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Abstract

In this paper, a size-dependent microscale plate model is developed
to describe the bending, buckling and free vibration behaviors of
microplates made of functionally graded materials (FGMs). The
size effects are captured based on the modified strain gradient
theory (MSGT), and the formulation of the paper is on the basis
of Mindlin plate theory. The presented model accommodates the
models based upon the classical theory (CT) and the modified
couple stress theory (MCST) if all or two scale parameters are set
to zero, respectively. By using Hamilton’s principle, the governing
equations and related boundary conditions are derived. The
bending, buckling and free vibration problems are considered and
are solved through the generalized differential quadrature (GDQ)
method. A detailed parametric
conducted to evaluate the effects of length scale parameter,

and comparative study is
material gradient index and aspect ratio predicted by the CT,
MCST and MSGT on the deflection, critical buckling load and
first natural frequency of the microplate. The numerical results
indicate that the model developed herein is significantly size-
dependent when the thickness of the microplate is on the order of
the material scale parameters.
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The experiments conducted on the microstructures subjected to different loading conditions have
revealed their size-dependent behavior (Nix 1989; Fleck et al. 1994; Ma and Clarke 1995;
Vardoulakis et al. 1998; Stolken and Evans 1998; Chong and Lam 1999; Lam et al. 2003;
and Colton 2005). When the dimensions of a structure are on the order of microns or submicrons, it
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is necessary to consider internal material length scale parameters in order to predict its mechanical
behavior. Conducting experiments on the microstructures is difficult and with high expenses. Hence,
the continuum mechanics has attracted the attention of researchers for the modeling of
microstructures. The classical continuum theories are not proper for identifying the behavior of
small scale structures, because in such theories the character of stress is local with no material
length scale. This shortcoming in the conventional continuum mechanics motivated some
researchers to develop the non-classical theories taking the size effects into account.

One of the most significant higher-order continuum theories presented by Mindlin (1965) is
gradient theory in which the first and second derivatives of the strain tensor effective on the strain
energy density are included. Further, Fleck and Hutchinson (1993) extended Mindlin’s theory and
proposed the strain gradient theory which involves five material constants in the constitutive
equations. In this theory, higher order stress components are appeared due to the stretch and
rotation gradient tensors. Also, Toupin (1964), Mindlin and Tiersten (1962) used a higher order
theory and developed the classical couple stress theory which included two material parameters.
Determination of the material constants is one of the challenges these theories face. That’s why; the
works were done toward the modification of the mentioned theories and consequently, the reduction
of the number of the length scale parameters involved. In this direction, the modified couple stress
theory (MCST) was initiated by Yang et al (2002) in which only one length scale parameter is used
in the constitutive equations leading to the symmetric couple stress tensor. Relevant works
concerning the applicability of MCST in the analysis of microstructures can be found in (Ma et al.
(2008); Tsiatas (2009); Kahrobaiyan et al. (2010); Ke et al. (2011); Jomehzadeh et al. (2011);
Asghari (2012); Thai and Choi (2013)). In addition to these works, based on the modified couple
stress and Kirchhoff plate theories, a size-dependent plate model was developed by Yin et al. (2010)
for the dynamic analysis of microplate. Nateghi et al. (2012) employed the MCST and three
different beam theories, i.e. classical, first and third order shear deformation beam theories to study
the size effects on buckling load of functionally graded microbeams. Ke et al. (2012) studied the free
vibrations of microplates on the basis of the modified couple stress and Mindlin plate theories.

Altan and Aifantis (1992) suggested a simplified strain gradient model including a single strain
gradient coefficient of length squared dimension. Based on this model, Lazopoulos (2004)
investigated the buckling behavior of a long rectangular plate subjected to uniaxial compression and
small lateral load.

Lam et al. (2003) reduced five scale constants in strain gradient theory to three ones and
presented the modified strain gradient theory. The constant are associated with dilatation gradient,
deviatoric gradient and symmetric rotation gradient tensors so, this theory contains several higher-
order stress components compared to the MCST.

Using the gradient elasticity theory, a higher-order Euler-Bernoulli beam model was developed
by Papargyri-Beskou et al. (2003) and Kahrobaiyan et al. (2011). Papargyri-Beskou and Beskos
(2008) presented a Kirchhoff microplate and conducted the static, stability and dynamic analysis of
gradient elastic flexural plates. Lazopoulos (2009) employed the Kirchhoff plate theory and
investigated the size effect on the bending of strain gradient elastic thin plates. Employing a
variational method, Papargyri-Beskou et al. (2010) investigated the gradient elastic flexural
Kirchhoff plate subjected to static loading and obtained the related boundary conditions. Wang et
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al. (2011) did the static bending, instability and free vibration problems of an all edges simply
supported rectangular micro-plate based on a size-dependent Kirchhoff micro-plate model. A
comprehensive geometrically nonlinear size-dependent Timoshenko beam model was developed by
Ansari et al. (2012) based on strain gradient and von Kéarman theories. They applied the model and
described the nonlinear free vibration of simply supported microbeam. Kahrobian et al. (2012)
proposed a non-classical beam model accounting for the size influences in the framework of Euler—
Bernoulli beam and strain gradient theories for static and free vibrations analyzes. They derived
five equivalent length scale parameters in terms of the length scales of material constituents for
functionally graded microbeams. Ansari et al. (2013) analyzed the pull-in instability of circular
microplates based on the Kirchhoff plate theory and MSGT.

