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Abstract 
Micro-bridge resonator with dielectric elastomer that is sand-
wiched between two electrodes is studied here with geometric and 
material nonlinearity. Geometric nonlinearity is introduced with 
Von-Karman strain-displacement relationship. For material non-
linearity that is modeled rarely in articles, two hyper-elastic mod-
els are used here. Governing equation of motion for Neo-Hookean 
and Yeoh models are derived through Hamilton’s principle. These 
equations show that Neo-Hookean is not a suitable model for this 
case because of inadequate terms, but the Yeoh one is. Governing 
equation in Yeoh model is solved by analytical Lindstedt-Poincare 
method. Time history of micro-beam is presented in different 
modes and it is shown good agreement with numerical method. It 
is seen that increasing of mode number leads to increasing of fre-
quency. In addition, the influence of different parameters on non-
linear normalized frequency is illustrated. 
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1 INTRODUCTION 

Dielectric elastomers (DEs) are referred to dielectric hyper-elastic materials sandwiched between 
two compliant electrodes. DEs were discovered in the early 1990s ( Perline and Kornbluh, 2011). 
These materials have attracted a great deal of attention recently. Some of their special properties 
are such as high strains, low cost, simplicity of structure, robustness due to the use of stable and 
commercially available polymer materials, high energy output  (Sou, 2010; Mockensturm et al., 
2006; Feng et al., 2014; Carpi et al., 2011; Stoyanov et al., 2009 ), so they can be used in different 
applications such as artificial muscles sensors, actuators, generators, energy harvesting (Perline et 
al, 1998; Perline et al, 2002; Lowe et al, 2005; Feng and Zhang, 2014; Chakravarty, 2014). Because 
of a shortage of experimental data, there are few mathematical modeling. Some of the experimental 
articles were presented by Treloar (1944), Jones and Treloar (1975), Martins et al (2006), Osterlof 
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et al (2015). These experimental data were fitted by theoretical models by some researchers such as 
Ogden (1972), Ogden et al (2004) to extract the constants in each hyper-elastic models. 

DEs and hyper-elastic materials were used in various configurations such as plates, beams, 
membranes, cylindrical tubes that we review some of these articles shortly. 

Verron et al (1999) analyzed dynamic inflation of hyper-elastic spherical membranes of a 
Mooney– Rivlin material. Also they examined the conditions for oscillatory inflation around the 
static fixed point and found that for a given material, the frequency of oscillation exhibits a maxi-
mum at some pressure level, which tends to increase for materials closer to Neo-Hookean behavior. 
Pimenta and Campello (2003) presented a fully nonlinear geometrically exact multi-parameter rod 
model that incorporates general in-plane cross-sectional changes as well as general out-of-plane 
cross-sectional warping. They removed restrictions to a rigid cross-section and to a Saint-Venant –
like elastic warping and additionally the corresponding weak form was obtained in a more expedient 
way, rendering always symmetric for hyper-elastic materials. Mason and Maluleke (2007) presented 
a constitutive equation for a transversely isotropic incompressible hyper-elastic material in a covari-
ant form for arbitrary orientation of the anisotropic director. They derived the equation for a trans-
versely isotropic thin-walled cylindrical tube of generalized Mooney-Rivlin material. For a longitudi-
nal transversely isotropic tube the Ermakov–Pinney equation was obtained which was the same as 
for an isotropic tube. Radial oscillations in a longitudinal transversely isotropic tube were the same 
as in an isotropic tube because the anisotropic director is orthogonal to the plane of oscillation. Soa-
res and Goncalves (2014) presented linear and nonlinear vibration response and stability of pre-
stretched hyper-elastic annular membrane under harmonic lateral pressure and finite initial defor-
mation. The membrane material is assumed to be homogeneous, isotropic, and incompressible 
Mooney-Rivlin material. They obtained Neo-Hookean results as a special case and made a compari-
son of these two models. Gupta and Harursampath (2015) presented asymptotically accurate di-
mensional reduction from three to two dimensions and recovery of 3-D displacement field of non-
prestretched dielectric hyper-elastic membranes using the Variational Asymptotic Method (VAM) 
with moderate strains and very small ratio of the membrane thickness to its shortest wavelength of 
the deformation along the plate reference surface chosen as the small parameters for asymptotic 
expansion. They unified software package VAMNLM and applicability of their theory was demon-
strated through an actuation test case. Pineda et al (2015) used from hyper-elastic polymer for the 
development of soft sensors with large deformation capabilities. They presented the characterization 
of an electro-fluidic strain sensor. The so-called sensor resist large deformation higher than 200% 
cycled 150 times. They investigated several device designs to enhance the electrical response of the 
sensor as a function of its elongation. They discussed the result of cyclic deformation and strain on 
the sensor. In addition, numerical simulation was done based on Mooney-Rivlin model for hyper-
elastic materials. Ritto and Nunes (2015) identified parameters of some constitutive models for pure 
and simple shear of an incompressible isotropic hyper-elastic material under large deformation. The 
constitutive models considered in their analysis are Mooney-Rivlin, Yeoh, Gent, Lopez-Pamies and 
Ogden with one and two terms. They showed that all models and experimental results are in good 
agreement but Mooney-Rivlin, Gent and Yeoh models were not able to well describe the available 
experimental data from simple shear. Rodriguez-Martinez et al (2015) investigated mechanical re-
sponse of hyper-elastic spherical membranes subjected to dynamic inflation. They developed a com-
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prehensive analysis on the role that the constitutive behavior of the material has on the mechanical 
stability of the membrane.  Six different strain energy functions three of the Mooney-Rivlin class 
and three of the Ogden class have been considered.  They showed that essential features of the dy-
namic response of the spherical shell are closely related to the strain-energy function selected to 
describe the constitutive behavior of the membrane. 

