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1 INTRODUCTION

The basic idea of mixed finite element model is to treat stresses or stress resultants as dependent
unknowns in addition to the generalized displacements. Certain mixed finite element models
of plates were developed more than two decades ago by Putcha and Reddy [3, 4] to overcome
the drawbacks of the displacement based models. The mixed finite element models [3, 4] were
developed in the past by including bending moments as independent variables to reduce the
differentiability of the transverse displacement. The mixed models can provide the same level of
accuracy for the bending moments as that for the displacements, whereas in the displacement
based model the bending moments are calculated at points other than nodes in the post-
processing. Thus, the displacement finite element models cannot provide the same level of
accuracy for force-like variables as the mixed finite element models.

The objective of this study is to investigate the performance of finite element models based
on weighted-residual formulations of the equations governing classical and first-order shear
deformation plate theories. In particular, the study investigates merits and demerits of the
newly developed mixed finite element models. The von Karman nonlinear equations [6, 9, 10]
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2 W. Kim et al / Novel mixed finite element models for nonlinear analysis of plates

are used to develop alternative finite element models to the conventional displacement-based
finite element models [5, 7, §].

In the present study, mixed finite element models are developed to include other variables
(i.e., the membrane forces and shear forces) in addition to the bending moments, and to see
the effect of them on the nonlinear analysis. The effect of including other variables will be
compared with different mixed models to show the advantage of the one type of model over
other models. Two different mixed models based on the classical plate theory and two mixed
models based on the first-order shear deformation plate theory are developed. The performance
of the newly developed finite element models is evaluated by comparing the solutions with those
of the existing displacement finite element models [9, 10].

2 REVIEW OF PLATE THEORIES

Here we derive governing equations of the classical plate theory (CPT) and first-order shear
deformation theory (FSDT) of plates with the von Karman strains. The principle of virtual
displacements is used to derive the equilibrium equations in terms of the stress resultants and
then the stress resultants are expressed in terms of the displacements using elastic constitutive
relations. We only summarize the pertinent equations in this section without presenting the
details of the derivation.

The classical plate theory (CPT) is based on the Kirchhoff hypothesis, which consists
of the following three assumptions: (1) straight lines perpendicular to the mid-surface (i.e.
transverse normals) before deformation, remain straight after deformation; (2) the transverse
normals do not experience elongation (i.e. they are in-extensible); (3) the transverse normals
rotate such that they remain perpendicular to the mid-surface after deformation. On the
other hand, the first-order shear deformation plate theory (FSDT) is based on the assumption
the normals before deformation do not remain normal after deformation. Thus, the major
difference between the kinematics of the CPT and FSDT is that the normality condition of
CPT is relaxed in the FSDT, as illustrated in Fig. 1.

The equations of equilibrium expressed in terms of the stress resultants are the same in
both theories, and they are given by

ONew  ONay
ox dy
GNIy 0Ny,
2w =0,
oy
o ow 8 ow
%(N”a_;+ ’“"ya "o ( “yaO+NyyaO+Qy)+Q(x) 0
M,

)
(B )
o

8];6 y) -0. (1)
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<CPT Plate >

ug +z¢dhy

g

wo |
Lz

Undeformed and deformed edges in the CPT and FSDT theories (from [10]).

Figure 1

46 where the stress resultants are defined by

Nwz % Oz
Nyy :[@ Oyy (dz,
Nzy 2| Ouy
M, L Oz
My, :/h Oyy [ 2d2,
My B e

EAR TG .

Here h denotes the total thickness of the plate and the (z,y)-plane is taken to coincide
with the middle plane of the plate and the z-coordinate is taken perpendicular to the plane of
the plate. The difference in the kinematics of each plate theory is responsible for the difference
in the relationships between the stress resultants and the generalized displacements.

48
49

50

51 2.1 The Classical Plate Theory
52 The displacement field of the CPT is given by
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4 W. Kim et al / Novel mixed finite element models for nonlinear analysis of plates

Uy :u(x,y,z):uo(x,y)—z(w),

Ox
ug =v(x,y,2) =vo (z,y) —z(%;’y)),
uz =w (x,y,2) =wo (z,y). (3)

Under the assumption of small strain but moderately large rotation, we can simplify the
components of the nonlinear strain tensor [6, 9, 10]. The components of the Green strain
tensor for this case, with the assumed displacement field in (3), are given by

8u0 1 8’[00 2 82100

Exa =7 tol 5] 255>
ox 2\ Ox 0x?
81}0 1 6’LUO " 82100

Eyy=—7—+=\—) —2—5
oy 2\ Oy 0y?

1 (Guo %Jr Owg Owg g 82100)

(4)

E€xy=—|—+ z
Woo\loy  Ox Oz Oy 0x0y
We assume that the plate is made of linear elastic material and that the plane stress exists.
Then the plane stress-reduced elastic constitutive equations are given by

Ozx Qll Q12 0 Exx
Oyy (= | Q2 Qa2 0 Eyy [ (5)
Ozy 0 0 Q@@ 25zy

where the components of the elasticity matrix [(Q)] are given by

B _viekey v By
Qi1 =7, Q12 = = ;
1 -vq10191 1-viov01 1 -v1210g
Es
Q2= ———, Qe = Gho. (6)
1-viov9;

Here E; and F> denote the elastic moduli along the principal material coordinate directions,
which are assumed to coincide with the plate z and y-directions, v1o and 1o are Poisson’s
ratios, and G2 is the shear modulus.

By using the constitutive relations given in Eq. (5) and the definitions of the resultants
given in the (2), we obtain the following plate constitutive relations:
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or z oy 2\ Oy
dug 1 aw0)2 dvg 1 (3w0)2
Nyy=Ap|—+ = —=— Agg| — + =| =
v 12[8x+2( ox T 8y+2 oy ’
8u0 81}0 811)08100)
N,, = Agg (220 20, TWo TWo )
Y 66<8y+8x+8$ dy

82w0 82100
Mmm = _Dll( 02 ) _D12( ay2 )

where the plate extensional and bending stiffnesses are defined as

h/2
A17Dz Zf iq 1, d . 8
(Aij, Dij) _h/QQJ( z)dz (8)
for i,5=1, 2, 6 .

