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Abstract 
Modeling and simulation of mechanical response of structures, 
relies on the use of computational models. Therefore, verification 
and validation procedures are the primary means of assessing 
accuracy, confidence and credibility in modeling. This paper is 
concerned with the validation of a three dimensional numerical 
model based on the finite element method suitable for the dynam-
ic analysis of soil-structure interaction problems. The soil mass, 
structure, structure’s foundation and the appropriate boundary 
conditions can be represented altogether in a single model by 
using a direct approach. The theory of porous media of Biot is 
used to represent the soil mass as a two-phase material which is 
considered to be fully saturated with water; meanwhile other parts 
of the system are treated as one-phase materials. Plasticity of the 
soil mass is the main source of non-linearity in the problem and 
therefore an iterative-incremental algorithm based on the Newton-
Raphson procedure is used to solve the nonlinear equilibrium 
equations. For discretization in time, the Generalized Newmark-β 
method is used. The soil is represented by a plasticity-based, effec-
tive-stress constitutive model suitable for liquefaction. Validation 
of the present numerical model is done by comparing analytical 
and centrifuge test results of soil and soil-pile systems with those 
results obtained with the present numerical model. A soil-pile-
structure interaction problem is also presented in order to shown 
the potentiality of the numerical tool. 
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1 INTRODUCTION 

The soil-structure interaction in general has been a concern and there is a need to further under-
stand and better model this interaction. Civil structures are commonly supported on reinforced 
concrete shallow or deep foundations. When the rock basement of the soil deposit is far from the 
soil surface and the shear resistance of the soil is adequate, deep foundations made of concrete piles 
are typically used. In this way, proper numerical analyses of these structures are of importance for 
the civil and geotechnical engineering community in order to improve designs in terms of safety and 
economy. The main function of piles is to transferred axial an lateral loads from the superstructure 
to a reliable soil. Thus, several studies have been advocated to the study of soil-pile interaction 
problems under lateral and axial loads by using simplifying or complex approaches (Taiebat and 
Carter, 2001, Gu et al., 2016,Khoadir and Mohti, 2014, Chatterjee et al., 2015). Other research 
groups have focused on the development of simplified expressions for evaluating pile displacements 
and bending moments along the pile axis (Khodair and Mohti, 2014) by using the subgrade reaction 
approach (Valsamis 2008, Valsamis et al. 2012, Chaloulos et al. 2013b). In this approach, the pile is 
treated as an elastic laterally loaded beam and the soil is idealized as a series of springs. Neverthe-
less, the nature of pile-soil interaction is three-dimensional and to complicate further the soil is a 
nonlinear and anisotropic medium (Khodair and Mohti, 2014). It is common practice to use deep 
foundations in areas where liquefaction may occur in surface layers. Thus, soil liquefaction is a close 
related topic because the soil mass surrounding the pile provides lateral support for the pile. This is 
the reason why is very important to study the behavior of deep foundation under lateral spreading 
since a small inclination of the ground surface can cause large deformations and thus, have a devas-
tating effect on civil structures. 

Liquefaction and associated shear deformation is a major cause of earthquake-related damage to 
piles and pile-supported structures. Pile foundation damage due to lateral spreading induced by 
liquefaction is documented in numerous reports and papers (Tasiopoulou et al., 2015a,b, Chaloulos 
et al., 2013a, Ou and Chan 2006, Maheshwari and Sarkar, 2011, McGann et al., 2012, Valsamis et 
al., 2012, Cuellar 2011, Tamayo 2015). Liquefaction can take place not only during seismic excita-
tion, but also some minutes later, thus consolidation phenomenon is also of interest in this work. 
The recognition of the importance of lateral ground displacement on pile performance has led to the 
development of analytical models capable of evaluating the associated potential problems. Modeling 
lateral ground displacement and pile response involves complex aspects of soil-structure interaction 
and soil behavior under large strains (Lu et al., 2004). 

