the variational 
method, for asymmetric free vibration of circular plates in contact with a bounded incompressible 
fluid. The parameters used in their study are as follows: 

ρs = 7800 Kg/m3, a = 100 mm, h = 2 mm, ρf = 1000 Kg/m3, H = 100 mm, E = 210 GPa, μ = 0.3 

where E is modulus of elasticity while μ is the Poisson’s ratio. Although the proposed techniques are 
developed for free vibration analysis of circular plates in contact with a compressible fluid, they are 
also available for that of circular plates in contact with an incompressible fluid if the sound speed cf 
is assumed to be infinity or the mass matrix of the fluid is assumed to be zero matrix. 

Figure 2 presents the convergence of solutions for axisymmetric and asymmetric natural frequen-
cies of the fluid-loaded circular clamped plate. The results are obtained using both the pressure-based 
and potential-based DQM procedures. It can be seen that the solutions of the pressure-based proce-
dure are exactly identical to those of the potential-based procedure. Besides, both procedures predict 
zero value for the fundamental frequency (ω0,1) of the coupled system. The existence of zero-frequency 
mode for Neumann problem has been discussed at length in Eftekhari and Jafari (2014) and is not 
repeated here again. The present results show that such phenomenon may also be observed in free 
vibration problem of fluid-loaded circular plates with Neumann boundary conditions. 
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Figure 2: Convergence of axisymmetric and asymmetric natural frequencies of a fluid-loaded circular clamped plate. 

On the other hand, from Figure 2 one sees that the obtained solutions show an excellent con-
vergence behavior with increasing number grid points. Besides, a reasonably converged solution can 
be achieved by the proposed procedures using a considerably small number of grid points. It is clear 
that the accurate simulation of the higher modes of the coupled system requires a larger number of 
grid points. 
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In Table 1, the results of present simulations (pressure-based and potential-based DQMs) are 
compared with the approximate analytical solutions of Tariverdilo et al. (2013). It can be seen that 
the results generated by the present methodologies converge very quickly and agree well with the 
analytical solutions of Tariverdilo et al. (2013). Besides, the present results have closer agreement 
with the results of the variational formulation than those of the Fourier–Bessel series. It is interest-
ing to note that, almost in most cases, the present procedures can produce a reasonably accurate 
solution for natural frequencies of the system using only 11 grid points (n = m = 11). 

On the other hand, from Table 1 one sees that the solutions of the pressure-based procedure are 
exactly identical to those of the potential-based procedure. As we discussed before in Eftekhari 
(2015), this is due to physical equivalence of the pressure-based formulation and the potential-based 
formulation (i.e., physical equivalence of the governing differential equations and boundary condi-
tions for both formulations). 
 

ωk,l Method n = 11a n = 13 n = 15 n = 17 n = 19 n = 21 
Fourier–Bessel 

seriesb 

Variational  
formulationb 

ω1,1
 Presentc 578.086 578.086 578.086 578.086 578.086 578.086   

 Present
d

578.086 578.086 578.086 578.086 578.086 578.086 578.11 578.07 

ω1,2
 Presentc 2051.67 2052.04 2052.03 2052.03 2052.03 2052.03   

 Present
d

2051.67 2052.04 2052.03 2052.03 2052.03 2052.03 2052.61 2052.03 

ω2,1
 Presentc 1097.45 1108.05 1107.68 1107.70 1107.70 1107.70   

 Present
d

1097.45 1108.05 1107.68 1107.70 1107.70 1107.70 1107.84 1107.83 

ω2,2
 Presentc 3281.02 3031.31 3066.74 3063.96 3064.08 3064.07   

 Present
d

3281.02 3031.31 3066.74 3063.96 3064.08 3064.07 3077.72 3086.97 

ω3,1
 Presentc 1752.58 1752.68 1752.68 1752.68 1752.68 1752.68   

 Present
d

1752.58 1752.68 1752.68 1752.68 1752.68 1752.68 1753.16 1753.27 

ω3,2
 Presentc 4196.92 4203.71 4203.36 4203.38 4203.38 4203.38   

 Present
d

4196.92 4203.71 4203.36 4203.38 4203.38 4203.38 4204.67 4203.44 

ω4,1
 Presentc 2518.10 2518.66 2518.65 2518.65 2518.65 2518.65   

 Present
d

2518.10 2518.66 2518.65 2518.65 2518.65 2518.65 2518.79 2518.40 

ω4,2
 Presentc 5470.73 5474.10 5474.04 5474.04 5474.04 5474.04   

 Present
d

5470.73 5474.10 5474.04 5474.04 5474.04 5474.04 5476.53 5475.36 

Table 1: Convergence and accuracy of asymmetric natural frequencies (ωk,l (Hz)) of a fluid-loaded circular clamped  
plate. a m = n, b Tariverdilo et al. (2013), c Solutions of pressure-based DQM, d Solutions of potential-based DQM. 