The novel thermo-mechanical properties of FGM make them as a prime candidate to be used in
a wide range of engineering applications. These materials are also employed in the micro and nano-
sized structures such as micro and nano—electromechanical systems and atomic force microscopes.
Thus, to have a proper design of these systems, the knowledge of the mechanical behavior of FG
microstructures is necessary. Recently, some research works have been conducted on the microscale
structure made of functionally grade materials (Sahmani and Ansari (2013); Asghari et al. (2011);
Ansari et al. (2011)).

In this paper, a non-classical size-dependent plate model is developed for the bending, buckling
and free vibration analyses of microscale FG plates. The model takes the important size influences
and the effect of transverse shear deformation into account through incorporating the strain
gradient elasticity theory into the Mindlin plate theory. The constitutive relations of the present
model have three length scale parameters, and for some specific values of the length scale material
parameters, this model can be reduced to that based on the modified couple stress theory.
Furthermore, the proposed model considers the influences of thermal environments on the static
and dynamic responses of the FG microplates. Hamilton’s principle is utilized to derive the
governing equations and corresponding boundary conditions. Also the current solution algorithm is
based on the generalized differential quadrature (GDQ) method which enables one to impose any
arbitrary boundary condition. So, in this work, the behavior of FG microscale plates with various
edge conditions is studied. In the numerical results, the effects of different model parameters on the
response of the microplate are investigated.

2 SIZE-DEPENDENT GOVERNING EQUATIONS AND BOUNDARY CONDITIONS
2.1 Modeling the Material Properties of FG Microplate

As shown in Fig. 1, an FG microplate having length @, width D and thickness N in a Cartesian
coordinate system located at the midplane of the plate is considered. The bottom surface (Z= h/ 2)

of the plate is assumed to be rich-ceramic and the top surface (z: -h/ 2) is taken as rich-metal.
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Figure 1: Schematic of an FG microplate under bi-axial loading and uniformly distributed

transverse load: coordinate system and geometric parameters.

In the present work, the material properties of FGM, Young’s modulus E , Poisson’s ratio V' ,

mass density o , thermal conductivity K and thermal expansion coefficient & are taken to be of

the following form

E(z)=EV, +E,V

m" m?

a(z)=aV +aV,, K(z)=KV +K V_

v(z)=vV +v V.. p(2)=pV.+pV,

m

(1)

The volume fractions of ceramic and of metal, VC and Vm respectively, are assumed to follow a

power function of a spatial variable as
1 Z kFGM
Ve(2)= (Trﬂj o V=1V (2)

where kFGM is the volume fraction or material gradient exponent. It is obvious that as the value of
kFGM approaches infinity the plate becomes fully metal and as it tends to zero the plate reduces to

a fully ceramic one.

2.2 Kinematics of Microplate

Let U(t,X, y) , V(t,X, y) and W(t, X, y) denote the components of the displacement of a point located
at the midplane of the plate along the x, y and z directions, respectively and ¥,,y/, represent the

angular displacements in the z and y directions, respectively. Based on the Mindlin plate theory, the
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in-plane displacements are stated as linear functions of the plate thickness and the transverse
deflection is considered to be constant along the plate thickness causing the displacement field to be

expressed as

U =u(t,xy)-2y, (txy), u=v(t,xy)-z,(txYy), U, =w(t,xy). (3)

2.3 Constitutive Equations Based on the Modified Strain Gradient Theory

In comparison with the modified couple stress theory, the strain gradient theory proposed by
Lam et al. (2003) includes two additional gradient tensors namely the dilatation gradient tensor and

the deviatoric stretch gradient tensor. Assuming infinitesimal deformations, the strain energy II

stored in a continuum elastic medium occupying region € is expressed as
1
— M, s s
II, = EI(U‘J & +PiYi + T + My %) )dQ (4)
Q
(D

where &;, 7, » }(ﬁs (i, j,k=X,y,z) denote the components of the strain tensor, the dilatation

gradient tensor, the deviatoric stretch gradient tensor and the symmetric rotation gradient tensor,
respectively given by

1
& zf(ui’j +uj,i) (5-1)
Vi = émi (5-2)
S 1 S S S S 1
77i§:<) =ik _g(dijnmﬂ( + 03 Mermi T OiTliami ); Tk zg(‘gjk,i &4 +5ij,k)> (5-3)
s 1
Xij :E(‘gi,j +‘9j7i); (5-4)
g :%(curl (u)), (5-5)

in which Q,Q represent the components of the displacement vector U and the infinitesimal
rotation vector @, respectively and the symbol & denotes the Kronecker delta. The classical stress

(1

tensor O; and the higher-order stresses P, ijk,m? corresponding to a linear isotropic elastic

ij
material are stated as

oy = At (&) 8 +2ue;, p =24y, Ty =24!ny, 0 =243 5 (6)

|0, |1, |2 represent the additional independent material length scale parameters associated with

dilatation gradient, deviatoric stretch gradient and symmetric rotation gradient, respectively.
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and

Furthermore, the parameters A= > U=
1-v 2(1+v)

stand for the bulk and shear modules,

respectively.