The soil mass should be modeled explicitly in the finite element mesh in order to simulate all 
the involved phenomena. In this way, soil-structure interaction effects are automatically accounted 
for. The numerical modeling of soil-structure interaction problems is rather complex and there are 
two main methods, namely, substructure and direct methods. Although the substructure method is 
less expensive than the direct method in terms of computational memory and time, the latter is 
preferred since its robustness for treating all nonlinearities together (Jeremic 2004). In the direct 
method, the soil-structure model, which can be composed of shell, solid and beam-column elements, 
is analyzed in a single time step or load increment. Thus, the direct method is preferred in this 
work. 
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Another important aspect is the consideration of the dissipation of the excess pore pressure gen-
erated during the earthquake. Therefore, in order to count on with a reliable numerical tool for the 
complete analysis of this problem, it is necessary to validate extensively the numerical accuracy of 
the model (Tasiopoulou et al., 2015a, b). In this study, emphasis is given to the numerical modeling 
of soil-structure interaction problems based on deep foundations inserted in saturated soils under 
seismic actions. Hence, a general three-dimensional numerical model is coded by using the Fortran 
programming language. The inelastic behavior of the soil mass, soil-pile interface and concrete piles 
(Tamayo et al., 2013) can be included in the present numerical model. Nevertheless, for the valida-
tion examples presented in this work, the influence of slipping at the soil-pile interface in the global 
response of the soil-pile system was found to be negligible and this effect can be omitted with safe-
ty. This fact is also supported in Chaloulos et al. (2013a) and Cuellar (2011) where it is stated that 
cohesionless soils can move together with piles, therefore none opening occur at the soil-pile inter-
face. It is assumed that concrete piles have high strengths and they can be modeled as linear elastic 
materials. This last fact is acceptable since concrete piles are usually designed to remain elastic be-
cause subsurface damage is difficult to assess or repair. The adjacent saturated soil mass is consid-
ered to be fully saturated with water and its modeling is done by using the theory of porous media 
of Biot (Zienkiewicz et al., 1980, Lewis and Schrefler, 1998). The stress-strain behavior of the soil is 
represented by a plasticity-based effective stress constitutive model namely PZ-Mark III model 
(Pastor et al., 1990), which is suitable for simulating the behavior of cohesionless soils, including 
shear-induced pore-pressure generation (dilatancy) and cyclic mobility (Kumari and Sawant, 2013). 
The complete soil-structure interaction problem is solved within the framework of an incremental-
iterative procedure of the Newton-Raphson type, while the Generalized Newmark-β scheme is used 
for solving the equilibrium equations in time. 
 
2 FINITE ELEMENT FORMULATION AND IMPLEMETATION 

The pile foundations and the structure above the ground level are modeled as one-phase materials 
(solids) with linear elastic laws and their formulations can be found in any book related to the finite 
element method. Otherwise, the saturated soil system is modeled as a two-phase material based on 
the theory of porous media of Biot. A numerical formulation of this theory, known as u-p formula-
tion (in which displacement of the soil skeletonu , and pore pressure p , are the primary unknowns) 

was implemented. This implementation is based on the assumptions of small deformation and rota-
tion and negligible fluid acceleration relative to the solid. The formulation presented here has been 
validated extensively with several experimental results in various works (Ou and Chan, 2006, Lewis 
and Schrefler, 1998, Tasiopoulou et al. 2015a,b, Kumari and Sawant, 2013). For more details about 
this section the reader is referred to the work of Tamayo (2015). 
 
2.1 Governing Equations 

The coupled set of equations of Biot that governs the behavior of a saturated porous media is given 
in the following way: 

Equilibrium of mixture is defined in the following manner: 
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0,  ifiijij anub    (1)
 

where ij is the total stress tensor of the skeleton (tensile positive), iu is the acceleration of the solid 

skeleton, ib is the body acceleration per unit mass, s , f  and   are the densities of the solid 

grain, fluid and mixture, respectively, with fs nn   )1(  and n  being the porosity of the 

porous media and ia  represents the component of the fluid acceleration relative to the solid in the 

ix  direction. When the deformed and undeformed configuration of the porous media are almost 

identical (the case of small deformations and rotations), the concepts of Lagrangian and Eulerian 
porosity are the same. The porosity and the specific mass of the porous media can vary significantly 
along time during a consolidation analysis and therefore these variables must be updated continu-
ously. On the other hand, in earthquake related problems, the duration of interest is very short (5-
20 sec.) and during the shaking, it is possible to have flow of water within the soil mass, however it 
is not expected that the porosity change in this short period can be of any significant order (Leung 
1984). 

