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Abstract 
In this paper, a size-dependent microscale plate model is developed 
to describe the bending, buckling and free vibration behaviors of 
microplates made of functionally graded materials (FGMs). The 
size effects are captured based on the modified strain gradient 
theory (MSGT), and the formulation of the paper is on the basis 
of Mindlin plate theory. The presented model accommodates the 
models based upon the classical theory (CT) and the modified 
couple stress theory (MCST) if all or two scale parameters are set 
to zero, respectively. By using Hamilton’s principle, the governing 
equations and related boundary conditions are derived. The 
bending, buckling and free vibration problems are considered and 
are solved through the generalized differential quadrature (GDQ) 
method. A detailed parametric and comparative study is 
conducted to evaluate the effects of length scale parameter, 
material gradient index and aspect ratio predicted by the CT, 
MCST and MSGT on the deflection, critical buckling load and 
first natural frequency of the microplate. The numerical results 
indicate that the model developed herein is significantly size-
dependent when the thickness of the microplate is on the order of 
the material scale parameters. 
 
Keywords 
Bending; Buckling; Free vibration; FGM microplate; Strain 
gradient theory; GDQ. 

 
 
Size-Dependent Bending, Buckling and Free Vibration Analyses of 
Microscale Functionally Graded Mindlin Plates Based on the Strain 
Gradient Elasticity Theory 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 INTRODUCTION 

The experiments conducted on the microstructures subjected to different loading conditions have 
revealed their size–dependent behavior (Nix 1989; Fleck et al. 1994; Ma and Clarke 1995; 
Vardoulakis et al. 1998; Stolken and Evans 1998; Chong and Lam 1999; Lam et al. 2003; 
and Colton 2005). When the dimensions of a structure are on the order of microns or submicrons, it 
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is necessary to consider internal material length scale parameters in order to predict its mechanical 
behavior. Conducting experiments on the microstructures is difficult and with high expenses. Hence, 
the continuum mechanics has attracted the attention of researchers for the modeling of 
microstructures. The classical continuum theories are not proper for identifying the behavior of 
small scale structures, because in such theories the character of stress is local with no material 
length scale. This shortcoming in the conventional continuum mechanics motivated some 
researchers to develop the non-classical theories taking the size effects into account. 

One of the most significant higher-order continuum theories presented by Mindlin (1965) is 
gradient theory in which the first and second derivatives of the strain tensor effective on the strain 
energy density are included. Further, Fleck and Hutchinson (1993) extended Mindlin’s theory and 
proposed the strain gradient theory which involves five material constants in the constitutive 
equations. In this theory, higher order stress components are appeared due to the stretch and 
rotation gradient tensors. Also, Toupin (1964), Mindlin and Tiersten (1962) used a higher order 
theory and developed the classical couple stress theory which included two material parameters. 
Determination of the material constants is one of the challenges these theories face. That’s why; the 
works were done toward the modification of the mentioned theories and consequently, the reduction 
of the number of the length scale parameters involved. In this direction, the modified couple stress 
theory (MCST) was initiated by Yang et al (2002) in which only one length scale parameter is used 
in the constitutive equations leading to the symmetric couple stress tensor. Relevant works 
concerning the applicability of MCST in the analysis of microstructures can be found in (Ma et al. 
(2008); Tsiatas (2009); Kahrobaiyan et al. (2010); Ke et al. (2011); Jomehzadeh et al. (2011); 
Asghari (2012); Thai and Choi (2013)). In addition to these works, based on the modified couple 
stress and Kirchhoff plate theories, a size-dependent plate model was developed by Yin et al. (2010) 
for the dynamic analysis of microplate. Nateghi et al. (2012) employed the MCST and three 
different beam theories, i.e. classical, first and third order shear deformation beam theories to study 
the size effects on buckling load of functionally graded microbeams. Ke et al. (2012) studied the free 
vibrations of microplates on the basis of the modified couple stress and Mindlin plate theories. 