By substitution of Egs. (3) into Eq. (5-5), one can get the components of infinitesimal rotation
vector as

__1fow __lfow v _ou) z[ow, Oy
6= 2[ay+‘”y]’ %= (ax“”*j’ .= (8x ayJ 2[8y ox ] @)

The nonzero components of the strain—displacement relations can be obtained by introducing
Eq. (3) into Eq. (5-1), as

o _ Oy, ov oy, ou av z(oy, Oy,
Ey =——2—*, &y =——2 , £ — X+ —=
ox OX Yoy oy v 8y 8X 2 oy  oX

. _1(%_ ) o _Lfow
Xz 2 6X l//x ’ yz 2 ay ‘//y :

The components of other three gradient tensors i.e., y,#, ¥ are derived by introducing Egs. (7)
and (8) into Egs. (5-2)-(5-4) as:
The dilatation gradient tensor:

2 2 2 02 2 82 2 P
7X:a_lj+av_zav;x+ Wl v, du [0y, Ty, g, =] W | o)
The deviatoric stretch gradient tensor:

) 1,0 2, O _E v, X_252'//y
@5 ok oy axay 5 oxoy |
2 2y 2
77§/1y)y:l 26\2/_6 _ _E y y 2a§//x ’
5\ 7oy ox 5 oxey
= a'//x + Yy _l 52W
i ox 5 8y2 ’
(10)
2y 2 5? o
77)5)2/_77)((;2( 77;2( 482+ a(//x +4 l/jzy_:; l/jzy 5
150 ox axay ay o oy

n0 = =g = L[ 4w _ oW sa‘”uza‘”y,
150 ¢ o ax oy

. 1(,0u Jéu ov) z 8azwy+ 462%_3@2%
Ty Ty s ey Tad axay ) 15| oy oy ok )
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= = —_ —_— — _+_
Toe =T =Ty =15\ "7 "¢ T ox oy

2 2 2 2 62 2
=g =g L0 5 OV O 2130y a0V Oy |
15\ ox oxoy oy 15| ox oxoy oy

O __L(azv 382v 5 aqu yi (Gzl//y +382l//y +2821//X]

W _ ool (452W o’w 26%—88%]

Ty =z =2 =5\ e oy Taxay ) 15\ ¢ oy | oxdy

1({ o°w oy, Oy
M _ () _ (M) () (D) (D) X y
Uxﬂ_nyy_nyy_nxzy_nyxz_nzyx_g(éxay_ ay - ox

The symmetric rotation gradient tensor:

s _1fow ovy) . L[OW oy, ) s 10w, 0V,
Ao =5 oxoy  Ox AW =T, oxoy oy R oy ox )
s 1 82W_82W+5v/y_6t/fx s _1fdv du g oy, O,
YTl o o oy ox )P alod oy 4loxay ok |

. 1 v u) z[dy, v,
X2 =7 Ao A2 1T T Ay
4\ oxoy oy

4\ oy> oxoy |

On substitution of Egs. (8)-(11) into (6), the constitutive equations corresponding to the
classical and strain gradient theories are obtained.

2.4 Derivation of General Form of Governing Equations and Boundary Conditions

The microplate is first considered to be subjected to the in-plane prebuckling forces N )?X , N;}y and

N)(()y and the transverse load q(t,X,Yy) as shown in Fig. 1. Herein, to derive the equations of

motion, Hamilton’s principle is employed which is expressed as follows

b
S[(TMy ~T1,+11,)dt =0, (12)

4

where HT and HW are the kinetic energy of FG microplate and the work done by the external

loads, respectively. From Eq. (4), the total strain energy can be written as the addition of strain

energies corresponding to the classical stresses Il , the dilatation stresses Ily,, the deviatoric

stretch stresses I, and the couple stresses I, as

Hs = Hc +HNC1 +Hch +HNC3 (13)
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The normal resultant forces, shear forces, bending moments and couple moments are related to
the components of classical and the couple stress tensors as follows

(NN N Q) = | 0y i ) 1)
(Mxx’Mw,Mxy)=j1(6xxa6wa%)zdza (142)

(V¥ Yoo YY) = | (e i sy
(o) = ] (o) "

where kS denotes the shear correction factor.