Equilibrium of fluid: 
 

  0,  iiifii aubRp   (2)
 

where R  represent the viscous drag forces which, assuming the Darcy seepage law can be written as 

ijij wRk  , gkk f  / , where f  and g   are the fluid density and gravitational acceleration at 

which the permeability is measured and k  is the permeability of soil with dimensions of [m]/[sec.]. 
Conservation of mass for fluid phase 
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where iiw , is the flow divergence in the unit volume, ii  is the increased volume due to a change in 

strain, fKpn /  is the additional volume stored by compression of void fluid due to the fluid pres-

sure increase, sKpn /)1(  is the additional volume stored by the compression of grains by the fluid 

pressure increase and ssiiT KKpK /)/(    is the change in volume of the solid phase due to a 

change in the inter-granular effective contact stress. The mass conservation equation can be further 
expressed by using the definition of ~  and Q  in the following way: 
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where TK  is the average bulk modulus of the solid skeleton, sK is the average material bulk modu-

lus of the solid components of the skeleton and fK is the bulk modulus of the fluid, with 

sfsf KnKnKnKnQ /)1(//)~(//1    and sT KK /1~  .Combining eqs. (2)-(4), to-
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gether with eq. (1), neglecting the underlined terms which are generally small, the governing equa-
tions of the u-p formulation can be expressed in the following way: 
 

0,  iijij ub   (5) 
 

  0~

,

, 













Q

p
bup

g

k
ii

i

jfjfj
f

ij  


 (6)

 

For most soils, 1~  , that is, the incompressibility of the soil grains is considered ( Ts KK  ).  

 
2.2 Discretization of the Governing Equation in Space 

For the spatial discretization of the governing equations, the finite element method is used. The 

variables u  and p  are interpolated by suitable shape functions uN and pN , respectively, in the 

following manner: 
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where û  and p̂  are the nodal displacement vector and the nodal pressure vector, respectively. The 

definition of Biot effective stress (in vectorial form) is given in the following form: 
 

pmσσ ~  (9)
 

where m  is the vectorial form of the delta of Kronecker. The governing eqs. (5)-(6) may be ex-
pressed in the following finite element matrix form (Lewis and Schrefler 1998):  
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where M  is the consistent mass matrix, Q is the coupled matrix, H  is the permeability matrix, S  

is the compressibility matrix, G  is the seepage matrix, uf  and pf  are the volume forces that act 

on the surface   for the solid and fluid phase, respectively, L  is a matrix operator of derivate, B  
is the usual strain-displacement matrix and t  is the prescribed traction on boundary andw is the 
prescribed influx. Viscous damping is also incorporated into the dynamic equation of the solid phase 
(eq. 10) in the form of uC , where 
 

KMC 21    (20)
 

is called the Rayleigh damping matrix (Kumari and Sawant 2013). The coefficients 1 and 2 can 

be obtained by selecting a damping ratio n  and a certain frequency n  such that 
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When consolidation analysis is of interest, it is only necessary to eliminate all inertial terms in the 
above formulation. Otherwise, nonlinear elasticity and theory of generalized plasticity are used to 
determine the relationships between incremental stresses and strains. The incremental stress-strain 
relationship is expressed in the following form: 
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where σd  and epD are the incremental stress and elastoplastic constitutive material tensors, re-
spectively. The elastoplastic constitutive material is defined in the following way: 
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where eD , n , UgL /n  and ULH /  are the elastic constitutive tensor, loading direction vector, flow 

direction vector under loading or unloading conditions, and loading or unloading plastic modulus, 
respectively. 
 