In resonator application there is an important advantage of using dielectric elastomer as materi-
al compared to conventional silicon-based one that is tunning actively after fabrication (Feng et al., 
2011; Zhang et al., 2005). In the special case of resonator, also there are few articles that we review 
some of them. 

Zhang et al. (2005) fabricated a polymeric micro-bridge resonator. They showed that Quality 
factors are of the order of 100 in vacuum, decreasing with the measurement pressure for values 
above 1 Torr due to air damping. Li et al (2012) focused on dielectric elastomer resonator whose 
dielectric membrane is subjected to combine loads of tensile forces and voltages. They analyzed 
stability and natural frequency of the resonator with small-amplitude vibration around the equilib-
rium state. In case of periodic voltage, the device resonates at multiple frequencies of excitation.  
Feng et al. (2011) analyzed the dynamic properties of a dielectric elastomer (DE)-based micro-beam 
resonator with ambient pressure effect by using the squeeze-film theory. They approximated analyt-
ical solutions for the quality factor and the resonant frequencies and the results indicated that the 
ambient pressure has significant effects on the Q-factor and the resonant frequency shift ratio. Also 
Feng et al. (2014) developed a non-linear vibration equation of a dielectric elastomer (DE)-based 
micro-beam resonator with the consideration of large amplitude, gas damping and excitation. Their 
analysis exhibits that active tuning of the resonant frequency of the resonator can be achieved 
through changing an applied electrical voltage. Also it was observed that increasing amplitude will 
increase the natural frequency while it will decrease the quality factor of the resonator. 

The resonator that we present here will be modeled based on Euler-Bernoulli beam theory with 
considering geometric and material nonlinearity. Two hyper-elastic models will incorporate material 
nonlinearity. We show here that models such as Neo-Hookean with insufficient material constants 
and low order of strain invariants cannot describe the governing equation properly but the other 
ones such as Yeoh model are so good for dielectric elastomer-based micro-beam resonators. 
 
2 FORMULATION OF THE PROBLEM 

As shown in figure (1), the so-called elastomer-based micro-beam resonator has uniform thickness 
d , length L , width b  and density  . Elastomer is sandwiched between two flexible electrodes and 

voltage is applied to each side. 
Hyper-elastic models are classified into three types of formulation, depending on the approach 

followed by the authors to develop the strain energy function (Marckmann and Verron, 2006): 

 Phenomenological models 
 Fitting material functions using experimental data 
 Physically-based models 
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Figure 1: Schematic of micro-bridge resonator. 

 
We use two hyper-elastic models for deriving the governing equation, Neo-Hookean model from 

the third type with one constant and Yeoh model from the first type with three constants. In both 
cases, the geometric nonlinearity of fixed-fixed micro-beam is modelled with Von- Karman formula 
but material nonlinearity is introduced with related hyper-elastic models. It should be noted that we 
derive the free vibration equations. 
 
2.1 Neo-Hookean Model 

This model that have only one constant is developed from  physical motivation and is based on 
both physics of polymer chains network and statistical methods (Marckmann and Verron, 2006): 
 

1
1 ( 3)
2

 W nkT I  (1)

 

For deriving the governing equation of motion by Hamilton’s principle, we use latter strain en-
ergy function to achieve potential energy. Kinetic energy and potential energy are as follows: 
Kinetic energy: 
 

2

0
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l w
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Potential energy: 
 

Wdv   (3)
 

Substituting Eqs. (2) and (3) in Hamilton’s principle, we have the following final governing 
equation of motion: 
 

2 2

2 2 0  
 

 
w w

nkT
t x

 (4)
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As it is seen, the achieved governing equation using Neo-Hookean hyper-elastic model is the 
same as a string equation. It is because this model does not have adequate terms for modeling the 
beam governing equation in this case, so we will not use this model in vibrational behavior study. 
 