Altan and Aifantis (1992) suggested a simplified strain gradient model including a single strain 
gradient coefficient of length squared dimension. Based on this model, Lazopoulos (2004) 
investigated the buckling behavior of a long rectangular plate subjected to uniaxial compression and 
small lateral load. 

Lam et al. (2003) reduced five scale constants in strain gradient theory to three ones and 
presented the modified strain gradient theory. The constant are associated with dilatation gradient, 
deviatoric gradient and symmetric rotation gradient tensors so, this theory contains several higher-
order stress components compared to the MCST. 

Using the gradient elasticity theory, a higher-order Euler–Bernoulli beam model was developed 
by Papargyri-Beskou et al. (2003) and Kahrobaiyan et al. (2011). Papargyri-Beskou and Beskos 
(2008) presented a Kirchhoff microplate and conducted the static, stability and dynamic analysis of 
gradient elastic flexural plates. Lazopoulos (2009) employed the Kirchhoff plate theory and 
investigated the size effect on the bending of strain gradient elastic thin plates. Employing a 
variational method, Papargyri-Beskou et al. (2010) investigated the gradient elastic flexural 
Kirchhoff plate subjected to static loading and obtained the related boundary conditions. Wang et 
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al. (2011) did the static bending, instability and free vibration problems of an all edges simply 
supported rectangular micro-plate based on a size-dependent Kirchhoff micro-plate model. A 
comprehensive geometrically nonlinear size-dependent Timoshenko beam model was developed by 
Ansari et al. (2012) based on strain gradient and von Kármán theories. They applied the model and 
described the nonlinear free vibration of simply supported microbeam. Kahrobian et al. (2012) 
proposed a non-classical beam model accounting for the size influences in the framework of Euler–
Bernoulli beam and strain gradient theories for static and free vibrations analyzes. They derived 
five equivalent length scale parameters in terms of the length scales of material constituents for 
functionally graded microbeams. Ansari et al. (2013) analyzed the pull-in instability of circular 
microplates based on the Kirchhoff plate theory and MSGT. 

The novel thermo-mechanical properties of FGM make them as a prime candidate to be used in 
a wide range of engineering applications. These materials are also employed in the micro and nano-
sized structures such as micro and nano–electromechanical systems and atomic force microscopes. 
Thus, to have a proper design of these systems, the knowledge of the mechanical behavior of FG 
microstructures is necessary. Recently, some research works have been conducted on the microscale 
structure made of functionally grade materials (Sahmani and Ansari (2013); Asghari et al. (2011); 
Ansari et al. (2011)). 

In this paper, a non-classical size-dependent plate model is developed for the bending, buckling 
and free vibration analyses of microscale FG plates. The model takes the important size influences 
and the effect of transverse shear deformation into account through incorporating the strain 
gradient elasticity theory into the Mindlin plate theory. The constitutive relations of the present 
model have three length scale parameters, and for some specific values of the length scale material 
parameters, this model can be reduced to that based on the modified couple stress theory. 
Furthermore, the proposed model considers the influences of thermal environments on the static 
and dynamic responses of the FG microplates. Hamilton’s principle is utilized to derive the 
governing equations and corresponding boundary conditions. Also the current solution algorithm is 
based on the generalized differential quadrature (GDQ) method which enables one to impose any 
arbitrary boundary condition. So, in this work, the behavior of FG microscale plates with various 
edge conditions is studied. In the numerical results, the effects of different model parameters on the 
response of the microplate are investigated. 
 
2 SIZE-DEPENDENT GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

2.1 Modeling the Material Properties of FG Microplate 

As shown in Fig. 1, an FG microplate having length a , width b  and thickness h  in a Cartesian 

coordinate system located at the midplane of the plate is considered. The bottom surface  / 2z h  

of the plate is assumed to be rich-ceramic and the top surface  / 2z h   is taken as rich-metal. 
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Figure 1: Schematic of an FG microplate under bi-axial loading and uniformly distributed  

transverse load: coordinate system and geometric parameters. 

