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An assessment of a co-rotational EAS brick element

Abstract

A locking-free formulation of 8-node brick element and its

application is demonstrated. The Enhanced Assumed Strain

(EAS) method is used to alleviate the locking problems. A

co-rotational formulation is adopted in the formulation, thus

geometric nonlinearity is taken into account via rotation of

the local coordinate system. Several benchmark problems

are analyzed to demonstrate the efficiency of the element.

Keywords

brick element, co-rotational formulation, EAS method.

Cengiz Polat∗

Firat University, Faculty of Engineering, De-

partment of Civil Engineering, 23279, Elazig –

Turkey

Fax: +90 424 218 89 42

Received 16 Dez 2009;
In revised form 4 Feb 2010

∗ Author email: cpolat@firat.edu.tr

1 INTRODUCTION

In the linear analysis, the displacements and strains developed in the structure are small. That

is, the geometry of the structure assumed remains unchanged during the loading process and

linear strain approximations can be used. However, the geometry of the structure changes

continuously during the loading process, and this fact is taken into account in the geomet-

rically nonlinear analysis. Three Lagrangian kinematical descriptions are in present use for

finite element analysis of geometrically nonlinear structures: Total Lagrangian (TL), Updated

Lagrangian (UL) and Co-rotational (CR) formulation [5]. The pioneers of the co-rotational

approach can be said as Wempner [15], Argyris et al. [2], Belytschko and Glaum [3], Crisfield

and Moita [4] and Moita and Crisfield [9]. The attractiveness of the CR formulation resides in

the fact that it can be applied to simplify the Lagrangian formulations for large-displacement

and small-strain problems without significant loss of accuracy [13]. In this formulation the

rigid-body motion is eliminated and only element deformation is considered to obtain the

internal forces and the tangent stiffness matrix.

The objective of this paper is to demonstrate the locking-free formulation of 8-node brick

element based on the co-rotational description of motion. Firstly, the geometry and the strain-

displacement relations of the displacement based 8-node brick element are presented. To allevi-

ate the locking phenomenon of the element, the Enhanced Assumed Strain (EAS) method that

was presented for the first time by Simo and Rifai [11] and further developed by Andelfinger

and Ramm [1], is used. The EAS method is based on the enhancing of the displacement-

dependent strain field by an extra assumed strain field, and it is assumed that the stress and
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the enhanced assumed strain fields are orthogonal, which results in an elimination of the stress

field from the finite element equations. Secondly, a co-rotational formulation [4, 5, 9] is given.

A local coordinate system is attached to the element and a rotation matrix which defines the

rotation of this local coordinate system according to the global coordinate system, is obtained

using the polar decomposition theorem. Thus, the geometric non-linearity is incorporated by

the rotation of the local coordinate system. Lastly, several benchmark problems are examined

by a computer program which is written by the author in MATLAB code.

2 ELEMENT FORMULATION

2.1 Geometry of the brick element

The coordinates of a typical point in the brick element (Fig. 1) can be written as

x =
n

∑
k=1

Nkxk (1)

where n is the number of nodes, Nk=Nk(ξ, η, ζ) are the three-dimensional isoparametric shape

functions, x = [ x y z ]T are the position vectors; ξ, η and ζ are the curvilinear coordinates.

Here ξ, η and ζ are assumed to vary from -1 and +1.

The displacement field u = [ u v w ]T in the brick element can be approximated by

u =
n

∑
k=1

Nkuk (2)

where uk = [ uk vk wk ]
T
represents the displacement vector of node k.
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Figure 1 Geometrical description of the eight-node brick element.
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2.2 Strain-displacement relationships

The components of the strain tensor εu in the natural set of coordinates (ξ, η, ζ) can be given

as

εu = [ εuξξ εuηη εuζζ εuξη εuξζ εuηζ ]
T

(3)

or

εu = Buu ; u = [ u1 . . . uk ]
T

k = 1, . . . n (4)

where Bu is the conventional strain-displacement matrix and u is the nodal displacement

vector.

The natural strain components defined in Equation (3) can be determined [12] by using

the displacement vector u and the covariant base vectors gi as

εuξiξj =
1

2
( ∂u
∂ξi

gj+
∂u

∂ξj
gi) i, j = 1,2,3; ξ1 = ξ; ξ2 = η; ξ3 = ζ (5)

gi=
∂x

∂ξi
(6)

where x is the position vector.