 
Finally, it should be noted that the resulting eigenvalue problems of the proposed procedures 

are found to be well-conditioned and thus they can be easily and directly solved using various 
standard eigenvalue solvers. But the resultant matrices of analytical solutions of Tariverdilo et al. 
(2013) were reported to be highly ill-conditioned. This can lead to large errors in the calculation of 
the eigenvalues particularly in the calculation of higher modes of the coupled system. Tariverdilo et 
al. (2013) mentioned that such an eigenvalue problem can only be solved by the help of precondi-
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tioner algorithms such as the diagonal scaling method. Therefore, it can be concluded that the pro-
posed procedures are superior over the analytical formulations of Tariverdilo et al. (2013) in terms 
of accuracy and reliability. Most importantly, the higher modes of the system can be easily and 
accurately computed by the proposed procedures without adopting any preconditioner algorithm. 
 
8.2 Free Vibration of Circular Plates in Contact with a Bounded Incompressible Fluid 

It can be seen from Section 3 that the natural frequencies of the coupled system in the case of in-
compressible fluid can be described by means of the following dimensionless parameters 
 

,
hρ

aρ
λ

s

f  
a
H
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where λ is the mass ratio and θ is the slenderness ratio. Table 2 gives the dimensionless asymmetric 

natural frequencies ( Dhρaω slk,lk /Ω 2
,  ) of the coupled system for different values of λ and θ. It 

can be seen from Table 2 that the natural frequencies of the system decrease as the value of the 
parameter λ increases. Besides, they increase as the value of θ increases. Note that the solutions of 
the pressure-based DQM are found to be exactly identical to those of the potential-based DQM. 

The variations of dimensionless axisymmetric natural frequencies ( Dhρaω slk,lk /Ω 2
,  ) of the 

fluid-loaded circular clamped plate with θ are shown in Figure 3 for different values of λ. Since the value 
of the fundamental frequency of the coupled system (i.e., Ω0,1) is zero, the results are shown for Ωk,l > 
Ω0,1. It can be seen from Figure 3 that the natural frequencies of the system are initially increasing with 
increasing the value of θ and after a certain value of θ (say, θ*) they are remaining constant. The value 
of θ* is almost independent of values of λ, but it decreases as the mode number increases. 
 
 

θ Ωk,l
 λ = 1 λ = 5 λ = 10 λ = 15 λ = 20 λ = 25 

0.25 Ω1,1 16.2327 9.9032 7.4092 6.1735 5.4025 4.8630 
 Ω1,2 53.7736 41.1425 33.6662 29.2149 26.1681 23.9127 
 Ω1,3 111.2275 92.3947 79.0128 70.2162 63.8418 58.9437 
 Ω1,4 188.4292 163.2182 143.3200 129.3945 118.9007 110.6164 

0.65 Ω1,1 17.9172 12.1703 9.4040 7.9389 6.9970 6.3264 
 Ω1,2 55.3268 43.3404 35.7823 31.1903 28.0137 25.6465 
 Ω1,3 112.6166 94.1575 80.6896 71.7889 65.3207 60.3410 
 Ω1,4 189.7289 164.7183 144.6984 130.6702 120.0930 111.7395 

1 Ω1,1 18.1699 12.5842 9.7915 8.2907 7.3192 6.6248 
 Ω1,2 55.5570 43.6753 36.0879 31.4660 28.2657 25.8797 
 Ω1,3 112.8366 94.4495 80.9484 72.0198 65.5306 60.5347 
 Ω1,4 189.9426 164.9851 144.9296 130.8748 120.2781 111.9098 

Table 2: Dimensionless asymmetric natural frequencies of a fluid-loaded circular clamped plate. Note that the  
solutions are obtained using both the pressure-based and potential-based DQMs with n = 21 and m = 17. 
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Figure 3: Variations of axisymmetric natural frequencies of a fluid-loaded circular  

clamped plate with θ for different values of λ. 

 
Figure 4 presents the variations of dimensionless axisymmetric natural frequencies of the fluid-

loaded circular clamped plate with λ for different values of θ. Note that the results are shown for 
Ωk,l > Ω0,1. As it can be seen, the natural frequencies of the system are initially decreasing with 
increasing value of λ and after a certain value of λ (say, λ*) they are remaining constant. The value 
of λ* is almost independent of values of θ, but it increases as the mode number increases. On the 
other hand, from Figure 4 one sees the curve for θ = 0.1 approaches to the one for θ = 0.5 as the 
mode number increases. This implies that the higher modes of the coupled system are less influ-
enced by the values of the parameter θ (this can also be clearly observed from the numerical results 
presented in Figure 3). 

The numerical results for asymmetric natural frequencies of the coupled system are shown in 
Figures 5 and 6. Note that the numerical results are shown for Ω1,1 and Ω1,4. As it can be seen, the 
behavior of results in this case (asymmetric vibration) is very similar to that of the axisymmetric 
vibration. 
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Figure 4: Variations of axisymmetric natural frequencies of a fluid-loaded circular  

clamped plate with λ for different values of θ. 
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Figure 5: Variations of asymmetric natural frequencies of a fluid-loaded circular  

clamped plate with θ for different values of λ. 
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Figure 6: Variations of asymmetric natural frequencies of a fluid-loaded circular  

clamped plate with λ for different values of θ. 