 
In the present work, the material properties of FGM, Young’s modulus E , Poisson’s ratio   , 

mass density  , thermal conductivity K and thermal expansion coefficient   are taken to be of 

the following form 
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The volume fractions of ceramic and of metal, cV  and mV  respectively, are assumed to follow a 

power function of a spatial variable as 
 

  1 z
,         1        

2 h

FGMk

c m cV z V V
     
 

(2)

 

where FGMk  is the volume fraction or material gradient exponent. It is obvious that as the value of 

FGMk  approaches infinity the plate becomes fully metal and as it tends to zero the plate reduces to 

a fully ceramic one. 
 
2.2 Kinematics of Microplate 

Let  , ,u t x y ,  , ,v t x y  and  , ,w t x y  denote the components of the displacement of a point located 

at the midplane of the plate along the x, y and z directions, respectively and , x y   represent the 

angular displacements in the x and y directions, respectively. Based on the Mindlin plate theory, the 



636     R. Ansari et al. / Size-Dependent Bending, Buckling and Free Vibration Analyses of Microscale Functionally Graded Mindlin Plates... 

Latin American Journal of Solids and Structures 13 (2016) 632-664 

in-plane displacements are stated as linear functions of the plate thickness and the transverse 
deflection is considered to be constant along the plate thickness causing the displacement field to be 
expressed as 
 

         1 2 3, , , , ,   , , , , ,  , , .x yu u t x y z t x y u v t x y z t x y u w t x y     
 (3) 

 
2.3 Constitutive Equations Based on the Modified Strain Gradient Theory 

In comparison with the modified couple stress theory, the strain gradient theory proposed by 
Lam et al. (2003) includes two additional gradient tensors namely the dilatation gradient tensor and 

the deviatoric stretch gradient tensor. Assuming infinitesimal deformations, the strain energy sΠ  

stored in a continuum elastic medium occupying region Ω  is expressed as 
 

 
 

(1) (1)
s

Ω
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Π Ω
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ij ij i i ijk ijk ij ijp m d         (4)

 

where (1),  , , s
ij i ijk ij     ( , , x, y, z)i j k   denote the components of the strain tensor, the dilatation 

gradient tensor, the deviatoric stretch gradient tensor and the symmetric rotation gradient tensor, 
respectively given by 
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in which , i iu   represent the components of the displacement vector u  and the infinitesimal 

rotation vector  , respectively and the symbol   denotes the Kronecker delta. The classical stress 

tensor ij  and the higher–order stresses (1), ,  s
i ijk ijp m  corresponding to a linear isotropic elastic 

material are stated as 
 

  2 (1) 2 (1) 2
0 1 2 2 ,  2 ,  2 ,  2s s

ij ij ij i i ijk ijk ij ijtr p l l m l               
 (6)

 

0l , 1l , 2l  represent the additional independent material length scale parameters associated with 

dilatation gradient, deviatoric stretch gradient and symmetric rotation gradient, respectively. 
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Furthermore, the parameters 
21

E





 and 
2(1 )

E





 stand for the bulk and shear modules, 

respectively. 
By substitution of Eqs. (3) into Eq. (5-5), one can get the components of infinitesimal rotation 

vector as 
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The nonzero components of the strain–displacement relations can be obtained by introducing 
Eq. (3) into Eq. (5-1), as 
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The components of other three gradient tensors i.e., , ,γ η χ  are derived by introducing Eqs. (7) 

and (8) into Eqs. (5-2)-(5-4) as: 
The dilatation gradient tensor: 
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The deviatoric stretch gradient tensor: 
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The symmetric rotation gradient tensor: 
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On substitution of Eqs. (8)-(11) into (6), the constitutive equations corresponding to the 
classical and strain gradient theories are obtained.  
 