2.3 Discretization in Time 

In this work, eqs. (10)-(11) must be integrated in time using the single-step Generalized Newmark-β 
(GNpj) method. Using GN22 for the displacements u  and GN11 for the pore pressure p , the fol-

lowing expressions are obtained: 
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and 
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where 500. , 250. and 0.1 are used for unconditional stability of the integration scheme 

and t  refers to current time. For a time interval t , the second term on the left hand side of eq. 
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2.4 Constitutive Model for Sands 

Soil behavior under cyclic loading is complex. Hence, the constitutive model used in a numerical 
code should be able to capture important features of soil behaviour under cyclic loading such as 
permanent deformation, dilatancy, and hysteresis loops to obtain reliable solutions of displacements 
and pore water pressure. For this study the constitutive model described by Pastor et al. (1990) was 
used for the sand. The P-Z Mark III model is a generalized plasticity-bounding surface-non associa-
tive type model (Kumari and Sawant, 2013). The model is described by means of yield surfaces and 
potential surfaces which are described by the following equations: 
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in which, p  is mean confining stress; q  is deviatoric shear stress; gM  is slope of the critical state 

line; f and g are constants; cp  and gp  are size parameters. The dilatancy of the sand in the P-

Z Mark III model is approximated using the linear function of the stress ratio pq / as (Kumari 

and Sawant, 2013): 
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and p
vd and p

sd are incremental plastic volumetric and deviatoric strains, respectively. gM  is 

related to the angle of friction    by the Mohr-Coulomb relations in the following way: 
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value of S  is 1  based on compression or extension. The plastic flow direction under loading gLn  

is given in the following way: 
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The non-associated flow rule is used, and then the loading direction is expressed as: 
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with 
 

    fff Md 1  (35)
 

fM maintains a constant ratio with gM . Pastor et al. (1990) assumed this ratio to be dependent 

on relative density ( rD ) suggesting a relation for fM  in the following manner: 
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In the P-Z Mark III model, the plastic modulus for loading ( LH ) is obtained as: 
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with 
 

  fff M /11  ;   p
qdd   (38)

 

where oH , o  and 1  are model parameters; and d is plastic deviatoric strain increment. The 

undrained triaxial test predict rapid pore pressure build up on unloading. This highlights the neces-
sity to predict plastic strains on unloading in a constitutive model. The P-Z Mark III model uses 
the following expression for the plastic flow direction gUn  and the unloading plastic modulus uH . 
 
























23cos

1
1

1
2

g

g

g

gU

qM

d

d
n  (39)

 

u

u

g
uou

M
HH



 







  for 1

u

gM


 (40)

 

uou HH   for 1
u

gM


 (41)

 

u is called the unloading stress ratio given by 
 

 uu pq /  (42)
 

uoH  and u are specified material constants. 

 
3 NUMERICAL EXAMPLES 

3.1 Sand Deposit Submitted to Harmonic Loading at Base (Taboada and Dobry, 1993) 

For verification of the developed code towards liquefaction analysis, the class A prediction of the 
experiment No 1 of VELACS (Verification of Numerical Procedures for the Analysis of Soil Lique-
faction Problems) project is considered. The experiment carried out by Taboada and Dobry (1993) 
consists of a 0.20 m high, horizontal, uniform Nevada sand layer, which is placed in a laminar box 
at a relative density of about 40% (loose sand). The purpose of the laminar box is to simulate the 
response of a semi-infinite loose sand layer during shaking. A sketch of the laminar box and the 
instrumentation used for this experiment is presented in Figure 1(a). Material properties are listed 
in Table 1 (see loose sand column with relative density Dr = 40%). The experiment was carried out 
at 50-g acceleration, where g is the gravity acceleration. The soil deposit is submitted to a lateral 
movement at its base according to harmonic function shown in Figure 2 with a maximum peak 
acceleration of 0.2g. 
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(a) Instrumentation  

used in model Nº 1 

(b) Finite element mesh 

(in prototype scale) 

Figure 1: Geometry and mesh of the finite element model 
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Figure 2: Horizontal input motion at bottom. 

