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Abstract

This work presents an approach for mass minimization of mechanical devices subject to
multiple load conditions and material failure constraints. The design control is performed
through topology optimization concepts, in particular the SIMP approach (Solid Isotropic
Microstructure with intermediate mass Penalization). The optimization procedure combines
an Augmented Lagrangian technique to handle local stress-based failure constraints and a
box-type algorithm to deal with upper and lower limits on the design variables. Sensitivity
analysis calculations are performed through analytical expressions using the adjoint tech-
nique. In this way, numerical costs associated with a multiple loaded case are very similar to
those of a single loaded case. Some numerical examples are presented showing quite different
optimal designs if we compare single and multiple load cases.

Keywords: Structural optimization, topology optimization, multiple load conditions, mate-
rial failure constraints

1 Introduction

The design of mechanical devices that use the least material possible but are capable of per-
forming their function without material failure is a common goal in industrial applications.
Topological optimization is perhaps today’s most flexible numerical tool available to perform
a systematic search for this kind of design. The literature associated with this research area
shows several approaches to solving this problem and, despite not being rigorous, two groups of
techniques may be distinguished.

The first one contains those formulations in which a classical optimization problem is set and
its solution obtained through mathematical programming techniques (we include in this group
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genetic based algorithms and their combinations with directional algorithms). The second group
includes those approaches that define a local criterion to update the design variables. This last
group may be subdivided in two subgroups: those related to optimality conditions based upon
sensitivity information and those based on heuristic constructions. Moreover, the criterion is
called local if the design change at a particular material point depends on information only from
the neighborhood of that point.

Formulations from the first group hold a clear mathematical structure and their solution
guarantees the satisfaction of the optimization statement. They are also quite flexible in the sense
that they allow different types of constraints and cost functions. They have the computational
cost of solving a mathematical programming problem in which the evaluation of cost function,
constraints and their derivatives (if necessary) involves the solution of equilibrium equations. In
addition, convergence problems may arise.

Algorithms from the second group (in particular heuristic based and fully-stressed based)
may present simplicity of implementation and relatively low computational costs. However,
their main drawback is that the final design will not necessarily satisfy the original optimization
requirements.

Only a few studies dealing with mass minimization and material failure constraints in con-
tinuum structures may be found in literature within the first approach. Among them we can
mention Duysinx & Bendsøe [7], Duysinx & Sigmund [8], Stolpe & Svanberg [18], Pereira [12]
and Pereira et al. [13].

At first, this problem appears a little naive; however, a couple of particular characteris-
tics make it quite troublesome. Firstly, the consideration of local stress constraints implies (in
the discretized formulation) the use of a number of them, proportional to the number of el-
ements, which should be large enough to obtain an appropriate characterization of the stress
field. Secondly, and most importantly, stress based failure constraints are associated with the
singularity-stress phenomenon, whose efficient treatment is still the subject of research (Sved &
Ginos [21], Kirsch [11], Cheng & Guo[6], Rozvany [17] and Stolpe & Svanberg [19][20]).

This study is based on the first approach, with particular focus on the the consideration of
multiple loads.

Devices subject to multiple load cases is the most common situation in mechanics. In gen-
eral, the optimal design of a device sumitted to a single load case show a poor, or not admissible
behavior if a different load pattern is applied. Multiple load conditions are usually treated by
multiobjective optimization within the compliance problem; the objective function is a weighted
combination of the compliances of each load condition. However, the choice of the appropriate
weighting parameters is quite arbitrary. In evolutionary or fully-stressed type algorithms, mul-
tiple loads are frequently treated by including some heuristics in the local criterion in order to
take into account the mechanical response due to each load. On the other hand, the mathe-
matical problem of mass minimization subject to local material failure constraints and multiple
load cases is just a natural extension of that with a single load case. No additional heuristic or
weighting function definition is needed. Moreover, it will be seen that numerical costs associated
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with a multiple loaded problem are not necessarily much greater than those of a single loaded
case.