In the pure displacement-based finite element formulation, employing the full quadrature

rules leads to some locking effects. To resolve these locking problems without reducing the

quadrature rules, the displacement-based strain field can be enhanced as follows;

ε = εu + εα (7)

where ε is the improved strain field and εα is the additive enhanced strain field. The additive

enhanced strain field can be rewritten as

εα = Bαα ; ; α = [ α1 . . . αk ]
T

k = 1, . . .30 (8)

where Bα and is the EAS-based strain-displacement matrix, α is vector of EAS variables. This

matrix is given by [10].

Bα =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ 0 0
0 η 0
0 0 ζ
0 0 0
0 0 0
0 0 0

RRRRRRRRRRRRRRRRRRRRRR

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
ξ η 0 0 0 0
0 0 ξ ζ 0 0
0 0 0 0 η ζ

RRRRRRRRRRRRRRRRRRRRRR

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
ξζ ηζ 0 0 0 0
0 0 ξη ηζ 0 0
0 0 0 0 ξη ξζ

RRRRRRRRRRRRRRRRRRRRRR

ξη ξζ 0 0 0 0
0 0 ξη ηζ 0 0
0 0 0 0 ξζ ηζ
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

RRRRRRRRRRRRRRRRRRRRRR

0 0 0
0 0 0
0 0 0
ξη 0 0
0 ξζ 0
0 0 ηζ

RRRRRRRRRRRRRRRRRRRRRR

ξηζ 0 0 0 0 0
0 ξηζ 0 0 0 0
0 0 ξηζ 0 0 0
0 0 0 ξηζ 0 0
0 0 0 0 ξηζ 0
0 0 0 0 0 ξηζ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

The previously described strain field was related to the natural set of coordinates. There-

fore, these strains can be transformed onto the local coordinate system by a transformation

matrix T0 such as
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T0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J0J0 J0J0 J0J0 J0J0 J0J0 J0J0
J0J0 J0J0 J0J0 J0J0 J0J0 J0J0
J0J0 J0J0 J0J0 J0J0 J0J0 J0J0
2J0J0 2J0J0 2J0J0 J0J0 + J0J0 J0J0 + J0J0 J0J0 + J0J0
2J0J0 2J0J0 2J0J0 J0J0 + J0J0 J0J0 + J0J0 J0J0 + J0J0
2J0J0 2J0J0 2J0J0 J0J0 + J0J0 J0J0 + J0J0 J0J0 + J0J0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

(10)

in which J0 is the conventional Jacobian matrix which is evaluated at the element center

J0 =

⎡⎢⎢⎢⎢⎢⎢⎣

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

⎤⎥⎥⎥⎥⎥⎥⎦

(11)

The natural coordinate and the local coordinate system can be related by the second-order

transformation tensor. Thus, the strain components in the local frame ε

εu = [ εuxx εuyy εuzz εuxy εuxz εuyz ]
T

(12)

εu=T0ε
u = Bu

u (13)

εα = detJ0

detJ
T0ε

α= Bα
α (14)

where J is the Jacobian matrix.

2.3 Co-rotational formulation

The initial local system coordinates Xk
l of node k can be given as

Xk
l =Xk −X1 (15)

It is considered that the initial coordinates in the local and global systems are the same.

In order to obtain the local axes within the nonlinear process, it is necessary to determine the

rotation matrix R. The incremental global deformation gradient F computed at the center of

the element can be written as

F=RU (16)

where U is right stretch tensor. The rotation matrix can be evaluated from the well known

polar decomposition theorem, mostly with the determination of the eigenvalues of the right

Cauchy-Green tensor [14].

Thus, the rotation matrix R is

R= [ e1 e2 e3 ] (17)
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where e1, e2 and e3 are the local rotated unit vectors. The relationship between the local and

global current position vectors of node k is explicitly given by

xk
l =Xk

l + uk
l =
⎛
⎜
⎝

Xl

Yl
Zl

⎞
⎟
⎠

k

+
⎛
⎜
⎝

ul
vl
wl

⎞
⎟
⎠

k

=RT (xk
g − x1

g) =RTxk1
g (18)

where xk
l and xk

g are the current coordinates for the local and global position vectors for the

node k, respectively.