2.2  The First Order Shear Deformation Theory
The displacement field of the FSDT is given by

uy = U(%yaz) = Up (xvy) +Z¢x(l‘7y)7
Uz =0 ($7y7z) =1%o ('7}7y) + Z(by(xay)a
u3z = wWo (ﬂf,y) . (9)

The von Karman nonlinear strains of the FSDT are given by

L 1(%)2”3%
o 2\ Oz Ox’
_8’[)0 1(811)0)2 %
Wy T2\ay ) "oy
_1[8u0 %+0w08w0+2(0¢m+3¢y)]

Exy = = +
2L0y 0Ox Ox Oy dy  Ox
811)[)
Exz = E + ¢z,
ow
yz = 8_3/0 + ¢y~ (10)
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69 The plate constitutive equations in the FSDT are given by

dug 1 awo) vy 1 (awo)2
Now=An [ o i) ( ox ]+A12 [ oy +2 ’
2

dy

8u0 1 8w0) 8’00 1(8100)

=A A o=
Nuy 12[895 2(8x ]+ 22[8y+2 dy ’

8U0 81;0 8w0 awo )
- A 7070
00 ( oy (%U " or Oy
0
Q= KsAss (% + ¢z)

8’[0()

K A44 + ¢y)

(5
M,, = Dy, (8%) (a%),
5e)ep

My, = D12 (8%) :
My = Des (88% %(iy) (11)

70 where, K, (=5/6) is the shear correction factor. We introduce the effective shear forces as

Vo= Qu+ (mx%+ny%),
ow ow
V, =0, + (Iyao Nyya—y@). (12)

7 3 FINITE ELEMENT MODELS

7 3.1 Summary of equations

73 In this section, we develop various types of the nonlinear mixed finite element models of plates.
74 In current models, various stress resultants are included as independent nodal variables with
75 the weighted-residual statements of suitable equations. Two new CPT models and two new
76  FSDT models are developed. Keeping the forthcoming developments in mind the governing
77 equations of the two theories are summarized first.
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78 Governing equations of the CPT

_ONgz  ONgy 0
Oz oy
ONgy  ONyy
ox oy
oV, 0V,
or 0
8Mmr 6Mm 811}0 6w0
Vz_ Y Nwa:_ Nm _) ZO,
( ox " oy " ox ey y
OMy, OM,, Owg 8w0)
-{—+—=+N,y— +N,,— | =0, 1
Vy(3x+0y+ y8m+yy0y 0 (13)
79 and
. . ou ow
ANy + ANy = [8 iz ( &L,O) ]
. . ov ow
i< 5 5) |
* Oug Ovg Owyg awo)
ANy = — + —+ ——
0677y (0y+8w+8w oy
. . 0%w
Dy Mgy + Dyy My, = - (Wgo)v
. . 0w
Dy My + Doy My, = - (WQO)’
* 82U]O
s Governing equations of the FSDT
_% - % =0
Oz oy
8Nmy 8Nyy
=0,
8y
0 awo 0 Wo ow Wo
%(N“%+ “ya )+a ( oz TNy +Qy)+qm) 0
<8M 8sz) 0
ox ’
OMy,
=0 15
Q- (% 55) -0, (15)
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s1 and

* * auo 811)0
Aj1 Nog + Ao Ny = [ or ]

% % dvg é71110)
Al Ny, + ASoNyy, = | —
12 + Ao Nyy [03/ 3 ( By :|

0= _K?j% (aau;fo qblﬂ)7
DI\ My, + DiyM,, = (%),
D;QMl’w +D;2Myy ~ (%)7
DigM,y - (%@I . %). (16)

22 where Aj; and Dj; are inverses of the stiffness matrices: A™ = A~' and D* =D

53 3.2 Finite Element Model | (CPT)

&« In this mixed finite model of the CPT, eleven variables, ug, vo, wo, Nyz, Nyy, Nay, Va, Vy,
&s Myy, My, and M,,, are treated as independent variables. The following weighed-residual
s statements are used:

oW1 o an o —
f ( 5 N2, By Nmy)dxdy - jée Wi {ngNyg +nyNyy}ds=0

owWs . 6W2 “ —
f ( 5 Ny, 99 Nyy)dxdy— jée Wo{ngNyy +nyNyy}ds =0

aW?) a 8W3 o T -
fﬂe( o V, +—6y V) —Wsq (m))dmdy—ﬁlge W3 {nyVy +n,V,}ds =0,

A7 * a * a aug 1 awg ?
‘/S;eW4 _Allex_Al2Nyy+ %4‘5(%) d:zdy:(),

— v . ra ovg 1 811)82
./S;e W {_A12Nxa:_A22Nyy+|:a_y+§(a_y) dxdy =0,

— ouf  ovd  10wd owd 10w ows
Wel_ar yo 0 0 , Lo0wy owy 10wy O)]d dy =0,
fﬂe 6[ oo (8y+8x+28m 8y+28x dy v
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— oMe, OMg ow owg
W |-V - o+ N —2 + Npy—2 |dady = 0,
./s;e 7( =" Tor oy "oy y@y)xy

_ oMZ, oM a a
[ﬂ W (—V; » ey Oy e Q06 O )dmdy = 0,

Ox Oy oz YUy

= a * T a 8W9 811}8’ =7 8wO _
[Qe (—DHWng - Dy WMy, + 2= )d:xdy - ﬁ Wo (nma—x) ds = 0,

. T a . T a 8W10 871)8 — awo
[)e (_D12W10wa - D22W10Myy + 8y a_y d$dy - ﬁe W10 (nya—y) ds = O,

* o7 8W11 awg anl 61118
D Wi M2 dxd
/Qe ( 66" 110y T 750 oy " dy Ox v

Owg Oowg

—ﬁewn (nxa—y+ny8—x)ds=0. (17)

where, I, is the boundary of a typical element region €2, variables with a superscript ‘a’ denote
the approximated variables, and n, and n, denote the z and y components (i.e. direction
cosines) of the unit normal vector on the boundary. The primary variables and the secondary
variable of the formulation are as follows.

