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Abstract 
A new elastio–plastic stress solution in axisymmetric problems 
(rotating disk, cylindrical and spherical vessel) is presented. The 
rotating disk (cylindrical and spherical vessel) was made of a 
ceramic/metal functionally graded material, i.e. a particle–
reinforced composite. It was assumed that the material’s plastic 
deformation follows an isotropic strain-hardening rule based on 
the von-Mises yield criterion. The mechanical properties of the 
graded material were modeled by the modified rule of mixtures. 
By assuming small strains, Hencky’s stress–strain relation was 
used to obtain the governing differential equations for the plastic 
region. A numerical method for solving those differential equations 
was then proposed that enabled the prediction of stress state with-
in the structure. Selected finite element results were also presented 
to establish supporting evidence for the validation of the proposed 
approach. 
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1 INTRODUCTION 

The intensity of stress concentrations and stress effects due to the large mismatch in material prop-
erties can be substantially reduced if the microstructure transition behaviour is graded. Advances in 
material synthesis technologies have spurred the development of functionally graded materials 
(FGM) with promising applications in aerospace, transportation, energy, cutting tools, electronics, 
and biomedical engineering (Chakraborty et al., 2003). An FGM comprises a multi-phase material 
with volume fractions of the constituents varying gradually in a predetermined profile, thus yielding 
a non-uniform microstructure in the material with continuously graded properties (Jin et al., 2003). 

Elastic and elastic-plastic analyses of thick-walled pressure vessels have always attracted a lot of 
research interest because of their importance in engineering applications. One of the first studies in 
analytical elastic solutions for functionally graded cylindrical vessels was presented by Horgan and 
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Chan (1999). Figueiredo et al. (2008) proposed a numerical methodology in order to predict the 
elastic-plastic stress behaviour of functionally graded cylindrical vessels subjected to internal pres-
sure. It was assumed that the structures undergo small strain and that the material properties of 
the graded layer are modeled by the modified rule of mixtures approximation. Furthermore, the 
plastic domain for ductile phases was defined through the von-Mises yield criterion. They proposed 
an iterative method for solving the nonlinear system, combining a finite element approximation and 
an incremental-iterative scheme. Haghpanah et al. (2009, 2010) extended the Variable Material 
Property (VMP) method developed by Jahed and Dubey (1997) for materials with varying elastic 
and plastic properties. In the VMP method, the linear elastic solution of a boundary value problem 
is used as a basis to generate the inelastic solution. Through iterative analysis, the VMP method 
was used to obtain the distribution of material parameters which were considered as field variables. 
The application of the VMP method, generally applied to homogeneous elastic-plastic materials 
(Jahed et al., 2001, 2005, 2006), was extended to materials with varying elastic-plastic properties in 
order to calculate the residual stresses in an autofrettaged FGM cylindrical vessel. 

Although there are several papers in the elastic analysis of FGM spherical pressure vessels in 
the literature (You et al., 2005; Dai et al., 2006; Chen and Lin, 2008), elastic-plastic stress analysis 
of FGM spherical pressure vessel is not such a customary study. Sadeghian and Ekhteraei (2011) 
studied the thermal stress analysis for an FGM spherical pressure vessel made of elastic–perfectly 
plastic and power law material model. 

Similar FGM cylindrical and spherical vessels, much of the studies on FGM rotating disk has 
been carried out numerically (Durodola and Attia, 2000; Bayat et al., 2008). Haghpanah et al. 
(2012) applied VMP method to solve for estimating the elasto-plastic stresses in a rotating disk 
with varying elastic and plastic properties in the radial direction. 

In this paper a new analytical method is proposed for predicting stress components of a strain-
hardening cylinder based on the von-Mises yield criterion under plane-stress conditions by assuming 
an isotropic material model. Results obtained from finite element analysis using the commercial 
software, ABAQUS (v 6.10), were used to validate the proposed analytical method. The method 
was further extended to obtain solutions for FGM spherical vessels and rotating disks. 