2.2 Yeoh Model 

Yeoh hyper-elastic model that is a phenomenological type has three constants and is dependent on 
the first, second and third order of the first strain invariant. Strain energy function of the Yeoh 
model is as follows: 
 

     2 3
1 1 2 1 3 13 3 3W c I c I c I       (5)

 

in which 1 2 3, ,c c c  are material constants and 1I  is the first strain invariant: 
 

2 2 2
1 1 2 3 (C)I tr      (6) 

 

( 1,2,3)i i   are stretch ratios and square root of the right Cauchy-Green strain tensor	ሺC 	ሻ.	
Using Eq. (2) and substituting Eq. (5) into Eq. (3), then applying Hamilton’s principle we have 

following governing equation of motion: 
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with boundary conditions	 (0) ( ) 0, (0) (L) 0w w
w w L

x x

 
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 
. 

Latter equation is a beam equation that its geometrical nonlinearity is based on Von-Karman 
strain-displacement relationship and material nonlinearity is based on Yeoh hyper-elastic model. 
This equation can be normalized with introducing proper non-dimensional parameters: 
 

4
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So Eq. (7) will be: 
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and the corresponding non-dimensional boundary conditions are: 
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In the next part, we solve this strong nonlinear equation by an analytical method and validate 
it by a numerical method for checking the accuracy of its behavior in different modes. Also, the 
effect of maximum initial amplitude and aspect ratio on nonlinear frequency will be discussed. 
 
3 SOLUTION METHODOLOGY 

Lindstedt-Poincare that is one of the perturbation methods is applied to solve nonlinear equation 
achieved by Yeoh hyper-elastic model. In accordance with this technique, small perturbation pa-

rameter and time transformations are introduced by 
*w


  and * *t  , respectively. Therefore, 

Eq. (9) will be: 
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It should be mentioned that asterisks are removed in this equation for simplicity. Non-
dimensional transverse displacement and frequency can be expanded into series forms as: 
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Substituting Eqs. (12) and (13) into Eq. (11) and arranging them based on different orders of 
small perturbation, one has the final equations as: 
 

2 4 22
1 0 0

4
02

2 2
1

8 2: 0c Al

Ixc x

  


  
  

 
 (14)

 
22 4 22

2 01 2 1 1
12 2 4 2

1

8 2: 2 0c Al

c x I x

   
 

  
   

   
 (15)

 



S.D. Barforooshi and A.K. Mohammadi / Study Neo-Hookean and Yeoh Hyper-Elastic Models in Dielectric Elastomer-Based…     1829 

Latin American Journal of Solids and Structures 13 (2016) 1823-1837 

32 2 22 2
2 0 3 02 1

1 2 12 2 2 2 2
1

2 22 4 24 2
3 3 0 0 0 02 2 2

2 4 4 2
1 1 1

2 3 2
3 0 0 0

2 3 2
1

242 (2 )

24 8 12:

96

c d

c l x

c d c c Ad

c l x x c x c I x x

c d

c l x x x

    
  

   

  

   
         

                              
            

22
2

2
2 0Al

I x

 
     

 (16) 

 
Eqs. (14), (15) and (16) can be reduced to ODE by Galerkin method. First, we express trans-

verse displacements in each equation as the products of two separated functions: 
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in which imX (x) is the trial function of the clamped-clamped micro-beam (Peng et al., 2014) and m 

is the mode number. 
Substituting Eq. (17) into Eqs. (14), (15) and (16) and then applying Galerkin method leads to 

final solutions for these perturbation equations as follows. It should be mentioned that the initial 
conditions are max(0) , (0) 0T A T    that maxA is the maximum normalized amplitude of deflection so 
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Total response of the micro-beam resonator is the sum of all of the above solutions. Therefore, 

after applying the transformation *w   we have: 
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Removing secular terms in solution procedure leads to nonlinear frequency as: 
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4 RESULTS AND DISCUSSION 

In this section fourth order Runge-Kouta numerical method is applied in order to verify the validity 
of Lindstedt-Poincare approach. In Runge-Kouta methods, the order of accuracy is increased by 
using  intermediate points in each step interval and the fourth order one is accurate to the fourth-
order term of the Taylor expansion.  Two versions of the fourth order Runge-Kouta methods are 
most popularly used, one is based on the Simpson’s 1/3 rule and the other version is based on the 
Simpson’s 3/8 rule (Nakamura, 1999) that we used the first one. Deflection of the resonator in ver-
sus of normalized length is presented for different modes and times. Also influence of different pa-
rameters such as initial maximum amplitude and aspect ratio on non-dimesional nonlinear frequen-
cy is studied. Geometric and material (Marckmann and Verron, 2006) properties are presented as: 
 

1

2 3

30 , 0.65 , 10 , 0.24162 ,
0.19977 , 0.00541

l m d m b m c Mpa

c Mpa c MPa

     
  

  

 
Mode shapes for the three first modes in steady state is shown in Figure (2). Non-dimensional 

amplitude of initial condition is 0.3 here. It is seen that the ends of resonator are immovable due to 
related boundary conditions. In addition, figure (3) shows deflection of first mode in different times. 
Four assigned normalized times are selected to show the mode shape in different times. As it is seen 
in this figure, mode shape in the beginning (t=0) reaches maximum amplitude and recede through 
time. 
 