 
8.3 Free Vibration of Circular Plates in Contact with a Bounded Compressible Fluid 

In Section 3 we showed that the natural frequencies of the coupled system in the case of compressi-
ble fluid can be expressed in terms of the following dimensionless parameters 
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where cf is the sound speed in fluid, cs is the sound speed in structure (circular plate) and c is the 

speed ratio. Table 3 gives the dimensionless asymmetric natural frequencies ( Dhρaω slk,lk /Ω 2
,  ) 

of the coupled system for different values of λ, θ and c. Note that the numerical results are obtained 
using both the pressure-based and potential-based DQMs and are given for Ω1,1 and Ω1,3. 

It can be seen from Table 3 that the natural frequencies of the system are increasing as the val-
ue of the parameter c increases. Besides, they approach to a constant value as the magnitude of this 
parameter increases. Again, the solutions of the pressure-based DQM are found to be exactly identi-
cal to those of the potential-based DQM. On the other hand, by comparing these results with those 
of Table 2, one sees the results of compressible fluid model approach to those of the incompressible 
fluid model as the value of c increases. Furthermore, the lower modes of the system are less influ-
enced by compressibility of the fluid as compared with the higher modes of the system. 

The effects of parameters λ and θ on free vibration of the coupled system have been studied in 
Section 8.2. Therefore, in this section we only investigate the effects of compressibility of the fluid 
on free vibration of the system. Theoretically, when speed ratio (c) approaches to infinity while the 
other parameters of the problem are fixed, the solutions of the compressible fluid model should ap-
proach to those of the incompressible fluid model. To investigate this, the axisymmetric and asym-
metric natural frequencies of the coupled system are plotted against c in Figures 7 and 8. These 
results are obtained using λ = θ = 1. 

It can be seen from Figures 7 and 8 that the natural frequencies of the coupled system are ini-
tially increasing with increasing the magnitude of c and after a certain value of c (say, c*) they are 
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remaining the same. Note that the higher modes of the coupled system may have several c* (in gen-
eral, the kth mode of the system has k number of c*). But when the speed ratio is large enough (i.e., 
when c = c*f), the natural frequencies of the system do not change by increasing the magnitude of 
c. The magnitude of c*f is found to be dependent on the mode number and increases as the mode 
number increases. This implies that the higher modes of the coupled system are more affected by 
compressibility of the fluid. 
 

c θ Ωk,l λ = 1 λ = 5 λ = 10 λ = 15 λ = 20 

50 0.25 Ω1,1 16.1463 9.8667 7.3921 6.1632 5.3954 
  Ω1,3 103.5712 90.0745 77.6572 69.2687 63.1257 
 1.0 Ω1,1 18.1256 12.5491 9.7714 8.2777 7.3099 
  Ω1,3 97.1864 90.9275 79.1996 70.8643 64.6812 
        

100 0.25 Ω1,1 16.2113 9.8941 7.4049 6.1709 5.4008 
  Ω1,3 110.3537 91.8885 78.6926 69.9872 63.6669 
 1.0 Ω1,1 18.1591 12.5755 9.7865 8.2875 7.3169 
  Ω1,3 112.3034 93.9600 80.6144 71.7757 65.3424 
        

1000 0.25 Ω1,1 16.2325 9.9031 7.4092 6.1735 5.4025 
  Ω1,3 111.2203 92.3899 79.0096 70.2140 63.8401 
 1.0 Ω1,1 18.1698 12.5841 9.7914 8.2907 7.3192 
  Ω1,3 112.8326 94.4451 80.9453 72.0175 65.5287 

Table 3: Dimensionless asymmetric natural frequencies of a fluid-loaded circular clamped plate. Note that the  
solutions are obtained using both the pressure-based and potential-based DQMs with n = 21 and m = 17. 
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Figure 7: Variations of axisymmetric and asymmetric natural frequencies of a fluid-loaded  

circular clamped plate with c (λ = θ = 1). 
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Figure 8: Variations of higher-order natural frequencies of a fluid-loaded circular clamped plate with c (λ = θ = 1). 

Note that Ω0,1 ≤ Ωk,l ≤ Ω0,15 for the case of axisymmetric vibration of the system and Ω1,1 ≤ Ωk,l ≤ Ω1,15  

for the case of asymmetric vibration of the system. 

 
9 CONCLUSIONS 

Tow general procedures based on the DQM are developed to study the free vibration of circular 
plates in contact with fluid. The accuracy and reliability of the proposed procedures are examined 
through numerical experiments. Three new dimensionless parameters and variables are also intro-
duced for the free vibration of the coupled system. The influences of these parameters on dynamic 
behavior of the system are studied. 

The main advantages of the proposed procedures are their simplicity and high accuracy. The 
proposed procedures can also produce highly accurate converged results for natural frequencies of 
the coupled system by using a considerably small number of grid points. Besides, the resulting ma-
trices of the proposed procedures are found to be well-conditioned and thus there is no need to use 
any preconditioner algorithm to solve the resultant eigenvalue problems. 
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