Primary variables Secondary variables
UQ Ny Nyz + Ny Nyy
) Ny Ny + 1y Nyy
wo Ng Ve +nyVy
My, Ny aa_?
M., g 88—“;) + Ny 88“3’” o

With the weighted residual statements in (17), we can develop the finite element model,
denoted as Model I, of the CPT by approximating the 11 variables with known interpolation
functions and unknown nodal values. The Lagrange interpolation functions are admissible for
all variables (i.e., C° continuity of all variables is required). We take

m
ug§u8=2¢;° (z,y)uj, Wi =4 (z,y),
j=1
U();'U(()lzzw;')o (I’,y)Vj, WQ:w;}O(:C’y)’
j=1
n —
w0§w822¢;}0($,y)wja W3=w;uo($,y),
j=1
N 1 kT N
Nxng:gx:ij o (xay)va W4:wi o (.’L‘,y),
j=1
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p
N.
Nyy = Ng, = > 9" (z,y) N3,
j=1

~ a z Nzy 3
wa:Nzy:Z"L/’j (xay)Nja
j=1

q
Vo2 V=3l (z,y) V],
j=1

q
a Vy
Vygvy = Zd)j (ZL‘,y)V?,
7=1

r
Mgy = Mz?ac = Z ¢]szz (l’,y) Mjlv
j=1

a My,
Myy = Myy = Z wj (x7y)M§7
7=1

Ws =¢1Nyy (z,9),
We =1, (z,y),
W7 =4 (z,9),
Ws Z%Vy (z,9),
Wo = ¢ (z,y),

WIO = wiwyy (way)a

M;L‘y = M;y = Z:l¢jwwy (37,?/) M?a Wll = wj\/lzy (x,y) . (18)
=
% By substituting the expressions from (18) into the weighted-residual statements of (17),
o7 we obtain the finite element equations
[K( 1)( 1)] [K( 1)( 6)] [K( 1)( 11)] {u;} {F( 1)}
[k 6)( n] (K¢ 6)( 0] (K¢ 6)( ] {ﬁ;} _ {F( o) . (19)
[K(lzl)u)] [K<1:1)<6>] [K(lfxn)] {M}?} {F<:11)}
s where
oo oo
[KM]:/Qe{—g; %N”“}dxdy, [K16]=fﬂe{ gy wj“y}d dy,
opro opro
[K*°] =fﬂ{—;’y ¢§Vyy}d:cdy, [K*°] =fﬂ{ g; wjvmy}d dy,
oo oo
[K%7] = fQ c{—g’; ¢y”}dxdy, (K] = fﬂ {—?y wfy}d dy,
;e 1 (0w} [T
417 _ Now O 7J 437 _ (W0, New 7
[K ] N er {wi ox }dxdy, [K ] [Qe {2( ox )% ox
(k4] = [ {-aiulevYdody,  [KP]= [ {-AiuNeu) ) dedy,
o | (owa\ . DU
527 _ Nyy 775 537 _ L 0 Nyy ~ 73
)= [ e T - (G
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[K54]:[fze{ Ab?ﬂfv”w;v“}dxdy, [K5°] :fQ Amw Jyw ”}dxdy,
()= f, {22 oy, w7 = f, {2 ey
()= [ {- éwi“yw%}d:cdy,

[

- LAt - ()t
(K7 [, oteut vy 5] f, fot 25

1= [, (G wetes' s
(5] = [ {~vl"o}} duay,

} dxdy,

} dxdy,

My

o
8(11)7 _ Vy 775
)= [ o

937 _ aszm aw;’vo
R

(000 = [ {-Digwlee "} dady
My wo

[K003] - {aw o, }dazdy,
dy

[K(lo)(lo)] = fﬂe {‘D22¢i yy@byyy}dazdyy

M=y Oyl
(11)37 _ i J
[K ] [)e{ or 0Oy dy  Ox

[KaDAD] = Lc{‘D§6¢fwzy¢ymy}dxdy'

{Fl} = ﬁ Zb;u {anacx +nnyy}d8 s
()= [ twra@)dedy+ § v Quds

()= [, {(G) v avas

Myy
}dxdy,

o
8(10)7 _ Vy 775
(K%)= [ {=Dhul=u)=) dudy,

[K(10)9] = [ﬂe {_Dﬁ?/);wyy?ﬁy”}dxdy,

May oo
+ 00 Y; dxdy,

{F2}=§z§ W2 {ngNay + nyNyy Y ds
0y _ M. (OWo )
{F}_ﬁe% (ax”‘”’” o
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{F(m)} = qu %Myy (aa—u;ny)ds,
{F(H)} y{ { (awonx+%ny)}ds. (20)

99 The rest of the coefficients matrices and force vectors are zero.

w0 3.3 Finite Element Model Il (CPT)

11 The shear forces V, and V} can be eliminated by substituting the forth and the fifth equilib-
102 rium equations into the third equilibrium equation of the CPT. /Following 9 weighted-residual
103 statements are used:

oWy ., 8W1 . —
f ( pe N2, By N:ty)dxdy - 5[’%6 Wi {ngNyg +nyNyy}ds=0

owWs . 8W2 “ -
[ ( 5 Ny 9y Nyy)dxdy— jge Wo {ngNyy +nyNyy}ds =0

O (8M“ OMS, . ouwg . oug
/Q{ax or "oy Mgy Nay,

oMz, OMy, a
(9;[/ ( +—2 4 NO ou +N, w ) qu(a:)}dxdy
Y

ox Oy Y oz YU oy
- yg W {naV, +n,V,} ds =0,

i/ * a * a 6”8 1 6 a 2
fﬂem AT N - AL N, + | S22 (a ) dady = 0
v ~ra a ¢ 1(owd)?
fﬂe Ws {—AlzN — ALNS [a; +—( 5 ) ]}da;dy 0,

