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Abstract 
In this manuscript, we solve an asymmetric 2D problem for a long 
cylinder. The surface is assumed to be traction free and subjected to 
an asymmetric temperature distribution.  A direct approach is used 
to solve the problem in the Laplace transformed domain. A numerical 
method is used to invert the Laplace transforms. Graphically results 
are given and discussed. 
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NOMENCLATURE 

t time 
T   absolute temperature 
ij Stress tensor components 
  density 
,    Lamé's constants 
 = (3+2) t 
αt  coefficient of linear thermal expansion  
k thermal conductivity 

0T   reference temperature assumed to be such that 0 0( ) / 1T T T   

, 0   constants such that 0 > 0, 0 ≤  ≤ 1 

cE  specific heat per unit mass in the absence of deformation  
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1 INTRODUCTION 

In 1967 Lord and Shulman (Lord & Shulman, 1967) were the first to generalize Biot’s theory of 
coupled thermoelasticity. This theory ensures finite speeds of propagation for waves. Sharma and 
Pathania studied wave propagation (Sharma & Pathania, 2006), Sherief and Anwer solved a two 
dimensional problem for an infinitly long cylinder (Sherief & Anwar, 1994) , Sherief and Ezzat 
obtained the fundemental solution in the form of series of functions (Sherief & Ezzat, 1994) and 
Sherief and Saleh solved a generilized thermoelastic problem for an infinite body with a spherical 
cavity using complex countor integration (Sherief & Saleh, 1998).  

An ingoing process is the use of fractional calculus to create a replacement for many physical 
models (Hilfer et al., 2000; Machado, Galhano, & Trujillo, 2013). Sherief et al used fractional deriva-
tive to generalized Hodgkin and Huxley model (Sherief, El-Sayed, Behiry, & Raslan, 2012). Povstenko  
used fractional derivatives to derive new models for the conduction of heat (Povstenko, 2009).  

The fractional theory of thermoelasticity was introduced in 2010 (H. H. Sherief, El-Sayed, & Abd 
El-Latief, 2010). The main reason behind the introduction of this theory is that it predicts retarded 
response to physical effects, as is found in nature, as opposed to instantaneous response predicted by 
the generalized theory of thermoelasticity.  This retarded response stems from the fact that fractional 
derivatives are in fact integrals over time. Physically this results from the weak van der Walles forces. 

In the following, some applications of the fractional order theory of thermoelasticity are intro-
duced. Raslan has solved a problem for a cylindrical cavity (Raslan, 2014). El-Karamany and Ezzat 
applied fractional order theory to perfect conducting thermoelastic medium (El-Karamany & Ezzat, 
2011; Ezzat & El-Karamany, 2011), Sherief and Abd El-Latief studied the effect of variable thermal 
conductivity on a half-space under the fractional order theory of thermoelasticity (Sherief & Abd El-
Latief, 2013) , also they applied the theory to a 1D problem for a half‐space (Sherief & Abd El‐
Latief, 2014) , Tiwari and Mukhopadhyay introduced Boundary Integral Equations Formulation for 
Fractional Order Thermoelasticity ( Tiwari & Mukhopadhyay, 2014). 
 
2 FORMULATION OF THE PROBLEM 

In this manuscript, we consider a homogeneous isotropic cylinder of radius “a  ” and infinite length. 
We shall use the cylindrical coordinates (r,,z). The initial conditions are taken to be homogeneous. 
The surface of the cylinder is assumed to be traction free and subjected to an asymmetric temperature 
distribution. 

The physics of the medium under discussion ensures that all quantities are independent of z.  all 
functions depend on r and  . The displacement vector has the non-zero components u and v in r and 

 directions, respectively. The governing equations are  
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Applying the divergence operator to both sides of equation (1), we obtain 
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where e  is the cubical dilatation given by 
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The constitutive equations can be written as  
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We shall use the following non-dimensional quantities  
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These non-dimensional variables were first introduced by Sherief  (1980) in his PhD thesis. They 
were obtained by trial and error. They are useful because the solution obtained using these variables 
does not depend on the units used. 

Using the above non-dimensional quantities, (dropping the asterisk for convenience), the govern-
ing equations take the form 
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where 
22  



 . Equation (6) gives the following two equations  
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where 2 / ( 2 )0T k      .  