The variation of Eq. (18) gives the relationship between the variation of the local displace-

ments and the variation of the global displacements,

δuk
l =RT δuk

g + δR
Txk1

g (19)

We can rewrite Eq. (19) using a skew-symmetric matrix S

δuk
l =RT δuk

g +RTS (xk1
g ) δθ (20)

S (xk1
g ) =

⎡⎢⎢⎢⎢⎢⎣

0 −zk1
g yk1

g

zk1
g 0 −xk1

g

−yk1
g xk1

g 0

⎤⎥⎥⎥⎥⎥⎦
(21)

we can rewrite Eq. (20) at the element level as

δul = [diag RT ] δug + col (RTS (xk1
g )) δθ (22)

where δθ is a pseudo-vector. To find an expression for the pseudo-vector δθ, we can write a

spin vector Ω using local quantities

Ω =

⎡⎢⎢⎢⎢⎢⎢⎣

∂ul

∂Y l
− ∂vl

∂Xl
∂ul

∂Zl
− ∂wl

∂Xl
∂vl

∂Zl
− ∂wl

∂Y l

⎤⎥⎥⎥⎥⎥⎥⎦

=AT
l ul = 0 (23)

where Al is the 24x3 matrix. Differentiating of this spin vector we can get

δΩ =AT
l δul =AT

l [diag RT ] δug +AT
l col (RTS (xk1g )) δθ = 0 (24)

and

δθ = −[AT
l col (RTS (xk1

g ))]
−1
AT

l [diag RT ] δug =VT δug (25)

Consequently using Eq. (22) an Eq. (25)

δul = [[diag RT ] + col (RTS (xk1
g ))VT ] δug = Tδug (26)

where T is transformation matrix.
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2.4 Tangent stiffness matrix

The local internal force vector Fi,l for the 8-node brick element can be determined via

Fi,l = ∫ B
u

l σldV 0 (27)

where Bl is the strain-displacement matrix, σl is the local stresses. The relationship between

the global and local internal force vectors can be given as

Fi,g = TTFi,l = TTKlul (28)

where Kl is the linear local stiffness matrix. The global tangent stiffness matrix KT can be

determined via differentiation of Eq. (28) such as

δFi,g = TT δFi,l+δTTFi,l = (TTKlT +Kσ1
) δug =KT δug (29)

where Kσ1
is the initial stress matrix. This matrix can be determined using the variation of

the transformation matrix T

δTTFi,l = δ [[diag RT ] + col (RTS (xk1
g ))VT ]Fi,l =Kσ1

δug (30)

If we define a local internal force vector F̃k
i,l for a node k such as,

F̃k
i,l =RFk

i,l (31)

and then the initial stress matrix Kσ1
can take the form of

Kσ1
= −col (S (F̃k

i,l))VT +Vrow (S (F̃k
i,l)) +Vrow (S (xk1

g )) col (S (F̃k
i,l))VT (32)

however, last term in Eq.(32) produces non-symmetric matrix, we can write the non-symmetric

part as

Non − sym = 1

2

n

∑
k=1
(xk1

g F̃kT
i,l − F̃k

i,lx
k1T

g
) (33)

Then, the initial stress matrix Kσ1
is given by

Kσ1
= −col (S (F̃k

i,l))VT +Vrow (S (F̃k
i,l)) +Vsym(

n

∑
k=1

S (xk1
g )S (F̃k

i,l))VT (34)

As a result, we can be write the stiffness matrices used in the incremental-iterative proce-

dure in the matrix form as

Kuu = ∫ B
u

l

T
DB

u

l dV 0 (35)

Kuα = ∫ B
u

l

T
DB

α

l dV 0 (36)
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Kαα = ∫ B
α

l

T
DB

α

l dV 0 (37)

where D is the symmetric 6x6 material matrix.

And, the variable α can be eliminated at the element level via

δα = (Kαα)−1 (KuαT
δug −Fα

i,l) (38)

Fi,l = Fi,l −Kuα(Kαα)−1F
α

i,l (39)

Kl =Kuu −Kuα(Kαα)−1KuαT
(40)

KT = TTKlT+Kσ1
(41)

where KT is the tangent stiffness matrix. And, we can determine the out of balance force P

used in the nonlinear procedure as

P = Fe −TTFi,l (42)

where Fe is the external force.