2.4 Derivation of General Form of Governing Equations and Boundary Conditions 

The microplate is first considered to be subjected to the in-plane prebuckling forces 0
xxN , 0

yyN  and 
0  xyN and the transverse load ( , , )q t x y  as shown in Fig. 1. Herein, to derive the equations of 

motion, Hamilton’s principle is employed which is expressed as follows 
 

 
2

1

0,
t

T s w

t

dt     (12)

 

where T  and w  are the kinetic energy of FG microplate and the work done by the external 

loads, respectively. From Eq. (4), the total strain energy can be written as the addition of strain 

energies corresponding to the classical stresses C , the dilatation stresses 1NC , the deviatoric 

stretch stresses 2NC  and the couple stresses 3NC  as 
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The normal resultant forces, shear forces, bending moments and couple moments are related to 
the components of classical and the couple stress tensors as follows 
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where sk  denotes the shear correction factor. 

The effective higher order stresses on a section defined above lead to the higher-order resultants 
force and moments in the section which are stated as 
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The strain energies associated with the classical elastic theory and strain gradient theory 
appeared in Eq. (13) can be obtained by using Eqs. (14) and (15) as 
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in which A  is the surface of midplane of the microplate. The kinetic energy of FG microplate T  

is given by 
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By introducing the inertia terms as     
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   and substituting the 

components of displacement from Eq. (3) into the preceding equation we get 
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The work done by the in-plane prebuckling forces and the transverse load is given by 
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Now, Hamilton’s principle is applied. To this end, the expressions related to the total strain 
energy, kinetic energy and the work done by the external loads obtained above are first inserted 

into Eq. (12). Afterward, the variation of u,  v, , xw  and y  and integration by parts is taken. 

Setting the resulting coefficients of  u,   v ,  w , x  and y  to zero yields the following 

governing equations 
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Also, from the variational approach, the corresponding boundary conditions are obtained as 
 

0     0,xx x xy yu or N n N n     (22-1)
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where xn  and yn  are the unit base vectors along the x- and y-axes, respectively. The elements 

,  ij ijN M   and  ;  , ,jQ i j x y  are given in Appendix. 

By means of Eqs. (22), the boundary conditions related to simply supported (S) and clamped 
(C) edges are obtained as follows 

A. Clamped boundary condition 

At 0, :x a  
 

, , , , , 0x x x x x x y y xu u v v w w              (23-1)
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At  0, :y b  
 

, , , , , 0y y y x x y y y yu u v v w w              (23-2)
 

B. Simply supported boundary condition 

At 0, :x a  
 

,

1 1
0
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(23-3)

 

At 0, :y b  
 

,

1 1
0 

2 2yz yyx y xy yyzu Y T v v w Y T       
 

, ,
, , ,
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1 1 1
2 0

2 4 2
p p

yy y y z xy yyz yyy y yz x x x yyx xM M P Y T M H M M          
 

(23-4)

 

where “,” denotes the differentiation. With various combinations of simply supported and clamped 
edges, one can derive different types of end conditions for the FG rectangular microplate. 

As stated at first, the size-dependent governing equations and edge conditions reduce to those of 

classical theory when all the material length scale parameters 0l , 1l , 2l  vanish. Also, one can get 

the ones for an FG Reissner–Mindlin microplate modeled by the modified couple stress theory by 

setting 0l  and 1l  to zero. Moreover, the present governing equations and edge conditions will 

decline into those of the FG Timoshenko microbeam, if the components of displacement v, y  and 

the terms relevant to the derivations with respect to y  neglect. 

The stiffness components ( , , , 1,5, 1,2,5ij ij ijA B D i j  ) and the non-dimensional parameters 

are defined as 
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(24)
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(25)

 

respectively, where 00 110, I A  are the values of 0I  and 11A  corresponding to a homogeneous metal 

microplate. 
On substitution of the resultant forces and moments given in Eqs. (14) and (15) in terms of 

displacement into Eqs. (20) and using the relationships (25), one can achieve 
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in which the following quantities are used 
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(27)

 
2.5 Thermal Loading 

Thermal load is considered as 
 

/2

T /2

( ) ( ) ( )
,

1 ( )

h

h

E z z T z
N dz

z





 (28)

 

The one dimensional steady-state heat transfer equation through the plate thickness is given by 
 

   
2(z) 0,      
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m
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h
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(29)
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where 
cT  and 

mT  are the temperatures at the ceramic side and the metal side, respectively. 