— oul  ovgd 10ws owd 10w ows
Weloar no 0 o  10Wyow, 10owy 0)]dd=0
fﬂe 6[ 66 my+(8y+&lc+2 or Oy "2 o Oy =5

. — — OW 7 Ow§ ( 311}0)
-D{ W7 M? — Di,W7M? 95 W (ng =0,
L( e 12V 7 My ¥ or Ox )d dy - " oz ds

a 8W8 8wa 811)0
( DiWsMs, ~ D WMy, + =5 8—;)dxdy—51§ Wi (ny 5 )ds:O,

- 8W9 Owg 6W9 8w3 — awo 8w0
D WM dd—ﬁw(,;— —)d 0, (21
[Qe( 66" 9May ¥ 57 oy i dy Ox R r. " Yy o 3 1)

104 All 9 variables are approximated with the Lagrange type interpolation functions, and the
105 finite element model is of the form
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[KOD] o [KOD] o [KO)] (w3} (F ()
[K<}1)] [K{M)] [K<i69)] {I\%J.l} _ {F<i4)} (2
[K(:gl)] [K<:96>] [K(§9>] {Mf} {F(:9)}

106 where the coefficients can be easily identified from the weighted-residual statements in (20).

w7 3.4 Finite Element Model Ill (FSDT)

108 Model IIT is based on the following 13 weighed-residual statements of the FSDT:

W1\, W1 \
f ( e N Nzy)dmdy—jlgewl(anernnyy)ds:O,

Ws \a  OWa _
f ( 5 Vit 5N )da;dy—ygeWQ(anxymyNyy)ds:o,

oWz ., OWs ., OW3 ( , Owd awg) oW 3 ( . Owd awg)
N, +N N +N
f [81: @t 5, @t g Ve Ve ) 5, (Mo Vg
- Wsq (a:)]dacdy
- 8’[1]0 6w0 8w0 8w0
+ﬁe W3 I:(Qx+Nacza_x+wa 8:(/ ) (Qy gcy a Nyya—y)ny]ds:o,

s 0 OWa 0 o _
[ ( 5 M Mmy+W4Qx)dxdy+y§cw4(anm+Mmyny)ds=o,

aWE) a 8W5 a J— a P
LE ( O MJ:y a M Wsz)dxdy + ﬁe W (Mxynx + Myyny) ds=0

a a2
We {—A;ING _AT,NC 4 [6“0 , %(8“’0) ]}dxdy -0,

/Qe Yo Oz Oz
. 82}8 1(owd\? B

— oud o 10ws owd 10w dws
Wel-ar No Oug o , 1 0Wy Owy 10w 0)]dd:0
,/s;e 8[ 66 $y+(8y+8x+2 oz 8y+2 ox Oy =5

— Q4 owg )
W [-—22 @ )dxdy =0
[)e 9( K5A55+ 8:v vy ’
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— 8w
Wi | -——— + =2 dxdy =0
»/Qe 10( KA44 8 ¢)$y )

_— t l a
f Wi (-D;lM“ - D}, M + M)dxdy -0,
Qe ox
— . +ra v 2o partialgy
/Qe Wig | -DiaM,, — D3y My, + 8—y dxdy =0,
_ a¢a an
w Dgg My, + dzdy = 0. 23
er 13 ( 66 By 83: ) Y= ( )

100 where ., and I', denote the element region and its boundary, respectively. The primary

1o variables and the secondary variable of the Model III can be specified as follows:

=

Primary variable Secondary variable
UQ Ny Ny + My Nyy
Vg NNy + 1y Nyy
111
wo Vang + Vyn,
¢x anz + szny
by Myyny + Myyn,
112 The finite element model is of the form
[K( 1)( 1)] [K( 1)( 7)] [K( 1)( 13)] {u;} {F( 1)}
K< 7)( D] ' - K 7)( 19)] {NJ?} _ {F( b
[KODO] . [KODO] . [KOH0H)] (2} (1G9}
113 The coefficients can be identified with the help of the weighted-residual statements in (23).

us 3.5 Finite Element Model IV (FSDT)

1

=

s The in-plane forces (N;z, Nyyand Ny, ) can be eliminated by substituting from the first two
6 equilibrium equations into the remaining equations of equilibrium. The weighted-residual
7 statements of the resulting 10 equations are summarized below:

Wy [, (24 1(%)2 ovg 1(%)2
/Qe{ ox [A11(3x+2 ox iz 8y+2 y
oW ouy vy  Ow§ dwg —
+ ayl [A66( 8; + (9; + 8—; 8y0 )]}dxdy— ﬁe W1 (ngNgg +nyNgy)ds =0

OW o oug 1 (awg )2 ovg 1 ( dwd )2
——21A Z Aoy z
er{ oy [ 12(8x+2 ox i 8y+2 dy
8W oul  ovy  Oow§ owd —
2 [A66( S et B oy )]}dmdy— ﬁ W (1o Nay + 1y Nyy) ds = 0,

1

=

1

jan

118
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OW'3 OW'3 OW 3 Owg dug (8w8)2 g 1(awg)2
a a A A -
/Qe[axQ“ dy vt o 8x[11(8w+ oz ) T2y T2\ ay

OW 3 Owg [ (8u8 N ovg 8w0 owg )]
ox Oy dy 837 ox

N OW 3 Qwy [A (aug L 9u vy | Qwg 8w0 8w0 )]
oy Ox oy Ox
OW 3 Owg oug (awo) ovg 1(aw3)2