Elastic-plastic governing equations of functionally graded cylindrical and spherical pressure ves-
sels and rotating disks are presented in the next section. Section 3 describes the material properties 
of the graded layer modelled by the modified rule of mixtures approximation. Solution procedures 
and results of the elastic-plastic analyses are presented in section 4. Finally in section 5 key conclu-
sions are pointed out. 
 
2 GOVERNING EQUATION FOR CASE STUDIES 

2.1 Cylindrical Pressure Vessel 

Consider the axisymmetric problem of a cylinder subjected to uniform pressure on the inner surface. 
The problem can be studied in polar coordinates ( r , ). Due to axisymmetric deformations, the 
only displacement component is )(ruu rr  , i.e. the radial displacement. The equilibrium equations 

with zero body force reduce to the following single equation: 
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0



rdr

d rr   (1)
 

where r and  are the radial and hoop stresses respectively. 

Considering the geometric relations: 
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r
u r

r
r    (2) 

 

where  and r are the hoop and radial strains in terms of the radial displacement, ru must satisfy 

the compatibility equation: 
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d
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Considering the quasi-static plasticity and small deformations hypothesis, the total strains may 
be split into elastic and plastic components as follows:  
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where )(rE and  are the Young modulus and the Poisson’s ratio respectively. It is assumed that   

is a material constant while )(rE varies with the position across the wall thickness of the cylindrical 

vessel. 
The governing equation for the functionally graded cylindrical vessel is obtained by substituting 

Eq. (4) into Eq. (3). This equation shows the relationship between stress and plastic strain (Eq. 
(5)). 
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Stress and plastic strain in the cylindrical vessel may be obtained by solving the differential 
equations (1) and (5) simultaneously. However solving this system of differential equation is not 

possible because the number of variables ( r ,  , p
r , p

 ) is more than the number of equations. 

Substituting plastic strains in terms of stresses, this system of differential equations can be solved. 
For a von Mises material with associated flow rule, plastic strain increment is defined as (Dunne, 
2006): 
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where p
ed is the equivalent plastic strain increment. e , the equivalent stress and S , the devia-

toric stress for plane stress are defined as: 
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  rre  22 (7)
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Assuming small strains, the plastic stress–strain relation proposed by Hencky may be written as 
Eq. (9), better known as ‘total strain theory’ (Chakrabarty, 2011). Mendelson (1968) explained that 
the total strain theory is applicable to cylindrical problems (disks), and provides the results that 
match well with the actual material response. 
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For a linear strain hardening material (Fig. 1), the equivalent stress e is determined by: 
 

p
epye rhr  )()(0   (10)

 

and the equivalent plastic strain is obtained from: 
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where )(rhp  is plasticity modulus (i.e. the gradient of the stress–plastic strain curve) and )(0 ry is 

the initial yield stress of the FGM material. Both )(rhp and )(0 ry  are functions dependent on the 

radial position, r . 
 

 

Figure 1: Stress–strain curve for linear strain hardening. 
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The plastic strain components can be determined by substituting Eqs. (7),(8), and (11) into Eq. 
(9): 
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Furthermore, differentiating the hoop plastic strain with respect to the radius, r , gives: 
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Finally, the system of differential equations (14) is obtained by substituting Eqs. (12) and (13) 
into Eq. (5): 
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By applying the appropriate boundary conditions, the distributions of radial and tangential 
stresses in the plastic region may be obtained from the above equations. The distribution of stress 
components in the elastic zone may also be obtained from Eqs. (15). 
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2.2 Spherical Pressure Vessel 