We note that in the above transformed equations, all the variables and constants ( , , 0   ) are 

non dimensional. 
The fractional derivative used in equation (10) is the Caputo derivative. The boundary conditions 

can be expressed as: 
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The boundary conditions on the stress components means that the component of the stress in the 
normal direction (r  direction) are zero. This follow from the fact that there are no surface forces 
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affecting the boundary so the normal component of stress that act to neutralize these forces are also 
zero. The stress component   is the resultant of internal forces and not necessarily zero. 

 
3 SOLUTION IN THE TRANSFORM DOMAIN 

Applying the Laplace transform with parameter s (denoted by an over bar) to both sides of equations 
(7), (9-11), we get the following equations 
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Equations (12) transform to: 
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where 2 2
1 2andk k  are the complex roots which have positive real parts of the following characteristic 

equation 
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The solution of equation (19) can be written in the form 
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The solution of equation (19), bounded at the origin, may be written as 
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where inA are some parameters depends on s only and ( )n iI k r  is the modified Bessel function of 

first kind of order n. In a similar manner, the solution for e  compatible with equation (14) can be 
written as 
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The Laplace transforms of equations (4) and (7) can be combined to give  
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Substituting from (23) and (24) into (25), we obtain 
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We have used the following relations of the modified Bessel functions (Bell, 1986) 
 



1602     H.H. Sherief and W.E. Raslan / 2D Problem for a Long Cylinder in the Fractional Theory of Thermoelasticity 

Latin American Journal of Solids and Structures 13 (2016) 1596-1613 

( ) ( ) 11( ) ( ) and ( ) ( )1 1
dI x dI xm mm mI x I x I x I xm m m mdx x dx x

      (27)

 

After some manipulations, the solution of equation (26) takes the form 
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where  nB s  are some parameters depending on s only. We note that we have set B0 = 0 because 
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Substituting from equations (24) and (28) into (3), and integrating with respect to   , we obtain 
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We expand the function  ,f s  in a Fourier cosine series in   as 
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We have chosen to expand the function in a cosine series to facilitate the computations. This 
means that we take the temperature as an even function of  . A full expansion in terms of sine and 

cosine will add nothing to the physical meaning of the problem considered. 
Substituting from equations (23), (24), and (28) into Equation (16a), and applying the boundary 

condition (17a), we get for n = 0 
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while for n = 1,2,3,… 
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Similarly, boundary equation (17b) yields for n = 1,2,3,… 
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Finally the boundary condition (17c) leads to for n = 0 
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and for n = 1,2,3,… 
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Equations (30) and (33) can be solved to obtain 10 20andA A ,  
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Equations (31), (32) and (34), can be written as: 
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 
 

 

 2 2
31 11 ( )na k s I k a   

 2 2
32 22 ( )na k s I k a   

 

Solving the above equations, we obtain 
 

 12 23 13 22
1

n
n

a a a a F
A




  
 13 21 11 23

2
n

n
a a a a F

A



  

 13 21 11 23
n

a a a a
B




  
 

where    23 12 31 11 32 13 21 32 22 31a a a a a a a a a a       

 
4 NUMERICAL RESULTS AND DISCUSSION 

We shall apply our results to a medium composed of the copper material. The parameters of the 
problem are k = 386 W/(m K), t = 1.78 (10)-5 K-1, cE = 381 J/(kg K),   = 8886.73,  = 3.86 (10)10 
kg/(m s2),    = 7.76 (10)10 kg/(m s2),  = 8954 kg/m3, T0 = 293 K, /120  , a = 1 m, 0 = 0.025 

s and  = 0.0168. 
The above values were obtained from ((Thomas, 1980) except for 0  which was assumed. 

We shall consider two cases of the applies heating 

Case 1 
 

  0 0,
0 otherwise

t or
f t

    


   
 
 , 

 

Fn are thus given by 
 

   0
0 0

2 2
and sin 1 1 n

nF F n
n




 
        
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Case 2 

  0, ,
0   otherwise

t
f t

  


 
 
  

 

The Fourier coefficients Fn are thus given by 
 

   2
0 0 00

0 2 2

sin cos2 1
,

2 n
n n

F F
n n n

   
 

 
    

    
 

Two methods were tried to solve the problem. Firstly, the Laplace transform of the terms of the 
series were inverted term by term and then summed up as a series of real numbers. Secondly, the 
series was summed up as a complex-term series and then the inverse Laplace transform was applied. 
It was found that the first method is better. It achieves higher order of convergence. Figure (1) shows 
the solution for different values of N (maximum number of terms taken in the series).  It was found 
that the solution stabilized after N = 9.The programming was done using the Fortran language on 
an I7 core computer. The numerical inversion of the Laplace transform was done using a method 
outlined in (Honig & Hirdes, 1984). 
 