For a given domain Ω, the problem to be solved is

Minimize Mass
Subject to : Fi (σi (x)) ≤ 0, ∀ x ∈ Ω, i = 1...N,

(1)

where Fi is a material failure function related to the stress field σi (x) in equilibrium with the
corresponding i-th load case. N is the number of load cases. It is well known that (1) is ill-
posed and its direct treatment is therefore not appropriate. Thus, several techniques are used
to circumvent this problem. This study formulates (1) in the same way as developed in Duysinx
& Bendsøe [7], i.e. combining the SIMP technique and a local material failure constraint. The
numerical approach, however, is quite different and follow the principles used in Pereira et al.
[13]. In order to keep this paper self contained and allow the inclusion of the multiple load
condition within the expressions, the next three sections are dedicated to presenting briefly the
formulation and its numerical approach. Section 5 presents numerical examples in which optimal
designs for multiple loaded structures are analyzed.

2 Formulation

For the sake of simplicity, state equations are restricted to linear elasticity where a body Ω is
submitted to contact forces t̄ and known displacements ū on its boundary, as shown in Figure
1.

As in most topological problems, we distinguish the material part Ωm of Ω and the void region
Ωv. Let u, ε(u) and σ(u) be the displacement, strain and stress fields and D the elasticity tensor.
We then have the following boundary value problem:

σ(u) = Dε(u) = D∇Su ,

div σ(u)= 0 ∀ x ∈ Ω ,

σ n = t̄ ∀ x ∈ ∂ΩN ⊂ (∂Ωm ∩ ∂Ω) ,

σ n = 0 ∀ x ∈ ∂ΩF := ∂Ωm\ (∂ΩN ∪ ∂ΩD) , (2)

u = ū ∀ x ∈ ∂ΩD ⊂ (∂Ωm ∩ ∂Ω) .

Using the SIMP artificial microstructure (Solid Isotropic Microstructure with Penalty for
intermediate materials, Bendsøe & Sigmund [2], the design space includes a continuous variation
of material between solid (ρ = 1) and void (ρ = 0). The constitutive behavior depends on the
relative density ρ and the solid material elasticity tensor D through the following expression:

Dρ = fD (ρ)D = ρpD, (3)

σ = Dρε . (4)
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Figure 1: Geometric definitions of a domain composed by solids and voids.

The effective stress tensor σ̄ for an arbitrary intermediate material is set to be greater than the
homogenized stress σ and dependent on the original (solid material) elasticity tensor and on the
apparent (homogenized) value of deformation [7]:

σ̄ = D ε . (5)

For a given effective stress tensor σ̄, an equivalent scalar stress σe (for example, von Mises) is
computed. With this value, a failure function is defined as

F (σ̄) =
σe

σadm
− 1 ≤ 0, (6)

where σadm is the material yielding stress or maximum admissible value.
When density goes to zero, high deformations may occur due to low stiffness and conse-

quently, high but finite local effective stress values are computed. This phenomenon, known as
Stress Singularity, is characterized by introducing a discontinuity in the failure function for null
values of ρ. The ε-regularization technique proposed by Cheng & Guo [6] is used to overcome
this inconvenience through the following re-definition of the failure function:

{
g (x) ≡ ρ (x) F (σ̄ (x))− ε (1− ρ (x)) ≤ 0, a.e. in Ω ,

0 < ε2 = ρmin ≤ ρ (x) ≤ 1, ∀ x ∈ Ω.
(7)

The optimization problem is then posed as the minimization of the functional m (ρ) subject to
a set of local failure constraints:

Min
ρ∈W 1,2

ρ (Ω)
m (ρ) =

∫

Ω
ρ dΩ +

1
2
rρ

∫

Ω
fρ (ρ) dΩ + rm

∫

Ω
fm (ρ) dΩ (8)

Subject to : gi (x) = g(ρ (x) , σ̄i (x)) ≤ 0 a.e. in Ω, i = 1...N,
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where

fρ (ρ) = (∇ρ)T (∇ρ) ,

fm (ρ) = ρ(1− ρ) ,

W 1,2
ρ (Ω) =

{
ρ | ρ ∈ W 1,2 (Ω) ; 0 < ρmin ≤ ρ(x) ≤ 1 ∀ x ∈ Ω

}

Among several alternatives to avoid the checkerboard phenomenon (limit on the perimeter,
Petersson [14], limit on the difference of density between adjacent elements, Bendsøe [1], Peters-
son & Sigmund [15]) we took advantage of a continuum approach for the density control and
included the second term of m (ρ), which is a penalization of the density gradients (Pereira et.al,
[12], Borrval[5]). This choice is in accordance with the proposed approach and it showed to be
a simple and effective stabilizer of the checkerboard phenomenon.