In order to obtain stress distributions for a spherical thick-walled functionally graded pressure ves-
sel, the equilibrium equations with zero body force reduce to the following single equation in the 
spherical coordinate system ( r , , )): 
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where   and   are the circumferential stresses and r is the radial stress component Considering 

the geometric relations: 
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where  and  are the circumferential strains and r is the radial strain in terms of the radial dis-

placement, ru . The compatibility equation must be satisfied: 
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Following similar procedures to those explained in the previous section, i.e. considering the qua-
si-static plasticity and small deformations hypothesis, the total strains may be split into its elastic 
and plastic components as follows: 
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By substituting Eq. (19) into Eq. (18), the governing equation for the functionally graded 
spherical vessel is obtained (Eq. (20)). 
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e , the equivalent stress and S , the deviatoric stress for spherical vessel are defined as 
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The plastic strain components can be determined by substituting Eqs. (21), (22), and (11) into 
Eq. (9): 
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Furthermore, differentiating the hoop plastic strain with respect to radius, r , gives: 
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Finally, the system of differential equations (25) is obtained by substituting Eqs. (23), and (24) 
into Eq. (20): 
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The distributions of radial and circumferential stresses in the plastic region are obtained by ap-
plying the appropriate boundary conditions. Also the distribution of stress in the elastic zone may 
be obtained from Eq. (26). 
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2.3 Rotating Disk 

The equilibrium equation for a thin rotating disk as an axi-symmetric problem is: 
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where  , r , and )(r are the tangential and radial stress components, the angular velocity of the 

disc and its mass density respectively. 
Due to axisymmetric deformations, the only displacement component is the radial displace-

ment, )(ruu rr  and the strain field is given by: 
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where   and r  are the strains in tangential and radial directions. As before the radial displace-

ment, ru must satisfy the compatibility equation: 
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Also the total strain may be split into its elastic and plastic components as follows: 
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Substituting Eq. (30) into Eq. (29), the governing equation for the functionally graded rotating 
disk is obtained. 
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The equivalent stress, e , and the deviatoric stress, S , for plane stress case in a rotating disk 

are the same equations as for the cylindrical vessel can be used. Therefore, the governing system of 
differential equations for the rotating disk can be obtained by substituting Eqs. (11), (12) and (13) 
into Eq. (31): 
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One can also obtain the stress distribution in the elastic zone from Eq. (33). 
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3 MECHANICAL BEHAVIOUR OF THE FUNCTIONALLY GRADED MATERIAL 

It was assumed that the functionally graded metal-ceramic composite was locally isotropic and fol-
lowed the von-Mises yield criterion. Three important material properties for elastic-plastic analysis 
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are the elastic modulus )(rE , the initial yield stress )(0 ry and the tangent modulus )(rH . These 

properties can be calculated using the modified rule of mixtures for composites (Suresh, 1998). 
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where the subscripts ‘c’ and ‘m’ indicate ceramic and metal material respectively. The volume frac-
tion of ceramic particles is denoted by cf , and q  is the ratio of stress to strain transfer as follows, 

where c , c and m , m are the average stress and strain in ceramic and metal respectively (Figure 

2). 
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 (35)

 

The empirical parameter q depends on many factors including material composition, microstruc-

tural arrangements, and the internal constraints. For example q if the constituent elements 

deform identically in the loading direction, while 0q  if the constituent elements experience the 

same stress level. In present analysis the ceramic particle reinforcement was assumed to have a vol-
ume fraction that varies from 0  at the inner radius, ir , to 0cf  at the outer radius, or  according to 

the following relationship: 
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where n  is the reinforcement distribution exponent ( 0n  denotes uniformly-reinforced metal-
ceramic) 

The material properties for each constituent phase are listed in Table 1. The parameter q  may 

be approximated by calibration of experimental data from tensile tests performed on monolithic 
composite specimens. For example a value of Gpaq 5.4  was used for a TiB/Ti FGM (Carpenter, 

1999) whereas the Poisson ratio was taken constant and equal to 0.3. 
 

Materials  E (GPa) σy0 (MPa) H (GPa) 

Ti 107 450 10 

TiB 373   

Table 1: Material properties (Jin, 2003). 
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Figure 2: A) Schematic representation of a thick FGM vessel (rotating disk) with internal radius ir   

and external radius or . (B) Schematic representation of modified rule of mixtures used to  

estimate the behaviour of ceramic particle-reinforced metal composite. 