A = A =
+8y 8y[12(0x+2 oz B 8y+2 oy
~-Wsq (x)]dwdy

- 8w0 61110 3
+-¢;e W I:(Qx-l—me%'f‘ny dy ) (Qy gcy a Nyya—y)ny]dS—O,

oWy 4 0W4 0 = a —
f ( 5 M2, 9 Mxy+W4Qx)d:vdy+1(]£cW4(anm+Mmyny)ds:0,

fQ (8W5 M® + oW —— Mg+ W5Qg)dxdy + ﬁé W5 (Myyng + Myyny) ds =0,

or v’ Ay
= (_ Qg awo )
er W6( K.An o dxdy =0,
= Q,  ow
dxd
/S;EW(KAMJF(“)y )xyO
W ( -Diy My, - Dy My, + ; )dxdy 0,
8@%);
[ Wo [ -DipM?, - D3 M?, + =2 |dady = 0,
Qe dy
— 0%5 | oy,
-D; M“ 2
[Qe W10( 66 Y o )d dy = 0. (25)

119 The primary and the secondary variables of Model IV are the same as in Model III. The
120 finite element model is of the form

[K(D(D] oo [K(D(D] o [K(DCI0)] {uj} (F(D)
K oY D] : [K( o 10)] {pj} _ {F(:5)} (26)
[K(15)<1>] [K(lfn(ﬁ)] [K(lo:)(m)] {Mf} {F<:10)}

121 where the nonzero coeflicients are
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o0 oo
K36 _ f 4 Qu i Qy
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b w¢y

wi””ifi}dxdy [K%] _ f ay
[Kgs] _ /Q { DIQwMyyq/)Mm}dxdy [K99] _ /QE 50! ywayy}dxdy
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{Fl}:jé W2 {1 Nag + 1y Nay } ds, {Fz}:jg %2 {1y Ngy + 1y N,y } ds,

(P} = [, {wroa @) dady+ § 0 (V) me s (V) myJds,

{F4} = ﬁ sz {Maana + Mzyny} ds, {F°}= jé w?y {Mayna + Myyny } ds, (27)

4 NUMERICAL RESULTS

In this section we will discuss the numerical results obtained with the finite element models
developed in Section 3. Comparisons of various models are presented with linear and nonlinear
solutions available in the literature. The Newton’s iterative technique is used to solve the non-
linear equations. The tangent stiffness coefficients are computed from the stiffness coefficients
(see Reddy [6] for details).

We consider a square plate with the following material properties:

a=b=10in, h=1in, E =7.8 x10° psi,

v =0.3 (or 0.25 for linear analysis) (28)

Due to the biaxial symmetry of the geometry, boundary conditions, and applied load, only
a quadrant of the plate was used as the computational domain. Three types of boundary
conditions are considered with common boundary conditions along the symmetry lines of the
quadrant. The specific boundary conditions are shown in Fig. 2.

Symmetry lines
0=vo= @y =My =No
0,0 N (5,0)

> X
<SS1>
0=vo=wo= Dy
= A’\/[a = A\Y.tt
0=110= Dx <883>
=My=Ny Computational Domain ( Q) 0=wuo =vo =wo
= Mw =My = M
<CC>
0 =10=vo=wo
=Dy =Dy
(0,5) <S8S1> (5.5)
0 =1u0=wo= =My =Ny»
<883>
v 0=wo =vo =wo=Mx =DMy =M«
<CC>

0=1w0=vo=wo= D =Dy

Figure 2 Boundary and symmetry conditions in a quadrant of the square plate.
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4.1 Linear analysis

To verify the accuracy of the newly developed plate bending models, solutions obtained with
the new models are compared with those of the existing models [1, 2, 6] and analytic solutions.
First, the linear solutions of the mixed CPT models will be discussed by comparing the results
obtained with displacement based model [4, 6].

The comparison of the results of the various models under the simple support I (SS1) and
clamped (CC) boundary conditions are given in Table 1 and 2. For the simple support
boundary condition (SS1), Model II showed best accuracy for the center vertical deflection,
while Model I provided better accuracy for the center bending moment, as shown in Table
1. For the clamped (CC) boundary condition, the Model I showed best accuracy both for
the center vertical deflection and the center bending moment as shown in @ Table 2. By
including the shear forces (i.e., V, and V,) as nodal values in Model I, more accurate center
bending moment and center vertical deflection were obtained.

Table 1 Comparison of the linear solution of various CPT Models, isotropic ( v = 0.3 ) square plate, simple
supported (SS1).

M Current Models Mixed Mixed Hybrid Compa'tlble
esh Redd H All cubic
size eddy errinani man displacement
Model I Model 1T [4] [2] [1] Model [6]
Liner Center deflection (* equivalent quadratic),
(4-node) W =w x Dy x 10%/(qo x a*) (Exact solution, 0.4062 [4])
1x1 0.4613( * -) 0.4613( - ) 0.4613 0.9018 0.347 0.220
2x2 0.4383(0.4154) | 0.4237(0.4154) | 0.4237 0.5127 0.392 0.371
4x4 0.4135(0.4067) | 0.4106(0.4067) | 0.4106 0.4316 0.403 0.392
6x6 0.4094(0.4063) | 0.4082(0.4063) | 0.4082 0.4172 - -
8x8 0.4079(0.4063) | 0.4073(0.4063) - - - -
Liner Center bending moment (equivalent quadratic),
(4-node) M =M x10/(qo x a?) (Exact solution, 0.479 [4])
Tx1 0.7196( - ) 0.7196(-) | 0.7196 | 0.328 0.604 -
2x2 | 0.5029(0.4906) | 0.5246(0.4096) | 0.5246 |  0.446 0.515 -
4x4 | 0.4850(0.4797) | 0.4892(0.4796) | 0.4892 |  0.471 0.487 -
6x6 | 0.4816(0.4790) | 0.4834(0.4790) | 0.4834 | 0.476 - -
8x8 | 0.4804(0.4788) | 0.4814(0.4789) - - - -