Inserting (z)K  from Eq. (1) into Eq. (29), the solution of Eq. (29) gives the temprature 

distribution as 
 

/2 /2

/2

(z) ,    
(z)

(z)

z

m c mh h

h

T dz
T T T T T

dz K
K






    
 (30) 

 

For linear themperature distribution across the thickness we have 
 

(z)
2 m

T h
T z T

h

     
 

(31)

 

3 DISCRETIZATION AND SOLUTION OF GOVERNING EQUATIONS 

To solve the governing equations, the generalized deferential quadrature method as a powerful 
numerical technique is adopted to transform the equations of motion and boundary conditions into 
discrete forms. When discretizing the problem, the grid point distributions in the   - and   - 

directions with N  and M  nodes, respectively are located at the shifted Chebyshev–Gauss–Lobatto 
as 
 

1 1 1 1
1 cos ;    1: , 1 cos ;    1: .

2 1 2 1i j

i j
i N j M

a N b M
                     

(32)

 

If the mode shapes of the microplate denote by ( , ) U , ( , ) V , ( , ) W , ( , )x  Ψ ,and 

( , )y  Ψ  in the domain defined by the vectors ξ  and ζ  , they can be stated as follows 
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The above matrices can be expressed in a column vector form as 
 

  ,i jvec u  U
, 

   ,i jvec v  V
, 

   ,i jvec w  W
, 

 
  ,x x i jvec   Ψ

, 
  ,y y i jvec   Ψ

 1 ,     1i N j M    

(34)

 

Note that the forgoing vectors are 1NM . For a two variable function, the GDQ method can 
be used to approximate the first or higher order partial derivatives of it, e.g., the second order 
partial derivative of ( , )U    with respect to   and   is given by 
 

    
2

1 1( , )U
 

 
 


 

 
D D U (35)

 

in which  1
D  and  1

D  represent the weighting coefficients of the first order derivative in the    

and   directions, respectively in GDQ (Ansari et al. (2013) ) and   denotes the Kronecker tensor 

product. 
 
3.1 Bending of FG Microplate 

To derive the discrete form of the equations of motion governing the static bending of the 
microplate, the microplate is considered to be just subjected to the uniformly distributed load. So, 
the time-dependent and the in-plane prebuckling force terms appeared in the governing equations 
are first neglected. Then, taking the partial derivatives based on Eq. (35), the governing equations 
given in Eqs. (26) can be discretized in a shortened form as follows 
 

 KX q 0 (36)
 

where  TT T T T T, , , , x yX U V W Ψ Ψ . The elements of the stiffness matrix K and the transverse 

force vector q  are given in Appendix. The boundary conditions are transformed into the discrete 

forms in a similar manner. After substituting all the end conditions into Eq. (36), the mode shapes 
are obtained as 
 

1X K q (37)
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3.2 Buckling of FG Microplate 

In this section, the microplate is considered to be under the biaxial in-plane prebuckling forces only, 

 0 0 0i.e.,   ,  0xx yy xyN N P N    according to which the transverse load is taken as zero and the 

time-dependent terms are dropped in the governing equations. Therefore, using Eq. (35), the 
governing equations (26) can be discretized leading to an eigenvalue problem as 
 

0P KX NX (38)
 

The components of the matrix N  are presented in Appendix. The end conditions are imposed 
by inserting the discrete counterparts of all the boundary conditions into Eqs. (38). Separating the 
domain and boundary grid points denoted by the subscripts b and d respectively, from each other 
cause the column displacement vector X  to be decomposed as 
 

             T TT TT TT T
,  , ,     ,  ,x y x y d bX W Ψ Ψ X W Ψ Ψ

d bd bd b  
(39) 

 

Using the preceding relationship, Eq. (38) can be recast to the standard form of an eigenvalue 
problem in the domain as 
 

   1 1P    dd db bb bd d dd db bb bd dK K K K X N N K K X  (40)
 

Also, from this manipulation, the displacement vector corresponding to the boundary grid 
points is obtained as follows 
 

1 b bb bd dX K K X (41)
 

By means of two last equations, one can obtain the critical buckling loads and the 
corresponding buckling mode shapes of the microplate. 
 