The effective higher order stresses on a section defined above lead to the higher-order resultants

force and moments in the section which are stated as

h/2

(P.R.P)= [ (PP, p,)dz (15-1)

-h/2

h/2
(Tm,TyW,Tm,TW,Tm,TWX,TM,TXyZ) = I (rgg(,rg,;)y,rﬁ,r%,r&,r%,r&,r&)dz (15-2)

~h2
(MXP’ Mf) = hf ( P, py) ZdZ,(MXXX, MMy Myyx) = hf (z'g&,rg,)y,r&)y,z{,&)zdz (15-3)
—h/2 —-h/2

The strain energies associated with the classical elastic theory and strain gradient theory
appeared in Eq. (13) can be obtained by using Egs. (14) and (15) as

8
Hc=lja”g”dg=lj N, Mmooy Yoy Wy [V
23 AN oX oX oy oy oy OX

(2o (B, Jug [ 2
Mxy(ay T Tox jJrQX x 9 oy vy | 9A

(16-1)
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2 2 52 2 2
My, = J-p;/IdQ——j 82_'_ o Mf a—l/;x'i'ﬂ +PR 8_\2/+6U
OX~  Oxoy OX~  OXoy Loy’ oxoy

. ) 5 (16-2)
—M? '//2y+a'//x P a'//><+ Yy dA,
oy-  oxoy ox oy
1 Ny o’u o’v o’w oy, o’u v
M, = 2!2 Unida =~ j To s 2+TM§+TEZ = 2 [T 26)@/+W
2 a 2 2 2 a
Pl Wy | S OV g [OW Oy (16.3)
92| “oxay a OX i oy oxoy ) ™\ oy oy
0’ 2 0’ 2 0’
—|\/|,O<Xa'/§—|v|yyy Yy My |29 OV |y [0V OV ga
OX oy Yl oxoy  ox | oy OX0y
ow  Ovy ) Yy[Ow oy, |, Y, [0y, OV
axﬁy oX 8xay oy 2\ 0y 0oX
Y, (0*w ae//y Fw_oy, ) Ye[Ov_2u) Y. dv _du
+ 7~ Tt (16-4)
oy oy ox oX 2 o axay 2 axay ay

A
2

+sz 82‘//x_al//y +Hyz 82y/x_821//y dA
2 [ oxoy ox 2 | oy oxoy

in which A is the surface of midplane of the microplate. The kinetic energy of FG microplate HT

is given by
h
1c% [(ou)Y (ou,) (éu, jz
I, == —L |+ =+ dzdA 17
T 2”’{(6tj )5 "
2
h/2
By introducing the inertia terms as {|0,|1,|2}= j p(Z){l, Z Zz}dZ and substituting the
—h/2

components of displacement from Eq. (3) into the preceding equation we get

2 2 2 8 a 2
=] |0(a“j 2l auawmz(a%j +|O(a’j o) MYy WY [a"’) A (s
2ola) e Ml a a) aa la a

The work done by the in-plane prebuckling forces and the transverse load is given by
2
m =L NQX(%j saNg W OW o [OW aa- fatt.x.y e, (19)
27 X ox 0y £
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Now, Hamilton’s principle is applied. To this end, the expressions related to the total strain
energy, kinetic energy and the work done by the external loads obtained above are first inserted

into Eq. (12). Afterward, the variation of u, v, W,¥/, and v, and integration by parts is taken.
Setting the resulting coefficients of O u,d v, O w , 51//X and 5(//y to zero yields the following

governing equations

oN 2 oY, &P, O°PR, ’ ’
8N"X+ xy+laYXZ +l ;Z_a 2 leloa_g_llaygx (20-1)
ox oy 20xy 20y X oxdy ot ot
2 2 2 2 2 2
Ny N, 10%, 10, &R OB ngloﬂ_la'//y (20-2)
oX 0y 20Xy 20K oOxoy oy o ot
aQ, . aQ, .\ 1 82Y aN 63Y 82Y
ox oy 2| ox’ axay 6x6‘y oy’ (20-3)
20-3
oW ow ow ow
NQXaZ 2N;’yaay N082+q+%=|o?
M, M, 1fay, oY, 8, &H, OH, o’ d’u
Qx_ XX Xy+_ zZ __ Yy o_ +H4:|0—l/lzx_|1_2 (20-4)
ox oy 2oy x oy oxy oy ot ot
oM. oM o, & o’H o’ ’
Qy— X W+l 8YXX_8YZZ+ xy+a Hzxz+ yz +7_{5:|0#_|18_;/ (20_5)
OX oy 2| ox ox oy  ox OXoy ot ot
in which
2 62T azT azT azT 82T
OX axay oy’ OX oxoy oy
2 o°T,, 62T
7’[3:— aT;ZZ +2
X 6X<9y oy* (21)
" :asz+za2MW+aZMm_zaTm_ aTm_@JraszJr@ZMy"
+ T T ooy oy oy x ox X oxoy
p My OMy FM, 0T, 0T, B FMP OM;

+
ox? X0y oy’ OX oy oy oxoy oy
Also, from the variational approach, the corresponding boundary conditions are obtained as

su=0 or N n +Nn, =0, (22-1)
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ou 1 1
5[&j =00r (P +T, )N, +(§ P, + T, —ZYXZjny =0,