Current CPT mixed models were compared with the displacement based model. For the
CPT displacement based model, non-conforming and the conforming [6] elements should be
used because of the continuity requirement of the weak formulation. Current mixed models
provided better accuracy when the compatible nine-node quadratic element was used. Even the
four-node liner element also provided acceptable accuracy compared with the non-conforming
displacement based model. The stresses obtained from the current mixed models showed better
accuracy, because the stresses can be directly computed by using bending moment or shear
resultant obtained at a node.
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Table 2 Comparison of the linear solution of various CPT Models, isotropic ( v = 0. 3) square plate, clamped
CQ).
Current Models Mixed Mixed Hybrid Compa.tlble
Mesh A cubic
size Reddy Herrmann llman displacement
Model I Model II [4] [2] [1] Model [6]
Liner Center deflection (* equivalent quadratic),
(4-node) w =w x D1g x 10%/(qo x a*) (Exact solution, 0.1265 [4])

1x1 0.1576(* - ) 1.6644( - ) 1.6644 0.7440 0.087 0.026
2x2 0.1502(0.1512) | 0.1528(0.1512) | 0.1528 0.2854 0.132 0.120
4x4 0.1310(0.1279) 0.1339(0.1278) 0.1339 0.1696 0.129 0.121
6x6 0.1284(0.1268) 0.1299(0.1268) 0.1299 0.1463 -

8x8 0.1265(0.1265) | 0.1270(0.1266) - - -
Liner Center bending moment (equivalent quadratic),

(4-node) M = M x10/(qo x a*) (Exact 0.230 [4])

1x1 0.4918( - ) 0.5193( - ) 0.5193 0.208 0.344

2x2 0.2627(0.2552) | 0.3165(0.2552) | 0.3165 0.242 0.314

4x4 0.2354(0.2312) | 0.2478(0.2310) | 0.2478 0.235 0.250

6x6 0.2318(0.2295) | 0.2374(0.2295) | 0.2374 0.232 -

8x8 0.2286(0.2290) | 0.2310(0.2291) - - -

Next, the numerical results of the Model III and IV are compared with the results of
Reddy’s mixed model [4] in Table 3. The mixed model developed by Reddy [4] included
bending moments as independent nodal value in the finite element model, while current Model
IIT and IV included vertical shear resultants (i.e., @}, and @), as independent nodal value.
Note that the difference between Model III and VI comes from the presence or absence of

membrane forces (i.e., Nyz, Ny, and Ny, ) in the finite element models. Thus, the solution of

the linear bending of each model is essentially the same as shown in . Table 3.

Table 3 Comparison of the current mixed FSDT linear solution with that of the other mixed model (Reddy
[4]), with isotropic (v = 0.25, K5 =5/6) square plate, simple supported (SS1).

l\g[i(;ih Current Models 11;\46121(3(}17 Current Models %\{/Ielzl{fl?/
Model(TIT) [ Model(IV) 4] Model IIT Model IV [4]
Li Center deflection, Center bending moment
iner _ 5 4 i 5
(4-node) w =wD11 x 10°/(goa*), M = M x10/(qoa?),
(Exact 0.427 [5]) (Exact 0.479[5])
1x1 0.4174(* -) 0.4174( -) 0.4264 0.6094( - ) 0.6094( - ) 0.6094
2x2 0.4293(0.4345) | 0.4293(0.4345) | 0.4321 | 0.5060(0.4779) | 0.5060(0.4779) | 0.5070
4x4 0.4280(0.4277) | 0.4280(0.4277) | 0.4285 | 0.4849(0.4779) | 0.4849(0.4779) | 0.4850
8x8 0.4275(0.4273) | 0.4275(0.4273) - 0.4803(0.4785) | 0.4803(0.4785) -
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4.2 Nonlinear analysis

A total of 12 load steps were used with the following values of the load parameter
P:qoa4/ (E22h4)1

P:{ 6.25, 12.5, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0 } (29)

A tolerance € = 0.01 was used for convergence in the Newton’s iteration scheme. Model 1
and II was compared with the CPT displacement base model to see its non-linear behavior.
The center defection, wq, of the newly developed models are presented in Table 4. In every
load step, the converged solution was obtained within 4 iterations. Results of full integration
and the reduced integration are presented in Table 4. In both models both membrane and
shear locking are not severe, as judged against the published solutions, and the effect of reduced
integration is not significant.

Table 4 Effect of reduced integration in Model | and Il.

Center deflection, w, CPT-(SS1)

b et MODEL I MODEL II
- (B2zh?) 4x4-Linear 2x2-Quadratic 4x4-Linear 2x2-Quadratic
FI RI FI RI FI RI FI RI
6.25 0.2736 | 0.2737 | 0.2691 | 0.2691 | 0.2718 | 0.2719 | 0.2691 | 0.2691

12.50 0.5090 | 0.5096 | 0.5005 | 0.5007 | 0.5059 | 0.5064 | 0.5005 | 0.5007
25.00 0.8608 | 0.8629 | 0.8468 | 0.8475 | 0.8565 | 0.8579 | 0.8470 | 0.8476
50.00 1.3119 | 1.3163 | 1.2923 | 1.2943 | 1.3061 | 1.3093 | 1.2932 | 1.2947
75.00 1.6185 | 1.6244 | 1.5960 | 1.5997 | 1.6114 | 1.6157 | 1.5977 | 1.6004
100.00 1.8572 | 1.8641 | 1.8328 | 1.8383 | 1.8488 | 1.8539 | 1.8357 | 1.8394
125.00 2.0559 | 2.0637 | 2.0302 | 2.0377 | 2.0462 | 2.0521 | 2.0339 | 2.0391
150.00 2.2280 | 2.2365 | 2.2011 | 2.2107 | 2.2171 | 2.2235 | 2.2059 | 2.2125
175.00 2.3811 | 2.3900 | 2.3529 | 2.3649 | 2.3689 | 2.3757 | 2.3588 | 2.3669
200.00 2.5196 | 2.5289 | 2.4901 | 2.5045 | 2.5062 | 2.5133 | 2.4971 | 2.5068
225.00 2.6465 | 2.6562 | 2.6158 | 2.6327 | 2.6320 | 2.6394 | 2.6240 | 2.6352
250.00 2.7641 | 2.7741 | 2.7321 | 2.7515 | 2.7484 | 2.7561 | 2.7414 | 2.7541

The nonlinear load vs. deflection and load vs. stress are presented in Fig. 3. For the SS3
boundary condition, both vertical deflection and stresses of Models I and II showed very close
agreement with the displacement finite element model. The normal stresses and the membrane
stresses were computed at points (0,0,0.5h) and (0,0,0), respectively. The 9-node quadratic
element mesh showed closer agreement with the displacement FSDT model.