The third term introduces an explicit penalization of the intermediate densities. Constants
rm and rρ are the corresponding penalization factors.

Aiming to obtain numerical solutions, an Augmented Lagrangian functional is defined,
adding to the cost function a penalization on the stress constraints. Defining gi(ρ, σ̄), we have

£ (ρ; λ, r) = m (ρ) +
N∑

i=1

mi (ρ;λi, ri) = m (ρ) +
N∑

i=1

∫

Ω
M (ρ;λi, ri) dΩ, (9)

M (ρ; λi, ri) dΩ =
1
ri

max

{
gi

[
λiri +

1
2
gi

]
; −(riλi)

2

2

}
. (10)

The penalization functional mi (ρ; λi, ri) for the i-th load case consists of linear and quadratic
terms of the failure function gi that are multiplied by a penalization parameter ri > 0 and by a
Lagrangian function λi ∈ L2 (Ω). The derivation of Mi follow the classic Augmented Lagrangian
procedure for a general inequality constraint (see Bertsekas [3]).

Thus, for a given set rk = {rk
1 , rk

2 , ..., rk
N} > 0 and λk = {λk

1, λ
k
2, ..., λ

k
N}, λk

i ,∈ L2 (Ω), the
following box-constrained problem can be solved for each k-th iteration:

Min
ρ∈W 1,2

ρ (Ω)
£

(
ρ; λk, rk

)
(11)

The solution of the whole optimization problem is obtained by solving a sequence of subprob-
lems (11) with an appropriate updating of parameters λk, rk. In this approach the standard
Augmented Lagrangian updating rule was chosen [3]:

λk+1
i = max

{
λk

i +
1
2
gi ; 0

}
, rk+1

i =
rk+1
i

t
, t > 1 . (12)
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3 Sensitivity Analysis

The algorithm chosen to solve problem (11) needs information of first order derivatives of the
Lagrangian functional. Detailed operations to obtain analytical expressions of these gradients
are found in [13]. The directional (Gateaux) derivative of the objective functional £

(
ρ;λk, rk

)
for fixed and known values of λk and rk is given by:

£̇
(
ρ; λk, rk

)
[y] = ṁ (ρ) [y] +

N∑

i=1

ṁi

(
ρ; λk

i , r
k
i

)
[y], (13)

where

ṁ (ρ) [y] =
∫

Ω

[
1 + rm

dfm (ρ)
dρ

+
1
2
rρ

dfρ (ρ)
dρ

]
y dΩ, (14)

ṁi

(
ρ; λk

i , r
k
i

)
[y] = m′

i

(
ρ; λk

i , r
k
i

)
[y]−B′(ui,ua

i ) [y] + l′(ua
i ) [y] , (15)

m′
i

(
ρ; λk

i , r
k
i

)
[y] =

∫

Ω

∂Mσ

(
ρ;λk

i , r
k
i

)

∂ρ
y dΩ ,

=
∫

Ω

{
1
rk
i

[F (σi) + ε]
〈
gi + rk

i λk
i

〉+
}

y dΩ . (16)

In these expressions, y is a variation of ρ, ui is the displacement field for the i-th load case and
ua

i is the adjoint solution for the i-th adjoint problem associated with the corresponding load
case. The operator 〈·〉+ returns the positive part of the argument. The first term, m(ρ), depends
explicitly on density ρ and obtaining its derivative is straightforward. The penalization terms
mi