5(2y_uj:0 or (%Py Ty —inzjnX J{Tyyx —%szjny =0,

sv=0 or N,n+N,n =0
ov 1 1
ol —|=0 or | =Y, +T [n+ =Y, +—P+T,  [n =0
(50 @ (et ofiersrem -
ov 1 1
5(5}0 or(ZYyZ+EI:’X+waan+(Py+Twy)ny:0
_ 5 30 Y. -Y
0 Q0000 (3] o (o oy
OX
22-
A Y. v (22-3)
ol —|=0 or + Ty [N+ =Yy + Ty, (N, =0
Sy, =0 or Myn+M,n =0
5[ ¥« or(MXp+MXXX)nX+ lsz—llvlp—lvl n =0
OX 4 2 Y )Y (22-4)
oy, 1 1 1
Sy,=0 o M,n+Mn =0
oy 1 1 1
S|—L|=0or | =H_ +M __ [n+|—H_ +=-MP+M__ |n =0
(axj (2 “ Wj " [4 2 WXJ Y (22-5)

0
{25 o e

where N, and n, are the unit base vectors along the x- and y-axes, respectively. The elements

Nij , Mij and Qj; (i, =X, y) are given in Appendix.
By means of Egs. (22), the boundary conditions related to simply supported (S) and clamped
(C) edges are obtained as follows
A. Clamped boundary condition

At X:O,a:

u:uaX:VZV,x:WZ\N,X:‘//X:V/X,X:l//y:‘//y,xzo (23_1)
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At y=0,b:
u=u,=v=v,=w=w, =y, =y, =y, =y, =0 (23-2)
B. Simply supported boundary condition
At X=0,a:
=u, = —lY T, = —lY T =
u—ux—v—E T xxy_w_z i =0
2Y, +H,, 2M2, + M7
w T 4 +F - 2 +2Tzzz_M>oo<,x_M>o<y,y:Wx,x:O (23—3)
Y, Y, 2H,.+H,, 1 1
M, + S 1 —MWX+2TXYZ—EMX"J—MWW=§HXZ+MW=O
At y=0,b:
u_EYyZ—TWX_v_vy_W_—YXy+Tyﬂ_0
Y,-Y_ 2H_. +H 1 1
Yy zZ 5 XZ,X
ot +— +2T,—=My -M_ —M  =—H,+M =0 (23-4)
2 4 2 2
1 1 1

Myy_Myp,y+Pz_Eny+2Tyyz_Myyy,y_ZHyz,x_Esz_Myyx,x:'//y,y:0

where “” denotes the differentiation. With various combinations of simply supported and clamped
edges, one can derive different types of end conditions for the FG rectangular microplate.
As stated at first, the size-dependent governing equations and edge conditions reduce to those of

classical theory when all the material length scale parameters |0, |1, |2 vanish. Also, one can get

the ones for an FG Reissner—Mindlin microplate modeled by the modified couple stress theory by

setting Io and |l to zero. Moreover, the present governing equations and edge conditions will
decline into those of the FG Timoshenko microbeam, if the components of displacement V, v, and
the terms relevant to the derivations with respect to Y neglect.

The stiffness components (A‘ . 3j, Dij,i =1,5,j =1, 2,5) and the non-dimensional parameters

are defined as

h/2 h/2
{AI’BII’DH}: I (Z(Z)'FZIU(Z)){I,Z,ZZ}dZ,{Az,BIZ,Dlz}: J.ﬂ«(z){l,Z,Zz}dZ,

o " (24)
{ASss Bss, Dss} = J‘ ﬂ(z){la Z, 22} dz,

2

Latin American Journal of Solids and Structures 13 (2016) 632-664



R. Ansari et al. / Size-Dependent Bending, Buckling and Free Vibration Analyses of Microscale Functionally Graded Mindlin Plates...

644
X Y (oo uv w == b 1, 1,
==, =2, (U,V,W, =(=,—,— ¥, P —, ,
=2 = (OVMTL7, ) =G o), (Tl ) = (Iooloohloohz
AJ [& B, %J
a,a,,8 b,.b,,b ,
(B2 2) = [ Aw Aw) ) Aih” Ah™ Ah
(25)
(d,,,d,,,ds (m.m,)= (a ij—E
Amh”Amh”Amhz RN
I I _ 0 NO NO _ 2
(€0,£1,€2) (()a 12 2 T A|10 ( 0 NO N ) [Nxx xy] NT N ,q _ qa
h a I A Auo Ano A hA

respectively, where |y, A, are the values of |, and A, corresponding to a homogeneous metal

microplate.
On substitution of the resultant forces and moments given in Egs. (14) and (15) in terms of

displacement into Eqs. (20) and using the relationships (25), one can achieve
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in which the following quantities are used

4 8 o, 1 4 5.1 4,1
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2.5 Thermal Loading

Thermal load is considered as

h2 E(2)a(2)T(2) I
Ny = J._h/z 1-v(2) % (28)

The one dimensional steady-state heat transfer equation through the plate thickness is given by

d T z:—g
K(z)—|=0, T=
dz[ () } ) h (29)
T, z=+—
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where T, and T are the temperatures at the ceramic side and the metal side, respectively.
Inserting K (z) from Eq. (1) into Eq. (29), the solution of Eq. (29) gives the temprature

distribution as

T-—2L [ 2 i AT -T,-T,
h2 dz J-h2K (2) (30)
-2 K (z)
For linear themperature distribution across the thickness we have
T (z):%(z +2J+Tm (31)