 

Figure 2: Steady state mode shapes of clamped-clamped micro-beam. 
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Figure 3: Displacement versus length for the first mode. 

 
The response time history is depicted for the first mode in figure (4). As it is seen, the analytical 

approach is in very good agreement with numerical one. Figures (5) and (6) show an excellent 
agreement for the third and fifth modes, so it is concluded that third term in series expansion is 
sufficient to achieve a highly accurate solution of the problem. In addition, increasing mode number 
of the motion leads to increasing of frequency. To show the accuracy of analytical and numerical 
method and their closeness we used from Integral Absolute Error (IAE). This technique integrates 
the error (difference between analytical and numerical solutions) over the time and then we express 
it by percent. The difference between two methods in figures (4), (5) and (6) is written in percent in 
table (1). It is seen that the difference between Lindstedt-Poincare and Runge-Kouta method is 
very small in all three modes and validate the excellent agreements in figures. However, the error 
get a little larger with increasing of the mode number but as it is obvious the quantity of the error 
percentage is acceptable yet. 
 
 

Mode number 
Error Percentage using IAE (

* *

0

max

t

numerical analyticalw w dt

A t








 ) 

First mode 0.001% 

Third mode 0.004% 

Fifth mode 0.008% 

Table 1: Difference between analytical and numerical method 
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Figure 4: Response time history for the first mode. 

 
 

 

Figure 5: Response time history for the third mode. 
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Figure 6: Response time history for the fifth mode. 

 
In figure (7) dependency of nonlinear frequency on initial amplitude is depicted. As it is seen, 

increasing of initial amplitude leads to increasing of nonlinear frequency. Rate of the frequency in-
creasing in higher modes is more than the lower modes so that for the third mode is significant in 
comparison with the first mode. Dependency of frequency to mode numbers in figure (7) is in ac-
cordance with figures (4) through (6), because investigating figures (4), (5) and (6) continuously 
shows increasing of frequency in effect of increasing mode numbers. 
 

 

Figure 7: Influence of maximum amplitude on nonlinear frequency for different modes. 

 
In figures (8) and (9) normalized frequency curve is shown for the first and third modes under 

some assigned values of thickness. As it is seen for the first and third mode and all assigned thick-
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nesses, the bigger the maximum amplitude, the larger the normalized frequency. In accordance with 
figures (8) and (9), dependency of normalized frequency on maximum amplitude is more for the 
larger thicknesses in both first and third modes. In addition, comparing these two figures shows that 
increasing of frequency with maximum amplitude for different thicknesses will be significant for the 
higher modes.  
 

 

Figure 8: Nonlinear frequency curve under some assigned thickness for the first mode. 

 
 

 

Figure 9: Nonlinear frequency curve under some assigned thickness for the third mode. 

 
Influence of aspect ratio in the range of 20-180 for Euler-Bernoulli theory on normalized fre-

quency is illustrated in figure (10) for three modes. It is shown that in dielectric elastomer-based 
micro-beam resonator, nonlinear frequency decreases as the beam get thinner. As it is seen in this 
case, the higher the mode number, the more the influence of aspect ratio. 
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Figure 10: Influence of aspect ratio on nonlinear frequency for three modes. 

 
5 CONCLUSIONS 

Dielectric elastomer that is sandwiched between two electrodes is applied here as resonator. Geo-
metric and material nonlinearity are introduced with Von-Karman strain-displacement relationship 
and hyper- elastic models, respectively. Neo-Hookean model refused because of insufficient parame-
ters. Analytical Lindstedt-Poincare method was used to solve the strong nonlinear equation of Yeoh 
model and verified by Runge-Kouta numerical method. We plotted mode shapes of micro-beam for 
steady state and different times. These mode shapes were in accordance with clamped-clamped 
boundary conditions. Time history of micro-beam was presented in different modes and it is shown 
good agreement with numerical method. Integral Absolute Error investigated accuracy of analytical 
validation too. We presented Influence of different parameters such as initial maximum amplitude 
and aspect ratio on nonlinear normalized frequency. It is shown that mode number has a significant 
effect on normalized frequency so that the higher the mode number, the more the influence of as-
pect ratio and initial maximum amplitude. In addition, the normalized frequency increased with 
maximum amplitude and dependency of normalized frequency on maximum amplitude was more for 
the larger thicknesses in all modes. 
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