(
ρ;λk

i , r
k
i

)
are implicitly dependent on ρ through the mechanical solutions ui (ρ) for each

load case. Their derivatives are obtained by the adjoint method [10]). The partial (Gateaux)
derivative of B for fixed real displacements ui and adjoint solution ua

i is given by

B′ (ui,ua
i ) [y] = lim

t→0

[
Bρ+ty (ui,ua

i )−Bρ (ui,ua
i )

t

]

=
∫

Ω
qρ(q−1)

[
D∇Sui · ∇Sua

i

]
y dΩ . (17)

Furthermore, it is assumed (for the sake of simplicity) that external loads do not depend on ρ

and then l′i (u
a
i ) [y] = 0. The solution ua

i is computed from the classical expression of the adjoint
problem:

B (ua
i ,v) =

∫

Ω

(
∂Mi

∂∇Su
· ∇Sv

)
dΩ , ∀ v ∈ V, (18)

=
∫

Ω

(
ρ

rk
i

〈
gi (x) + rk

i λk
i

〉+
Hσi · ∇Sv

)
dΩ , ∀ v ∈ V, (19)
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where Hσi is a second order tensor obtained explicitly from the material failure criterion evalu-
ated for the current stress state σi = σ(ui).

As it is widely known, computing the gradient of the cost function using adjoint approach,
has almost the same computational cost of a single analysis. It must be noted, however, that if
each local stress constraint is considered separately (in order to use it in a general algorithm for
constrained minimization), its individual gradient will also be required, increasing computational
costs. This is not the case for the present approach, where stress constraints are included in
the cost function, and their local character is achieved with appropriate actualization of the
Lagrange multipliers during iterations.

4 Discretization and numerical procedure

The present implementation is limited to 2D problems although the formulation holds for 3D
problems as well. Due to its flexibility in mesh generation and low computational costs, the
classical three-node Lagrangian element was used to solve the boundary value problem. The
same shape functions are used to define a continuous density field ρ whose nodal values play
the role of design variables. The checkerboard phenomenon, common in low-order elements, is
easily stabilized with the density gradient penalization term. The failure function is evaluated
at each element centroid. Thus, the number of design variables is proportional to the number of
nodes while the number of stress constraints is proportional to the number of elements (which
in triangular meshes is approximately twice the number of nodes)

As proposed in Section 2, the Augmented Lagrangian procedure is used, which requires
the solution of a sequence of minimization subproblems. For the k-th subproblem, a set of La-
grangian multipliers and penalization factors (λk, rk) is set and the minimization of the objective
functional £(ρ; λk, rk) subject to side constraints is performed. This sequence is as follows:

1. Define k = 0, rm, rρ, λk and rk;
2. Minimize the functional £

(
ρ; λk, rk

)
, 0 < ρmin ≤ ρ (x) ≤ 1;

3. Verify convergency within a tolerance. If satisfied, stop the process;
4. Update ηk, λk, rk;
5. k = k + 1, Return to Step 2.

The optimization algorithm used in Step 2 is a non-linear trust-region algorithm proposed
by Friedlander et al., [9]. This algorithm was generalized by Bielschowsky et al. [4] and it is
based on the construction of a quadratic subproblem defined on a trust region.

An adaptive strategy is also used based on the quality of the approximated subproblem
that modifies the size of the trust region to accelerate convergence. The results of this work
were obtained with an implementation of this algorithm, called BOX-QUACAN, provided by
its authors and parametrically adapted to the present case.
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5 Numerical Results

This section is devoted to showing some results comparing optimal designs due to different load
cases and their combination. As almost every optimization problem, some parameters must be
set. The penalization of checkerboard parameter rρ, has a strong influence on the topological
complexity. The bigger the parameter the simplest the topology with a rough boundary defini-
tion is obtained. Parameter rm is used to penalize intermediate densities, but it was noted that
the influence of it is quite smaller than that of rρ. Another important parameter is ε; in general,
more robust designs are obtained for smaller values of ε and vice versa, which is in accordance
with the nature of this parameter. Theoretical considerations and numerical examples analyzing
the the influence of rm, rρ, λ

k, rk and ε on numerical results are found in [13]. In the present
examples the following values were used, unless specified: rm = 0.95, rρ = 0.001, Dρ = ρ3D,
ε2 = ρmin = 0.01.