 

Figure 1: Convergente graph for temperatura at  = 0.5 (case 1) for t = 0.1 

 
Figs 2 to 5 represent case 1 while figures 6 to 9 represent case 2. We did the evaluations using 3 

values of , which are:  = 0.5, 0.95 and 1 for t = 0.06.  
The results are shown in Fig. 2, 6 for the temperature distribution, Fig. 3, 7 for the radial dis-

placement distribution, Fig. 4, 8 for the tangential displacement distribution and Fig. 5, 9 For stress 
distribution. 
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Figure 2: Temperature distribution for different  (case 1) for t = 0.06 

 

 

Figure 3: Radial displacement distribution for different  (case 1) for t = 0.06 

 

 

Figure 4: Tangential displacement distribution for different  (case 1) for t = 0.06 
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Figure 5: Radial stress distribution for different  (case 1) for t = 0.06 

 

 

Figure 6: Temperature distribution for different  (case 2) for t = 0.06 

 

 

Figure 7: Radial displacement distribution for different  (case 2) for t = 0.06 

-0.15

-0.10

-0.05
 = 0.5
 = 0.95
 = 1

rr

 = /15 = -14/15
11 0.5 0.5

 r

0.005

0.010

  =  .5
  =  .95
  =  1



  = /1 5  = -1 4/15

11 0.5 0.5
 r

  =  .5
  =  .95
  =  1

    u*(10)-4

  = /15  = -14/15

1 10.50.5

1

3

2

 r



1608     H.H. Sherief and W.E. Raslan / 2D Problem for a Long Cylinder in the Fractional Theory of Thermoelasticity 

Latin American Journal of Solids and Structures 13 (2016) 1596-1613 

 

Figure 8: Tangential displacement for different  (case 2) for t = 0.06 

 

 

Figure 9: Radial stress distribution for different  (case 2) for t = 0.06 

 
Figs 10 to 17 represent the time evolution of the different functions when t = 0.1, 0.2 and 0.3 for 

 = 0.5. Case 1 is shown in figures 10 to 13 while figures 14 to 17 represent case 2. 
 

 
Figure 10: Temperature distribution for different t  (case 1) for  = 0.5 
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Figure 11: Radial displacement distribution for different t  (case 1) for  = 0.5 

 

 

Figure 12: Tangential distribution for different t  (case 1) for  = 0.5 

 

 

Figure 13: Radial stress distribution for different t  (case 1) for  = 0.5 
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Figure 14: Temperature distribution for different t  (case 2) for  = 0.5 

 

 

Figure 15: Radial displacement distribution for different t  (case 2) for  = 0.5 

 

 

Figure 16: Tangential distribution for different t  (case 2) for  = 0.5 
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Figure 17: Radial stress distribution for different t  (case 2) for  = 0.5 

 
Figures 18 and 19 represent temperature versus    for case 1 and 2 respectively at t = 0.1 and r 

= 0.4.   
All these figures represent the functions as functions of  r  on the diagonal /15   and 

14 / 15   . 

 

 

Figure 18: Temperature vs  for different   (case 1) for t = 0.1, r = 0.4 
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Figure 19: Temperature vs  for different   (case 2) at t = 0.1, r = 0.4 

 
The computations show that: 

1. For α = 0.5, we can see from the graphs that the waves in the medium propagate with infinite 
speeds like the coupled theory of thermoelasticity. The program was run with α = 0 (correspond-
ing to the coupled theory of thermoelaciticity),  the results were almost identical to those when 
α = 0.5. For α = 1, the solution exhibits finite speeds since it is that of the generalized theory. 
The heat Equation associated with the couple theory of thermoelasticity ( = 0) is of parabolic 
type and predicts infinite speed of propagation for heat waves. The solution is nonzero (though 
it may  be very small) at points far removed from the source of heating. The heat equation of 
the generalized theory of thermoelasticity ( = 1) is of hyperbolic type and predicts finite speed 
for heat waves. This means that heat propagates from the source of heating with a finite velocity.  
The solution is identically zero at points farther than the wave front. The location of the wave 
fronts and the value of the velocities for heat and elastic waves were discussed in (Sherief, H., & 
Hamza,1994). 

2. For α   1, the situation is somewhat difficult to determine. The solution seems to travel with 
finite speeds. Of course, this is based on numerical evaluations only. This aspect would be very 
important when proved theoretically. The same conjecture was expressed in (Povstenko, 2011). 
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