The nonlinear center deflection, normal and membrane stresses of Models 1 and II are
compared with the results of the displacement model. The results are presented in Table
5. A 4x4 mesh of nine-node element showed the closest agreement with the displacement FSDT
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30 - 30,0 -
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(a) Load verses center deflection (b) Load verses center normal stress
Figure 3 Plots of the membrane and normal stress of Model I, Il and CPT displacement model under SS3

boundary condition.

model, as shown in Fig. 4. To see the convergence of the various models, center deflections
of previously developed models with 2x2 quadratic and 4x4 linear meshes under SS1 and SS3
boundary conditions are compared in Table 6. Every model showed good convergence with a
tolerance € = 0.01, except for the Model IV. The Model IV showed acceptable convergence with
SS3 boundary condition but with SS1 boundary condition it took slightly more iterations to
converge. This is due to the fact that plates with SS1 boundary conditions are more flexible
and exhibit greater nonlinearity.

- =& - FSDT-(SS3) DSPL 4x4Q
—&— FSDT-(SSL) MODEL(I11) 8x8L
—@— FSDT-(SS1) MODEL(111) 4x4Q
—&— FSDT-(SS3) MODEL(I11) 8x8L 50 -
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3,0 -
= 30,0- 1* — FSDT- DSPL-SS1 4X4-Q-Normal

=5 - +& - FSDT- DSPL-SS3 4X4-Q-Normal |

s —H8— FSDT- MODEL(I11) -SS1 4X4-Q-Normal

< 25,0_16—— FSDT- MODEL(Ill) -SSI 4X4-Q-Membrane
S2,0 A —HE— FSDT- MODEL(I11) -SS3 4X4-Q-Normal

‘g %010—_-3— FSDT- MODEL(I11) -SS3 4X4-Q-Membrape—
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I15 3

T 1,0 - L

T -~ — FSDT-(SSL) DSPL 4x4Q :;'1

o 0,0

]

<
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S}

0,0

00 500 1000 1500 2000 250,0 300,0
00 500 1000 1500 2000 250,0  300,0
load parameter, P =q,x a*/ (E,, x h%) load parameter, P =q,x a*/(E,,x h%)

(a) Load verses center deflection (b) Load verses center normal and mem-
brane stress

Figure 4 Plots of the center deflection, normal and membrane stress of Model Il with that of the FSDT
displacement model under SS1 and SS3 boundary conditions.
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Table 5 Comparison of the center deflection and normal stress of Model | and Il with the CPT displacement

model.
P= % Center deflection, w, CPT-(SS3)
MODEL I MODEL II DSPL DSPL
8x8-L | 4x4-Q | 8x8-L | 4x4-Q | 8x8-CF | 8x8-UCF

0.00 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 0.0000
25.00 0.6836 | 0.6774 | 0.6966 | 0.6771 | 0.6690 0.6700
50.00 0.9581 | 0.9501 | 0.9743 | 0.9497 | 0.9450 0.9460
75.00 1.1388 | 1.1296 | 1.1572 | 1.1293 | 1.1270 1.1280
100.00 1.2775 | 1.2675 | 1.2977 | 1.2672 | 1.2670 1.2680
125.00 1.3919 | 1.3813 | 1.4137 | 1.3809 | 1.3830 1.3830
150.00 1.4902 | 1.4791 | 1.5134 | 1.4787 | 1.4830 1.4830
175.00 1.5770 | 1.5654 | 1.6015 | 1.5650 | 1.5710 1.5710
200.00 1.6552 | 1.6432 | 1.6809 | 1.6428 | 1.6510 1.6510
225.00 1.7265 | 1.7142 | 1.7533 | 1.7138 | 1.7240 1.7240
250.00 1.7923 | 1.7796 | 1.8201 | 1.7793 | 1.7910 1.7910

P= %2 _ | Normal stresses, a"2"™a (0,0,0.5h) x a®/Ey;, CPT-(SS3)

Ez; h? Tz

( : MODEL I MODEL II DSPL | DSPL
8x8-L | 4x4-Q | 8x8L | 4x4-Q | 8x8-CF | 8x8-UCF

0.00 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

25.00 55195 | 5.5008 | 5.3402 | 5.4980 | 5.4260 | 5.4230

50.00 8.2751 | 8.2782 | 8.0297 | 8.2741 | 8.2470 | 82270

75.00 10.2633 | 10.2937 | 9.9885 | 10.2901 | 10.3090 | 10.2710

100.00 11.8988 | 11.9589 | 11.6072 | 11.9541 | 12.0170 | 11.9610
125.00 13.2682 | 13.4106 | 13.0238 | 13.4098 | 13.5130 | 13.4400
150.00 14.6077 | 14.7273 | 14.3036 | 14.7196 | 14.8670 | 14.7770
175.00 15.8033 | 15.9322 | 15.4838 | 15.9311 | 16.1170 | 16.0090
200.00 16.8734 | 17.0628 | 16.5872 | 17.0613 | 17.2870 | 17.1620
225.00 17.8924 | 18.1308 | 17.6290 | 18.1271 | 18.3930 | 18.2510
250.00 18.9188 | 19.1385 | 18.6199 | 19.1411 | 19.4460 | 19.2870

The distributions of various quantities are presented in Figs. 5 and 6. The data was
post-processed inside of each element using 10 Gauss points ranging from -0.975 to 0.975,
for both newly developed models (i.e., Models I and III) and FSDT displacement model.
Converged solutions of SS3 at load parameter P = 250.0 are used for the post processing.