5.1 Traction and bending of a beam

This simple example exploits many particularities of the present formulation and highlights some
polemic aspects such as the fully stressed design condition. An analogous example was shown in
[13] but no multiple loaded case was analyzed. The background domain is a square beam with
symmetry boundary conditions on the left side and traction and bending forces on the right
side (see Figure 2). The value for the traction forces is tt = 17.5 Pa and that for the bending
forces is tb = 30 Pa. The stress limit is σadm = 35Pa. Other parameters are E = 100Pa and
ν = 0.3. Two regions are distinct; the left one is submitted to optimization while the right one
is fixed. Figure 3 shows the final design for the first load case in which a bar with half the
transversal section of the original bar is obtained. A fully stressed design condition is fulfilled
on the left side of the bar while a smooth, not fully-stressed transition is found on the right
side. A different design is obtained for the “pure-bending” case (Figure 4). Material is spread
up and down in order to increase the moment of inertia of the cross section. The failure function
is saturated only at the extreme lower and upper boundaries. This is a didactic case where a
fully-stressed design condition cannot be achieved: further elimination of material, even in a
non saturated region, will produce inadmissible stress values at upper/lower boundaries of the
beam. The consideration of both loads (not simultaneously applied) is shown in Figure (5). It is
possible to see that the cross section is again half the size of the original one in order to support
traction forces. Two bars remain at the “flanges” of the beam, but a different transition with
the fixed part of the beam was obtained. In addition, as traction can bend the “flanges”, a thin
vertical column is inserted to avoid this movement. Figures 6 and 7 show the ε-relaxed failure
function of this final design for each of the two load cases.
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Figure 2: Traction and bending of beam.

INFORMATION:

Palette:

1.000000E+00
9.000000E-01
8.000000E-01
7.000000E-01
6.000000E-01
5.000000E-01
4.000000E-01
3.000000E-01
2.000000E-01
1.000000E-01
0.000000E+00

Figure 3: Density distribution for traction load.

INFORMATION:

Palette:

1.000000E+00
9.000000E-01
8.000000E-01
7.000000E-01
6.000000E-01
5.000000E-01
4.000000E-01
3.000000E-01
2.000000E-01
1.000000E-01
0.000000E+00

Figure 4: Density distribution for bending load.
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Figure 5: Density distribution for traction and bending loads.
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Figure 6: Multiple load case design. ε-relaxed failure function for traction load.
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Figure 7: Multiple load case design. ε-relaxed failure function for flexion load.

5.2 Anisotropic failure criterion

This example shows a case in which the failure function behaves differently in traction than in
compression. The failure function is defined by Raghava’s model (Raghava et al.[16]) and the
example consists of a squared background mesh submitted to a distributed force applied on a
small region at the bottom with fixed density (see Figure 8). The upper boundary is clamped.
The same load is applied in up, down, left and right directions. The value of the total force is
P1 = P2 = P3 = P4 = 1N . The admissible stress in traction is σt

adm = 2.5Pa and in compression
σc

adm = 7.5Pa. Material parameters are E = 100Pa, ν = 0.3 and L = 1m. Figure 9 show the
final design for Load 1. As expected, the bar under traction has a wider cross section. Similar
behavior occurs for the third and fourth loads in the vertical direction. Figures 10 and 11 show
the final design for Load 3 (compression) and Load 4 (traction). The final density distribution
due to the four loads individually applied is presented in Figure 12. It is possible to see that this
topology and shape is quite similar to that of the first load but with both bars having the same
thickness, which is clearly a consequence of failure constraints to loads 1 and 2. The ε-relaxed
failure function of this final design for loads 1 and 3 are shown in Figures 13 and 14.

5.3 Constrained domain

This example can be classified as belonging to those cases in which the background domain
introduces an initial geometric constraint. This type of problem is perhaps the most common
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Figure 8: Anisotropic failure function.
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Figure 9: Density distribution for load 1.
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Figure 10: Density distribution for load 3.
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Figure 11: Density distribution for load 4.
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Figure 12: Density distribution for multiple load conditions (loads 1 to 4).
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Figure 13: Multiple load case. ε-relaxed failure function for load 1.