3 DISCRETIZATION AND SOLUTION OF GOVERNING EQUATIONS

To solve the governing equations, the generalized deferential quadrature method as a powerful
numerical technique is adopted to transform the equations of motion and boundary conditions into
discrete forms. When discretizing the problem, the grid point distributions in the ¢ - and ¢ -
directions with N and M nodes, respectively are located at the shifted Chebyshev-Gauss-Lobatto

as

| ,
. =—11-cos
5 ( N

2b

2a

7[}; i=1:N, ;’j=L(1—cos'\il_llzzj; j=1:M. (32)

If the mode shapes of the microplate denote by U(&,¢), V(&,8), W(E, ), P, (€,¢) and
‘I’y(f ,&) in the domain defined by the vectors & and ¢ , they can be stated as follows

u(s.¢) u(&.s) ... u(&.dw) [(V(ELG) V(ELS) - . V(ELS)
0(EC) UE) - . . GEde)|  |VEL) VEL) . . . UEdy)
| | | AN A .
U(&.¢) U(&.S) - - - T(&nSw) V(&y.¢) V(.S - - - V(Ey.Cw)
WEL) WEL) . .. WAL [BEC) TEL) .. BEdn)] (33)
WELL) WEL) - o . WE L) TEl) TEnl) - o o TlEl)
W: ,‘Px: )
WEGE) WELE) - . . WELC) TlEnl) TGl - o o TEnt)
i I |
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(7, (&.¢) v&.8) - 7 (&4

v,(5,8) w,(5.8) - o w(&.8w)
¥, =

v, (En:6) Wy (EnsSy) - - Wy (EnsSu)

The above matrices can be expressed in a column vector form as

U= vec(U(cfi,Cj )) V= vec(V(cfi,é“,- )) W= vec(v_v(éaéwj )) 7

)

¥, =vec(7,(&.¢,)) ¥, =vec(#,(£.¢))) 1N

)

(34)
. j=1-M

Note that the forgoing vectors are NM x1. For a two variable function, the GDQ method can
be used to approximate the first or higher order partial derivatives of it, e.g., the second order
partial derivative of U (£,¢) with respect to & and ¢ is given by

0U(.9) _(

=(pY opW\U 35

¢
in which D(;) and D(;) represent the weighting coefficients of the first order derivative in the ¢

and & directions, respectively in GDQ (Ansari et al. (2013) ) and & denotes the Kronecker tensor
product.

3.1 Bending of FG Microplate

To derive the discrete form of the equations of motion governing the static bending of the
microplate, the microplate is considered to be just subjected to the uniformly distributed load. So,
the time-dependent and the in-plane prebuckling force terms appeared in the governing equations
are first neglected. Then, taking the partial derivatives based on Eq. (35), the governing equations
given in Egs. (26) can be discretized in a shortened form as follows

KX+q=0 (36)

o — 0 — o — T
where XZ{UT,VT,WT,‘I’XT,‘PYT} . The elements of the stiffness matrix K and the transverse

force vector q are given in Appendix. The boundary conditions are transformed into the discrete

forms in a similar manner. After substituting all the end conditions into Eq. (36), the mode shapes
are obtained as

X=K"q (37)
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3.2 Buckling of FG Microplate
In this section, the microplate is considered to be under the biaxial in-plane prebuckling forces only,
(i.e., N)?X = N;)y =P, N;)y 20) according to which the transverse load is taken as zero and the

time-dependent terms are dropped in the governing equations. Therefore, using Eq. (35), the
governing equations (26) can be discretized leading to an eigenvalue problem as

KX+PNX =0 (38)

The components of the matrix N are presented in Appendix. The end conditions are imposed
by inserting the discrete counterparts of all the boundary conditions into Egs. (38). Separating the
domain and boundary grid points denoted by the subscripts b and d respectively, from each other

cause the column displacement vector X to be decomposed as

T

X ={(W)," (2, (), ] x={(w), (), (%), (39)

Using the preceding relationship, Eq. (38) can be recast to the standard form of an eigenvalue
problem in the domain as

(Kdd _deKbbiled ) X, =-P (Ndd _Ndebbiled )Xd (40)

Also, from this manipulation, the displacement vector corresponding to the boundary grid
points is obtained as follows

Xb = _Kbb_ledXd (41)

By means of two last equations, one can obtain the critical buckling loads and the
corresponding buckling mode shapes of the microplate.

3.3 Free Vibration of FG Microplate

In the case of free vibration of the microplate, the components of the displacement are taken to be
of the following form

u(&.¢.7)=U(&,E, v(&.6.7)=V(£,0)E, w(&,{,7)=W(E . )e™,

v (E6.7) =W (EOEY, v, (E.0.7) =Y, (E,0)e. (42)

where @ is the non-dimensional natural frequency. With assumption of N)?X = Ngy = Ngy =0=0,

substituting Eqs. (42) into Egs. (26) and taking the partial derivatives in accordance with
relationship (36) yield a condensed discrete form of governing equations as

KX = -o’MX (43)
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where M is the mass matrix whose components are given in Appendix. By retracing all the steps
of the previous section, the natural frequencies and the associated mode shapes of the FG
microplate can be acquired.