3.3 Free Vibration of FG Microplate 

In the case of free vibration of the microplate, the components of the displacement are taken to be 
of the following form 
 

     
   

, ,, , ( , ) , , ( , ) , , ( , )

, ,

,

,( , ) , , ( , .)

i i i

i i
x x y y

u U e v V e w W e

e e

  

 

              

           

  

   
 

(42) 

 

where   is the non-dimensional natural frequency. With assumption of 0 0 0 0xx yy xyN N N q    , 

substituting Eqs. (42) into Eqs. (26) and taking the partial derivatives in accordance with 
relationship (36) yield a condensed discrete form of governing equations as 
 

2 KX MX (43)
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where M  is the mass matrix whose components are given in Appendix. By retracing all the steps 
of the previous section, the natural frequencies and the associated mode shapes of the FG 
microplate can be acquired. 
 
4 RESULTS AND DISCUSSION 

In what follows, the selected numerical results are given to describe the bending, buckling and free 
vibration behavior of the FG microplate with different edge supports. The results from classical, 
couple stress and strain gradient theories are presented to make a comparison among the responses 
predicted by the different theories. In this paper, four commonly-used boundary conditions for a FG 
microplate is considered which are as follows 

1. CCCC: All edges clamped, 
2. SSSS: All edges simply supported, 
3. CSCS: Two edges along the x direction clamped, remaining ones simply supported, 
4. SCSC: Two edges along the x direction simply supported, remaining ones clamped. 

The metal and ceramic constituents of the FG microplate are considered to be Aluminum and 
Silicon Carbide, respectively with the material properties as 3

m m mE =70 GPa, ρ =2702 kg/m , υ =0.3,  
-6 -1 3 -6 -1

m c c c cα =22.5×10  K , E =427 GPa,  ρ =3100 kg/m , υ =0.17, α =4×10  K . It should be pointed out that 

no experimental data on the values of the scale parameters corresponding to the FG microplate is 
available in the open literature. Lam et al (2003) obtained the size scale constant for an isotropic 
homogenous microbeam as 17.6 l m . Here, the values of the length scale parameters for the FG 

microplate are approximated by 15 l m  (Sahmani and Ansari (2012)). In the following, the 

effects of different quantities on the on the response of the FG microplate are delineated. 
 
4.1 Size Scale Effects 

Fig. 2 shows the variation of non-dimensional deflection of the FG microplate (maximum deflection 
of the microplate to its thickness ratio) with non-dimensional size scale ( /h l ) for the considered 
three theories. It is noted that the deflection of the microplate corresponding to the CT remains 
unchanged due to having no length scale constant, whereas it goes up nonlinearly for MCST and 
MSGT as the size scale increases. It is also observed that the difference between the classical and 
the non-classical theories is higher for the strain gradient theory. In other words, the size-
dependence of MSGT is heavier than MCST especially when the thickness of the microplate is 
comparable with the length scale parameter. It is attributed to the fact the strain gradient theory 
incorporates the three strain gradient tensors namely the symmetric rotation gradient tensor, 
dilatation gradient tensor and the deviatoric stretch gradient tensor, whereas the couple stress 
theory includes only the symmetric rotation gradient tensor. Further, it is seen that as the size scale 
increases, the curves converge i.e., the non-classical theories tend to the classical one. In other 
words, for large-sized structure, the classical theory is able to predict the bending response of the 
FG microplate. 
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Figure 2: Non-dimensional deflection of FG microplate as a function of non-dimensional length scale parameter 

predicted by CT, MCST and MSGT with a/h=10 and kFGM=0.2. 