 
4 ANALYSIS OF RESULTS 

By substituting Eqs. (34) – (36) into the system of differential equations (14), (25) and (32), a set of 
complicated equations are obtained that are difficult to solve parametrically. Therefore, numerical 
methods may be used as an alternative. ODE45 solver in MATLAB (2008) was used for this pur-
pose. ODE45 is a function for the numerical solution of ordinary differential equation and employs 
variable step size Runge-Kutta integration methods. ODE45 varies the size of the step of the inde-
pendent variable in order to meet the accuracy specified at any particular point along the solution. 
If ODE45 can take big steps and still meet this accuracy, it will do so and will therefore move 
quickly through regions where the solution does not change greatly. In regions where the solution 
changes more rapidly, ODE45 will take smaller steps. This solver uses a 4th and 5th order pair for 
higher accuracy (Jamshidi, 2001). 

To verify the accuracy of the analytical solution, finite element analyses were also performed us-
ing the commercial finite element code ABAQUS (Karlsson, 2008). The conventional method of 
modelling FGM vessels or rotating disks in the software is to subdivide the thick wall into several 
thin layers with equal thicknesses. This method of modelling leads to a discontinuity in the mechan-
ical properties of FGM materials and is both difficult and time-consuming. Setoodeh et al. (2008) 
proposed a new approach for analysing the FGM material in the elastic zone without the need for 
dividing the thickness of the cylinder into thin strips. They applied a virtual temperature distribu-
tion in the cylinder wall using the facility available within the software to assign continuously vari-
able properties across the wall thickness and then create a one to one relationship between tempera-
ture and mechanical properties. Correlation of the distribution of temperature and mechanical 
properties of FGM material, allowed for the variation of the FGM properties in the cylinder to be 
modelled. Note that conductivity factor and other thermal parameters are zero, and temperature 
does not change in during the analysis time. Indeed, the analysis is mechanical (no thermo mechan-
ical analysis). This method allowed for the analysis of the elastic-plastic FGM cylindrical and spher-
ical vessels as well as the rotating disk. The three-dimensional 8-noded linear coupled temperature 
displacement family of finite elements in ABAQUS was used to model the cylinder. Mesh sensitivity 
analysis was also performed to ensure the results remained insensitive to the element size. 
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In order to evaluate the analytical method, a set of results from the finite element calculation 
and the VMP method (Haghpanah, 2009) obtained for the plane strain conditions were compared 
with results obtained from the analytical method for an FGM cylindrical vessel subjected to an 
autofrettage internal pressure 100 MPa (Fig. 3). The results indicated that the proposed analytical 
method was capable of calculating stress components in a cylindrical vessel with great accuracy (in 
ODE45, the size of the step is variable and Number of solution points is 142 points. In the finite 
element calculation, Number of elements in the thickness of cylinder is 400 elements). The devel-
oped method was also used to study the stress components in a cylindrical FGM vessel with various 
ceramic particle reinforcement distributions. All the results are presented for the plane stress condi-
tion and the material properties listed in Table 1. Fig. 4 illustrates the distribution of von-Mises 
stresses across the thickness in the cylindrical vessel subjected to different levels of internal pressure 
where 2n  and 8.00 cf . The magnitude of von Mises stresses, indicate that with increasing the 

internal pressure, the plastically deformed region extends across the thickness of the cylinder from 
both the inner and the outer surfaces. In cylindrical vessels made of homogeneous material the plas-
tic region grows only from the inner surface. Fig. 5 shows the von-Mises stress distribution in an 
FGM vessel subjected to an internal pressure of 300 MPa with 10 cf  and different reinforcement 

distribution exponents, n . By increasing n , the plastic region gradually spreads from the inner sur-
face of the cylinder. 
 