4 RESULTS AND DISCUSSION

In what follows, the selected numerical results are given to describe the bending, buckling and free
vibration behavior of the FG microplate with different edge supports. The results from classical,
couple stress and strain gradient theories are presented to make a comparison among the responses
predicted by the different theories. In this paper, four commonly-used boundary conditions for a FG
microplate is considered which are as follows

1. CCCC: All edges clamped,

2. SSSS: All edges simply supported,

3. CSCS: Two edges along the x direction clamped, remaining ones simply supported,
4. SCSC: Two edges along the x direction simply supported, remaining ones clamped.

The metal and ceramic constituents of the FG microplate are considered to be Aluminum and
Silicon Carbide, respectively with the material properties as E_ =70 GPa, pm=2702kg/m3 ,0,,=0.3,

0, =22.5x10° K™, E, =427 GPa, p,=3100 kg/m’, v,=0.17, a,,=4x10°® K™ It should be pointed out that
no experimental data on the values of the scale parameters corresponding to the FG microplate is

available in the open literature. Lam et al (2003) obtained the size scale constant for an isotropic
homogenous microbeam as | =17.6 um. Here, the values of the length scale parameters for the FG

microplate are approximated by |=15gm (Sahmani and Ansari (2012)). In the following, the

effects of different quantities on the on the response of the FG microplate are delineated.

4.1 Size Scale Effects

Fig. 2 shows the variation of non-dimensional deflection of the FG microplate (maximum deflection
of the microplate to its thickness ratio) with non-dimensional size scale (h/l) for the considered
three theories. It is noted that the deflection of the microplate corresponding to the CT remains
unchanged due to having no length scale constant, whereas it goes up nonlinearly for MCST and
MSGT as the size scale increases. It is also observed that the difference between the classical and
the non-classical theories is higher for the strain gradient theory. In other words, the size-
dependence of MSGT is heavier than MCST especially when the thickness of the microplate is
comparable with the length scale parameter. It is attributed to the fact the strain gradient theory
incorporates the three strain gradient tensors namely the symmetric rotation gradient tensor,
dilatation gradient tensor and the deviatoric stretch gradient tensor, whereas the couple stress
theory includes only the symmetric rotation gradient tensor. Further, it is seen that as the size scale
increases, the curves converge i.e., the non-classical theories tend to the classical one. In other
words, for large-sized structure, the classical theory is able to predict the bending response of the
FG microplate.
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Figure 2: Non-dimensional deflection of FG microplate as a function of non-dimensional length scale parameter

predicted by CT, MCST and MSGT with a/h=10 and kreu=0.2.

Presented in Fig. 3 is the non-dimensional critical buckling load of the FG microplate as a
function of non-dimensional size scale. From this figure one can see that with the increase of the
scale constant, the buckling load decreases for the non-classical theories whereas, the load
corresponding to the CT keeps constant. In contrast with the results of the previous figure, it is
seen that the couple stress and the strain gradient theories predict the buckling load larger than
that of the classical theory and this pattern is more evident for the small length scale. From this
comparison, it is found that the inclusion of the size scale effect leads to the increase of the stiffness
of the microplate. Also, the strain gradient theory is found to predict the buckling load higher than
the couple stress theory does due to the incorporation of the more strain gradient tensors which
then clarifies the more prominent size-dependence of this theory. Furthermore, it is noted that by
increasing the size scale, the gap between the curves associated with the various theories diminishes.
It means that as the structural size reduces, the scale effects become more prominent.
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Figure 3: Non-dimensional critical buckling of FG microplate as a function of non-dimensional length scale

parameter predicted by CT, MCST and MSGT with a/h=10 and krcm=0.2.

Non-dimensional fundamental natural frequency of the FG microplate versus the non-
dimensional scale parameter for the three models is plotted in Fig. 4. The trend in variation of the
natural frequency is same as that of buckling load so, the similar observations and findings to those
of Fig. 3 is found.

Focusing on the results of the last three figures relevant to the different boundary conditions, it
is deduced that the most difference between the response predicted by CT and Non-CTs are

obtained for the CCCC boundary conditions i.e., the all edges clamped microplate is the most
sensitive one to the size effects.
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Figure 4: Non-dimensional first natural frequency of FG microplate as a function of non-dimensional length scale

parameter predicted by CT, MCST and MSGT with a/h=10 and krem=0.2.

4.2 Material Gradient Index Effects

Indicated in Fig. 5 is the variation of non-dimensional deflection of the FG microplate with material
gradient index corresponding to CT, MCST and MSGT. As observed from this figure, as the
material gradient exponent increases, the deflection of the microplate increases, too. It is because
that an increase in the value of the gradient index causes the volume fraction of the ceramic
constituent of FGM to diminishes so, the stiffness of the microplate reduces, too. Further, as
expected, for the considered size scale the deflection predicted by the modified stain gradient theory
is larger than the two other models. Also, it is found from this figure that the microplate with
CCCC and SSSS edge supports have the minimum and maximum deflection, respectively.
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Figure 5: Non-dimensional deflection of FG microplate as a function of material gradient index

predicted by CT, MCST and MSGT with h/l=4, a/h = 10.