 
Presented in Fig. 3 is the non-dimensional critical buckling load of the FG microplate as a 

function of non-dimensional size scale. From this figure one can see that with the increase of the 
scale constant, the buckling load decreases for the non-classical theories whereas, the load 
corresponding to the CT keeps constant. In contrast with the results of the previous figure, it is 
seen that the couple stress and the strain gradient theories predict the buckling load larger than 
that of the classical theory and this pattern is more evident for the small length scale. From this 
comparison, it is found that the inclusion of the size scale effect leads to the increase of the stiffness 
of the microplate. Also, the strain gradient theory is found to predict the buckling load higher than 
the couple stress theory does due to the incorporation of the more strain gradient tensors which 
then clarifies the more prominent size-dependence of this theory. Furthermore, it is noted that by 
increasing the size scale, the gap between the curves associated with the various theories diminishes. 
It means that as the structural size reduces, the scale effects become more prominent. 
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Figure 3: Non-dimensional critical buckling of FG microplate as a function of non-dimensional length scale  

parameter predicted by CT, MCST and MSGT with a/h=10 and kFGM=0.2. 

 
Non-dimensional fundamental natural frequency of the FG microplate versus the non-

dimensional scale parameter for the three models is plotted in Fig. 4. The trend in variation of the 
natural frequency is same as that of buckling load so, the similar observations and findings to those 
of Fig. 3 is found. 

Focusing on the results of the last three figures relevant to the different boundary conditions, it 
is deduced that the most difference between the response predicted by CT and Non-CTs are 
obtained for the CCCC boundary conditions i.e., the all edges clamped microplate is the most 
sensitive one to the size effects. 
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Figure 4: Non-dimensional first natural frequency of FG microplate as a function of non-dimensional length scale 

parameter predicted by CT, MCST and MSGT with a/h=10 and kFGM=0.2. 

 
4.2 Material Gradient Index Effects 

Indicated in Fig. 5 is the variation of non-dimensional deflection of the FG microplate with material 
gradient index corresponding to CT, MCST and MSGT. As observed from this figure, as the 
material gradient exponent increases, the deflection of the microplate increases, too. It is because 
that an increase in the value of the gradient index causes the volume fraction of the ceramic 
constituent of FGM to diminishes so, the stiffness of the microplate reduces, too. Further, as 
expected, for the considered size scale the deflection predicted by the modified stain gradient theory 
is larger than the two other models. Also, it is found from this figure that the microplate with 
CCCC and SSSS edge supports have the minimum and maximum deflection, respectively. 
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Figure 5: Non-dimensional deflection of FG microplate as a function of material gradient index  

predicted by CT, MCST and MSGT with h/l=4, a/h = 10. 

 
Figs. 6 and 7 depict the effect of the material property gradient index predicted by the three 

models on the non-dimensional critical buckling load and the non-dimensional first natural 
frequency of the microplate. As shown, both the buckling load and the natural frequency follow a 
similar pattern based on which they reduce by increasing the value of the gradient index. This 
trend in variation is against the one corresponding to the non-dimensional deflection of the 
microplate illustrated in Fig. 5. It is induced by the fact that the reduction of the stiffness of the 
FG microplate due to the increase of the material gradient index has opposite effect on the 
deflection and the two eigenvales namely the critical buckling load and the natural frequency. 

From the comparison of the results associated with various boundary conditions, it is discerned 
that the maximum and minimum buckling load and the natural frequency are obtained for all edges 
clamped and all edges simply supported microplate, respectively. 
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Figure 6: Non-dimensional critical buckling load of FG microplate as a function of material gradient index  

predicted by CT, MCST and MSGT with h/l=4, a/h = 10. 
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Figure 7: Non-dimensional first natural frequency of FG microplate as a function of material gradient index  

predicted by CT, MCST and MSGT with h/l=4, a/h = 10. 