 

 

Figure 3: Comparison with VMP method (Haghpanah, 2009) and the finite element method.  

The results show the residual stresses in an autofrettaged vessel. In this calculation, 

GPaEm 56 , GPaEc 20 , MPamy 1060  , GPaH m 12 . 
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Figure 4: von-Mises stress along the thickness in an FGM cylindrical vessel subjected  

to different internal pressure with 1t/ri   and plane-stress condition. 

 

 

Figure 5: von-Mises stress along the thickness in an FGM cylindrical vessel subjected  

to internal pressure MPa300  with 1t/ri   and plane-stress condition. 

 
For the spherical vessel subjected to an internal pressure of 500 MPa results obtained from the 

analytical method were compared with the finite element analysis results. Excellent agreement was 
observed as shown in Fig. 6 The distribution of von Mises stresses across the thickness of the spher-
ical vessel subjected to different levels of internal pressure is shown in Fig. 7 Similar to the case of 
the cylindrical vessel, with increasing internal pressure, the plastically deformed region extends 
across the thickness of the spherical vessel from both the inner and the outer surfaces. 
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Figure 6: Comparison with the finite element method. The results show the stress  

components in a spherical vessel with 1t/ri  . 

 

 

Figure 7: von-Mises stress along the thickness in an FGM spherical vessel subjected  

to different internal pressure with 1t/ri  . 

 
Similar to the case of the cylindrical and spherical vessels, Fig. 8 presents the excellent agreement of 
the analytical and finite element predictions of elastic-plastic stresses for a rotating disc. The distri-
bution of von-Mises stresses across the thickness in a disk rotating at different angular velocities 
where 2n  and 10 cf  is presented in Fig. 9 Results clearly indicate that the growth of the plastic 

zone across the thickness is initiated from both sides of the disc. 
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Figure 8: Comparison with the finite element method. The results show the stress components in a rotating disk. 

 

 

Figure 9: von-Mises stress along the thickness in an FGM rotating disk at different angular velocity with 1t/ri  . 

 
5 CONCLUSIONS 

Using a new analytical method, the elastic-plastic stress distributions in a cylindrical and spherical 
pressurized vessels and rotating disks made of an FGM material were determined. Solutions previ-
ously presented for this problem were based on numerical methods such as finite element analysis 
(Figueiredo et al., 2008; Durodola, 2000) and the Variable Material Property (VPM) method 
(Haghpanah et al., 2009, 2010, 2012) whereas the technique used in this paper is based on the ap-
plication of basic plasticity equations only. Despite some the limitations in the application of this 
method, the proposed analytical approach provided very efficient, yet accurate results for the de-
termination of the elastic-plastic stress strain distribution in the cylindrical pressure vessels (similar-
ly spherical vessels and rotating disks) of FGM materials. Also in this method, modelling and anal-
ysis time costs are greatly reduced compared to FEM because geometric modelling, meshing and 
assembling steps are eliminated. Other strength of this method includes the ability to modelling the 
isotropic strain-hardening rule based on the von-Mises yield criterion. 
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Finite element analysis of the problem using ABAQUS commercial code was used for verifica-
tion of the proposed analytical solution technique. An alternative modelling approach was devel-
oped and used for this purpose. The numerical analysis within the software was performed by the 
application of a “virtual thermal load” that enabled the continuous variation of material behaviour 
through the wall thickness of the FGM cylinder in the finite element model. An accurate solution 
was therefore obtained from the FE analysis. This was achieved without the need to consider a 
multi-layered cylinder with a stepwise solution as used in most previous solutions in the existing 
literature (Haghpanah et al., 2009, 2010, 2012; Figueiredo et al., 2008 ). 

The analysis results obtained in this work also indicate the possibility of formation and growth 
of the plastic region within the wall thickness from the external surface of the FGM vessels or rotat-
ing disks whereas in a cylindrical (spherical) vessels and rotating disks made of homogeneous mate-
rials, plasticity starts essentially from the inner surface. 
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