INFORMATION:

Palette:

-1.017909E-01
-1.916118E-01
-2.814327E-01
-3.712536E-01
-4.610745E-01
-5.508955E-01
-6.407164E-01
-7.305373E-01
-8.203582E-01
-9.101791E-01
-1.000000E+00

Figure 14: Multiple load case. ε-relaxed failure function for load 4.
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case in practical applications: the final design must fit into the space available.
Due to the existence of a singular stress point at the inner corner of the L-shaped initial

background domain, the present case may be used as a benchmark for those formulations that
seek the satisfaction of failure constraints; the algorithm should find a final shape avoiding these
initial stress concentrations. Two loads are applied on a small fixed region at the right side of
the initial domain (see Figure 15). The solution for the vertical load was considered in [13] and
it is shown in Figure 16a. Material and geometric data are E = 100Pa, ν = 0.3, L = 1.0m,
σadm = 42.42Pa and P1 = P2 = 1.0N . The final designs for load 2 and for the multiple load
case are shown in figures 16b and 17. Comparing the solution for the vertical load case with
that for the multiple load case it is possible to see the accentuation of the radius close to the
inner initial corner as well as the the growth of the cross section near the clamped boundary
due to bending stresses produced by the horizontal load.

P1

2L
5

3L
5

3L/5

2L/5

P2

INFORMATION:

Mesh:
Nodes: 2722
Elements: 5218
Groups: 2

Figure 15: Constrained domain.
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Figure 16: Density distribution for a) load 1 and b) load 2
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Figure 17: Density distribution for multiple load case.
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INFORMATION:

Palette:

2.820000E-05
-9.997462E-02
-1.999774E-01
-2.999803E-01
-3.999831E-01
-4.999859E-01
-5.999887E-01
-6.999915E-01
-7.999944E-01
-8.999972E-01
-1.000000E+00

INFORMATION:

Palette:

-3.166000E-04
-1.002849E-01
-2.002533E-01
-3.002216E-01
-4.001900E-01
-5.001583E-01
-6.001266E-01
-7.000950E-01
-8.000633E-01
-9.000317E-01
-1.000000E+00

Figure 18: Multiple load case. ε-relaxed failure function for a) load 1, b) load 2.

5.4 Device with a dovetail joint

Previous examples are academical, but appropriate to illustrate the characteristics of the present
formulation. The present example shows a more realistic application, performed to guide the
design of a plastic device manufactured by Tigre Tubos e Conexões S.A., Brazil (FINEP, Verde-
Amarelo Project). It also illustrates the importance of allowing multiple load cases in practical
simulations.

The problem consists of a component fixed with a dovetail joint and submitted to a load
applied in four different directions on a hole created to fit a shaft (Figure 19). Each load produces
different contact conditions on the dovetail, which enforces quite different optimal designs for
each case. To handle this problem in a precise way, the formulation should be extended to
incorporate state equations involving contact conditions. Nevertheless, a shortcut is taken here.
The problem is substituted by a simpler one considering the hole fixed and four different loads
on the dovetail (Figure 19). Three regions not submitted to optimization were defined. The
first one is a ring around the hole. The remainder define the dovetail shape and the support
the applied loads. Material properties used in this run (different form those used in the plastic
device) are E = 200000MPa, ν = 0.3, σadm = 150MPa and the thickness of the device is
40mm. The loads of the simplified case are distributed along their surface and their values are
(Figure 19) f1 = 3150N , f2.1 = 11860N , f2.2 = 11040N and f3 = 4500N .