4.3 Aspect Ratio Effects 

Plotted in Fig. 8 is the Non-dimensional deflection of the FG microplate as a function of aspect 
ratio (length to thickness of the microplate ratio) for strain gradient theory and the two reduced 
models. From this figure one can see that going up the aspect ratio leads to an increase in the 
deflection. Furthermore, for a specific value of a/h, it is observed that the classical theory 
overpredicts the deflection of the FG microplate. The variation of the non-dimensional critical 
buckling load and the non-dimensional fundamental natural frequency of the microplate obtained 
by the classical, the modified couple stress and the modified strain gradient theories with aspect 
ratio are indicated in Fig. 9 and 10, respectively. A variation trend opposed to that of the deflection 
shown in the last figure is again observed. Underprediction of the classical theory on the buckling 
load and the natural frequency is also found. 
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Figure 8: Non-dimensional deflection of FG microplate as a function of aspect ratio  

predicted by CT, MCST and MSGT with h/l=4 and kFGM=0.2. 

 

 

Figure 9: Non-dimensional critical buckling load of FG microplate as a function of aspect ratio  

predicted by CT, MCST and MSGT with h/l=4 and kFGM=0.2. 
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Figure 10: Non-dimensional first natural frequency of FG microplate as a function of aspect ratio  

predicted by CT, MCST and MSGT with h/l=4 and kFGM=0.2. 

 
4.4 Thermal Environment Effects 

Fig. 11 shows the non-dimensional deflection of FG microplates versus temprature changes 
predicted by the modified strain gradient theory and the other two reduced theories. It is seen that 
as the temprature difference increases, the deflection of the microplate goes up too. A contrary 
behavior is obsereved for buckling load and natural frequency of the FG microplates in Figs. 12 and 
13 where the variation of these quantities with temprature difference is depeicted. From these three 
figures, it is found that the temprature increase due to the thermal environment makes the stiffness 
of the FG microplate diminish. 
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Figure 11: Non-dimensional deflection of FG microplate as a function of temperature difference  

predicted by CT, MCST and MSGT with h/l=4, a/h = 10 and kFGM=0.2. 
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Figure 12: Non-dimensional critical buckling load of FG microplate as a function of temperature difference 

predicted by CT, MCST and MSGT with h/l=4, a/h = 10 and kFGM=0.2. 

 

 

Figure 13: Non-dimensional first natural frequency of FG microplate as a function of temperatura difference 

predicted by CT, MCST and MSGT with h/l=4, a/h = 10 and kFGM=0.2. 
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5 CONCLUSION 

In this paper, the study of bending, buckling and free vibration of the FGM microplate was carried 
out on the basis of the modified strain gradient and the Mindlin plate theories. The model 
developed herein accounts for the size effects by incorporating three length scale parameters into 
the constitutive equations. In addition to MSGT, the numerical results were given for the two other 
models i.e., CT and MCST constructed by ignoring all or two scale constants in the present model. 
It was found that the incorporation of the size effect causes increasing the stiffness of the 
microplate, i.e. decrease of deflection and increase of critical buckling load and natural frequency of 
the FGM microplate. It was also deduced that size effects become more prominent when MSGT is 
used and also microplate is subjected to stiffer edge conditions. Moreover, at high structural size, it 
was observed that the small scale effect becomes less pronounced so that the three models predict 
approximately the same response. Further, it was discerned that the as the material gradient index 
and aspect ratio increase, the critical buckling load and fundamental natural frequency decrease and 
the deflection increases. It was also observed that the thermal environment affects the stiffness of 
the microplate so that the natural frequency and buckling load of the microscale plate decreases 
when the temprature increases. 
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1. Transverse force vector in the bending problem 
 

T   q 0 0 I 0 0  
 

Note that  q is a 5 1 NM  vector. 
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2. Stiffness matrix in the bending, buckling and free vibration problems 
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3. Matrix N  in the buckling problem 
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4. Mass matrix in the free vibration problem 
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