Even though all models show similar patterns for each variable as shown in Fig. 5,
one may note that the contour plots obtained from the current mixed models offer better
accuracy at the boundaries of the elements, while the plots obtained from the displacement
based model show discontinuous distributions. Obviously, the plots in Figs. 6 and 4.6 show
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Table 6 Comparison of the convergence of Model |, I, 1l and IV under the SS1 and SS3 boundary conditions.

Center deflection, w (*iteration times to converge), SS1 various models

P = on Model (I11) Model (IV) Model (I) | Model (1)
4x4-L | 2x2-Q Ax4-L | 2x2-Q 2x2-Q 2x2-Q

0.00 0.0000(3) | 0.0000(3) | 0.0000(3) | 0.0000(3) | 0.0000(3) | 0.0000(3)
6.25 0.2821(3) | 0.2816(3) | 0.2877(3) | 0.2847(3) | 0.2691(3) | 0.2691(3)
12.50 | 0.5213(3) | 0.5195(3) | 0.5281(5) | 0.5233(5) | 0.5007(3) | 0.5007(4)
25.00 | 0.8730(3) | 0.8695(3) | 0.8801(6) | 0.8736(6) | 0.8475(3) | 0.8476(4)
50.00 | 1.3195(3) | 1.3187(3) | 1.3237(7) | 1.3169(7) | 1.2943(3) | 1.2947(3)
75.00 | 1.6228(3) | 1.6282(3) | 1.6302(7) | 1.6256(7) | 1.5997(3) | 1.6004(3)
100.00 | 1.8589(3) | 1.8720(3) | 1.8684(7) | 1.8663(7) | 1.8383(3) | 1.8394(3)
125.00 | 2.0553(3) | 2.0769(2) | 2.0682(7) | 2.0688(7) | 2.0377(3) | 2.0391(3)
150.00 | 2.2251(3) | 2.2552(2) | 2.2420(6) | 2.2456(6) | 2.2107(3) | 2.2125(3)
175.00 | 2.3757(3) | 2.4141(2) | 2.3914(6) | 2.3973(6) | 2.3649(3) | 2.3669(2)
200.00 | 2.5116(3) | 2.5580(2) | 2.5308(6) | 2.5392(6) | 2.5045(2) | 2.5068(2)
225.00 | 2.6376(2) | 2.6898(2) | 2.6592(6) | 2.6704(6) | 2.6327(2) | 2.6352(2)
250.00 | 2.7521(2) | 2.8117(2) | 2.7717(5) | 2.7850(5) | 2.7515(2) | 2.7541(2)

*

Center deflection, w (*iteration times to converge), SS3 various models

P = gon Model (IIT) Model (IV) Model (I) | Model (II)

4x4-L | 2x2-Q Ax4-L | 2x2-Q 2x2-Q 2x2-Q

0.00 0.0000 | 0.0000 | 0.0000 | 0.0000 0.000 0.000
6.25 0.2911(4) | 0.2865(4) | 0.2912(4) | 0.2866(4) | 0.2718(4) | 0.2713(4)
1250 | 0.4779(3) | 0.4709(3) | 0.4784(3) | 0.4716(3) | 0.4561(3) | 0.4552(3)
25.00 | 0.7076(3) | 0.6978(3) | 0.7080(3) | 0.6982(3) | 0.6872(3) | 0.6860(3)
50.00 | 0.9763(3) | 0.9626(3) | 0.9760(4) | 0.9622(4) | 0.9578(3) | 0.9563(4)
75.00 | 1.1542(3) | 1.1375(3) | 1.1535(4) | 1.1367(4) | 1.1360(3) | 1.1345(4)
100.00 | 1.2914(3) | 1.2724(3) | 1.2908(4) | 1.2715(4) | 1.2730(3) | 1.2714(4)
125.00 | 1.4050(2) | 1.3841(2) | 1.4046(4) | 1.3832(4) | 1.3861(3) | 1.3845(4)
150.00 | 1.5030(2) | 1.4803(2) | 1.5015(3) | 1.4783(3) | 1.4834(2) | 1.4818(3)
175.00 | 1.5897(2) | 1.5655(2) | 1.5885(3) | 1.5636(3) | 1.5693(2) | 1.5678(3)
200.00 | 1.6679(2) | 1.6422(2) | 1.6669(3) | 1.6405(3) | 1.6467(2) | 1.6452(3)
225.00 | 1.7393(2) | 1.7124(2) | 1.7385(3) | 1.7107(3) | 1.7173(2) | 1.7159(3)
250.00 | 1.8054(2) | 1.7773(2) | 1.8047(3) | 1.7757(3) | 1.7825(2) | 1.7811(3)

that the distributions of stresses and bending moments of Model 11T are relatively more accurate
than those computed in the displacement model of FSDT, even though bending moments of
Model IIT have some oscillations at the inter-element boundary. Of course, the displacement
models exhibit even higher discontinuities in the bending moments as well as shear forces.
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Displacement based FSDT Model 1l (FSDT)-4 x4Q | Model I (CPT) -4 x4Q

Niex
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Mxx i ﬁ .
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| &

Figure 5 Post processed quadrant images of the variables in various models, SS3, with converged solution at
load parameter P = 250.
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(b) FSDT displacement model
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Figure 7 Plots of the non-linear bending moments of Model |1l and FSDT displacement model along the z =

2.5.

5 CONCLUSIONS

In this study, advantages and disadvantages of newly developed nonlinear finite element models
of plate bending are investigated. In almost every case, newly developed mixed plate bending
models provided better accuracy for linear and nonlinear solutions of deflections and stress
resultants. Model IV showed poor convergence compared with other models because of the
absence of typical displacement variables. An important observation of the present study is
that the mixed models do not experience significant locking.

In summary, the two main advantages of the mixed model are the reduction in the continuity
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requirements for the transverse deflection in CPT and the increase of the accuracy for the stress
resultants. Of course, there is a slight increase in computational cost due to the increased
number of degrees of freedom per node.
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