2.5 The solution method

In order to compute the nodal displacements, the load controlled Newton-Raphson method

and the spherical arc-length algorithm with the predictor criterion of Refs. [6, 7] are used.

The convergence criteria is chosen as

∥δug∥ < 10−5 ∥∆ug∥ (43)

where δ and ∆ parameters indicate iterative and incremental quantities, respectively.

3 NUMERICAL EXAMPLES

The element stiffness matrix is computed numerically using a 2×2×2 Gauss integration scheme.

Most of the results presented here are compared with solutions of Sze. et al. [8] who chosen

S4R element in their analysis.

3.1 A cantilever subjected to end shear force

A cantilever is subjected to an end shear force F , shown in Figure 2. The problem is examined

using 20x1x1 enhanced brick elements. Figure 3 plots the end shear force against the vertical

and horizontal tip displacements of both present and 16x1 S4R element results. The difference

between two analyses is almost indistinguishable.
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Figure 2 Cantilever subjected to end shear force.

 

 

 

 

 

 

 

 

  

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

-uA -wA

Horizontal and vertical displacements at point A

T
ot

al
 lo

ad

 

 

present

S4R

Figure 3 Load-displacement curves for cantilever subjected to end shear force.

3.2 A 45○ circular cantilever with large displacements and large rotations

A 45○ bend cantilever is provided with a concentrated end load in Z-direction. The bend has

a radius of 100 and a square cross-section of 1x1, as illustrated in Figure 4. The cantilever is

meshed using 20x2x2 enhanced brick elements. Four load increments are employed to calculate

the tip displacements under the given load level. Figure 5 presents the tip displacements for

different load steps.
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Figure 4 A cantilever 45○ bend with a concentrated tip load.
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Figure 5 Load-displacement curves for the bend cantilever.

3.3 Slit annular plate under line force

A circular annular plate with inner radius Ri and outer radius Ro is shown in Figure 6. It has

a radial rip and is modeled by 8x48x1enhanced brick elements. A line force is applied at its

free edge while the other edge is fully clamped. The maximum line force is 0.8 units of force

per unit length. Vertical displacements obtained for points A and B are plotted versus the

load on the Figure 7. As it can be seen, the results presented herein converge properly to the

10x80 S4R element results.
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Figure 6 The slit annular plate loaded with the line force.
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Figure 7 Load-displacement curves for the slit annular plate.

3.4 Hinged semi-cylindrical roof

This is a commonly used test case for large-displacement analysis of shallow shell subjected

to a central pinching force, see Figure 8. The straight edges are hinged and immovable while

the curved edges are free. The structure is modeled with 10x10x2 enhanced brick elements

on one quarter of its surface and along with two elements over the thickness direction. We

investigate the buckling behavior of the cylindrical shell for two different thicknesses. The

vertical displacements of points A are reproduced in Figure 9 and 10, plotted against the

load level and compared to the S4R element solutions. A very good agreement between the

solutions along the entire unstable load-displacement path is noticeable.
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Figure 8 Hinged semi-cylindrical roof subjected to a central point load.
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Figure 9 Load-displacement curves for the
hinged semi-cylindrical roof for
h = 12.7.
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Figure 10 Load-displacement curves for the
hinged semi-cylindrical roof for
h = 6.35.

3.5 Pull-out of an open cylinder

A cylinder is pinched by two radially pulling forces F as shown in Figure 11. Both ends of the

cylinder are free. One quarter of the cylinder is discretized and the corresponding symmetry

is taken into account. The structure is modeled with 24x36x1 enhanced brick elements. The

results are shown in Figure 12 which presents radial displacement of points A, B and C with

respect to the magnitude of the applied forces. There is a slight snap-through behavior of the

solution when load equals to approximately 20680.
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Figure 11 Pull-out of an open cylinder.
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Figure 12 Load-displacement curves for the open cylinder.

4 CONCLUSIONS

A locking free formulation of 8-node brick element based on the co-rotational description of

motion was demonstrated. The EAS method was used to circumvent the locking phenomenon

of the element. The polar decomposition theorem was employed to obtain the rotation matrix

and the transformation matrix which defines the relationship between the variation of the local

displacements and the variation of the global displacements was also formed. Thus, geometric

nonlinearities were taken into account via rotation of the local system. Analyzed benchmark

problems showed that the proposed method is reliable and effective. Moreover, it is easy to

perform.
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