Figs. 6 and 7 depict the effect of the material property gradient index predicted by the three
models on the non-dimensional critical buckling load and the non-dimensional first natural
frequency of the microplate. As shown, both the buckling load and the natural frequency follow a
similar pattern based on which they reduce by increasing the value of the gradient index. This
trend in variation is against the one corresponding to the non-dimensional deflection of the
microplate illustrated in Fig. 5. It is induced by the fact that the reduction of the stiffness of the
FG microplate due to the increase of the material gradient index has opposite effect on the
deflection and the two eigenvales namely the critical buckling load and the natural frequency.

From the comparison of the results associated with various boundary conditions, it is discerned
that the maximum and minimum buckling load and the natural frequency are obtained for all edges

clamped and all edges simply supported microplate, respectively.
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Figure 6: Non-dimensional critical buckling load of FG microplate as a function of material gradient index

predicted by CT, MCST and MSGT with h/l=4, a/h = 10.
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Figure 7: Non-dimensional first natural frequency of FG microplate as a function of material gradient index

predicted by CT, MCST and MSGT with h/l=4, a/h = 10.
4.3 Aspect Ratio Effects

Plotted in Fig. 8 is the Non-dimensional deflection of the FG microplate as a function of aspect
ratio (length to thickness of the microplate ratio) for strain gradient theory and the two reduced
models. From this figure one can see that going up the aspect ratio leads to an increase in the
deflection. Furthermore, for a specific value of a/h, it is observed that the classical theory
overpredicts the deflection of the FG microplate. The variation of the non-dimensional critical
buckling load and the non-dimensional fundamental natural frequency of the microplate obtained
by the classical, the modified couple stress and the modified strain gradient theories with aspect
ratio are indicated in Fig. 9 and 10, respectively. A variation trend opposed to that of the deflection
shown in the last figure is again observed. Underprediction of the classical theory on the buckling

load and the natural frequency is also found.
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Figure 8: Non-dimensional deflection of FG microplate as a function of aspect ratio

predicted by CT, MCST and MSGT with h/l=4 and krcu=0.2.
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Figure 9: Non-dimensional critical buckling load of FG microplate as a function of aspect ratio
predicted by CT, MCST and MSGT with h/l=4 and krem=0.2.
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Figure 10: Non-dimensional first natural frequency of FG microplate as a function of aspect ratio

predicted by CT, MCST and MSGT with h/I=4 and krcu=0.2.

4.4 Thermal Environment Effects

Fig. 11 shows the non-dimensional deflection of FG microplates versus temprature changes
predicted by the modified strain gradient theory and the other two reduced theories. It is seen that
as the temprature difference increases, the deflection of the microplate goes up too. A contrary
behavior is obsereved for buckling load and natural frequency of the FG microplates in Figs. 12 and
13 where the variation of these quantities with temprature difference is depeicted. From these three
figures, it is found that the temprature increase due to the thermal environment makes the stiffness
of the FG microplate diminish.
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Figure 11: Non-dimensional deflection of FG microplate as a function of temperature difference
predicted by CT, MCST and MSGT with h/l=4, a/h = 10 and kFGM=0.2.
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Figure 12: Non-dimensional critical buckling load of FG microplate as a function of temperature difference

predicted by CT, MCST and MSGT with h/l=4, a/h = 10 and kFGM=0.2.
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Figure 13: Non-dimensional first natural frequency of FG microplate as a function of temperatura difference

predicted by CT, MCST and MSGT with h/l=4, a/h = 10 and krem=0.2.
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5 CONCLUSION

In this paper, the study of bending, buckling and free vibration of the FGM microplate was carried
out on the basis of the modified strain gradient and the Mindlin plate theories. The model
developed herein accounts for the size effects by incorporating three length scale parameters into
the constitutive equations. In addition to MSGT, the numerical results were given for the two other
models i.e., CT and MCST constructed by ignoring all or two scale constants in the present model.
It was found that the incorporation of the size effect causes increasing the stiffness of the
microplate, i.e. decrease of deflection and increase of critical buckling load and natural frequency of
the FGM microplate. It was also deduced that size effects become more prominent when MSGT is
used and also microplate is subjected to stiffer edge conditions. Moreover, at high structural size, it
was observed that the small scale effect becomes less pronounced so that the three models predict
approximately the same response. Further, it was discerned that the as the material gradient index
and aspect ratio increase, the critical buckling load and fundamental natural frequency decrease and
the deflection increases. It was also observed that the thermal environment affects the stiffness of
the microplate so that the natural frequency and buckling load of the microscale plate decreases
when the temprature increases.
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1. Transverse force vector in the bending problem
a=[0 0 1 0 of

Note that ¢ is a SNM x1 vector.
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2. Stiffness matrix in the bending, buckling and free vibration problems
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3. Matrix N in the buckling problem
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4. Mass matrix in the free vibration problem
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