Figures 21 and 22 show the final design for loads 1, 2, 3 and for the multiple load case
(solution for load 4 is symmetrically equivalent to the solution for load 2). It is interesting to
note that design 1 is completely different to design 3, which is contrary to that initially expected.
Loads in the third case “open” the dovetail due to traction. A design with vertical bars like
that of the first load case would fail due to the bars bending. Instead, a strong curved beam is
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Figure 19: Model.
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INFORMATION:

Mesh:
Nodes: 2867
Elements: 5450
Groups: 4

Figure 20: Mesh.

formed and its length reaches the optimal value for the new thin vertical bars.
Figures 23a and 23b show the ε-relaxed failure function for load case 3 and for the multiple

load case under load 4, respectively. The final design for the multiple load case is a frame-like
structure with transversal sections dimensioned in order to satisfy local failure constraints. Once
again, we must remark that this is not the solution for the original problem, but seems to be an
adequate initial design for it.
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Palette:

1.000000E+00
9.000000E-01
8.000000E-01
7.000000E-01
6.000000E-01
5.000000E-01
4.000000E-01
3.000000E-01
2.000000E-01
1.000000E-01
0.000000E+00

INFORMATION:

Palette:

1.000000E+00
9.000000E-01
8.000000E-01
7.000000E-01
6.000000E-01
5.000000E-01
4.000000E-01
3.000000E-01
2.000000E-01
1.000000E-01
0.000000E+00

Figure 21: Density distribution for a) load 1 and b) load 2.

INFORMATION:

Palette:

1.000000E+00
9.000000E-01
8.000000E-01
7.000000E-01
6.000000E-01
5.000000E-01
4.000000E-01
3.000000E-01
2.000000E-01
1.000000E-01
0.000000E+00
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Figure 22: Density distribution for a) load 3 and b) multiple (not simultaneous) loads.
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INFORMATION:

Palette:

8.600000E-06
-9.999226E-02
-1.999931E-01
-2.999940E-01
-3.999948E-01
-4.999957E-01
-5.999966E-01
-6.999974E-01
-7.999983E-01
-8.999991E-01
-1.000000E+00
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Palette:

-1.238780E-02
-1.111490E-01
-2.099102E-01
-3.086715E-01
-4.074327E-01
-5.061939E-01
-6.049551E-01
-7.037163E-01
-8.024776E-01
-9.012388E-01
-1.000000E+00

Figure 23: ε-relaxed failure function for a) design for load 3, b) design for multiple loads under
load 4.

6 Final remarks

This paper discusses the consideration of multiple load cases in a formulation oriented to mini-
mize the mass of a mechanical component subject to material failure constraints. The theoretical
principles of the problem are briefly outlined. Some final considerations should be highlighted:

• The numerical results show, as expected, significative differences in design for each load.
Also, the final design that satisfies failure constraints for all individual loads shows a
topology that is not just an “envelope”of each individual design (as is most commonly
expected).

• From a numerical point of view it is claimed that, for the present formulation, the compu-
tational effort spent on considering failure constraints due to multiple loads is not much
greater than that for of single load case; if the same essential boundary conditions are
considered, the same triangularized stiffness matrix is used for each load case and, con-
sequently, solutions and adjoint solutions for gradient computations are easily performed
for each load case by back-substitution operations. Numerical performance confirms these
conclusions.
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• The approach was shown to be quite robust. If we consider that problem 4 has 5450
elements and 4(four) independent load cases, this means a total of 21800 stress constraints.
Figures of ε-relaxed failure functions show that these constraints are fulfilled throughout
the domain.

• Local optimum designs are, in most cases, not fully stressed. The first example clearly
shows that the existence of this condition depends on the mechanical problem. Multiple
load conditions therefore lead to designs which are far from being fully stressed due to one
load in particular.

• In spite of the of quite good results obtained, convergence problems still appear. One
must first note that it is quite simple to formulate a problem with no solution; for a
given load there is no guarantee of the existence of an admissible domain within the space
available. Also, due to the large number of stress constraints, the problem has plenty of
local optimal solutions. The Augmented Lagrangian approach in combination with the
ε-relaxed procedure can be seen as a possible strategy to drive the solution to points near
the global optima. The work of Stolpe & Svanberg [20] presents clear considerations about
local and global solutions in the use of epsilon-regularizations.

• Real problems submitted to different loads usually produce different contact regions and
load transmissions in mechanical devices. This problem is clearly shown by the fourth
example in which a substitute simplified problem was analyzed to circumvent the contact
problem. However, this issue deserves more attention and appropriate formulations for its
treatment.
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