 
Numerical modeling is done in model scale using a three dimensional formulation with a plane-

strain condition. For this purpose, lateral faces at the xz plane are allowed only to move in its 
plane. Due to symmetry, only half of the model is considered. The finite element mesh is composed 
of 5120 coupled hexahedral finite elements with 8-node for pore pressure and 8-node for solid dis-
placements (called here 8-8 node elements). The number of degrees of freedom to solve is 24276. 
The mesh is regular and uniform as shown in Figure 1(b). The laminar box is modeled with the 
constraint of the lateral tied nodes. The displacements of nodes located at the two ends of the soil 
at the same level are restrained to have the same value. The base nodes are fixed in both horizontal 
and vertical directions. Dissipation of pore pressure is allowed only through the top surface of the 
layer; the lateral boundaries and the base are kept impermeable. The maximum size of a finite ele-
ment in the mesh is limited to   fVL s /8

1
5
1   in order to permit good wave transmission within 

the model, where sV  is the shear wave velocity of the soil and f  is the predominant frequency of 

loading. The limitation in the xy plane is more flexible and the subdivision in this plane can be cho-
sen between LL  53 (Tamayo 2015). The Rayleigh damping matrix was used with a damping 
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coefficient of 5 % and with a circular frequency of loading f 2 .First a static analysis due to 

application of gravity (model’s own weight) is performed before seismic excitation. The resulting 
fluid hydrostatic pressures and stress-states along the soil mass are used as initial conditions for the 
subsequent dynamic analysis (Ou and Chan, 2006).The magnified deformed mesh and excess pore 
pressure at the end of the analysis are shown in Figures 3(a)-(b), respectively. In Figures (4)-(5) are 
compared the development of the excess pore pressure at points P1, P2 and P3, P4, (see locations 
in Figure 1(a)), respectively, as predicted by the present numerical model and those recorded in the 
experiment. In Figure 6, the lateral displacement at locations LVDT3 and LVDT4 are also depict-
ed. As it can be seen, a reasonable good agreement between numerical and experimental results is 
shown. 
 

 Property 
Loose sand 
(Dr=40%) 

Dense sand 
(Dr=60%) 

Units 

Elastic linear analysis     

Elasticity modulus  30000 30000 kPa 

Coefficient of Poisson  0.3 0.3  

Non-linear analysis with PZ-Mark III    

Compressibility modulus at op  evoK  770  2000 kPa 

Shear modulus at op  esoK  1155 2600 kPa 

Reference pressure op  op  4 4 kPa 

Critical state line gM
 1.15 1.32  

State line for loading fM
 1.035 1.3  

Dilatancy parameter g
 0.45 0.45  

Dilatancy parameter f
 0.45 0.45  

Shear hardening parameter o  4.2 4.2  

Shear hardening parameter 1  0.2 0.2  

Plastic modulus for loading oH  600 750 kPa 

Plastic modulus for unloading uoH  4000 40000 kPa 

Parameter for plastic unloading u  2 2  

Other properties     

Specific mass of the soil   2.089  kN.s/m4 

Specific mass of the fluid f  0.98  kN.s/m4 

Volumetric modulus of the solid 
particle 

sK  1017  kPa 

Volumetric modulus of the fluid fK
 1.092x106  kPa 

Porosity n  0.363   

Permeability (prototype scale) k  3.3x10-3   m/s 

Permeability (model scale) k  6.6x10-5   m/s 

Gravity acceleration g  9.81  m/s2 

Table 1: Soil properties. 
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a) Deformed mesh (m) b) Excess pore pressure (kPa) 

Figure 3: Deformation and excess of pore pressure after 16.38 s. 
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Figure 4: Excess pore pressure histories for P1 and P2. 
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Figure  5: Excess pore pressure histories for P3 and P4. 
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Figure 6: Lateral displacement for LVTD3 and LVDT4. 

 
 

Cycles of shear stress-strain histories for different depths in the soil mass are shown in the left 
part of Figure 7. The shear stress h  refers to the shear stress component xz acting in the plane 

perpendicular to the longitudinal movement due to shaking, while h  is the associated shear defor-

mation component xz . As it may be observed, the shear deformation reaches a maximum value 

around 1.5%. Similarly, the right part of Figure 7 shows the associated shear stress-effective vertical 
stress paths in the soil mass. As it may be observed, soils at depths 2.81 m and 5.31m are in a liq-
uefied state because the effective vertical stresses has almost reduced to zero at the end of shaking. 
 
3.2 Soil-Pile System Under Consolidation Load (Taibet and Carter, 2001) 

In Taibet and Carter (2001) is studied the time-dependent behavior of a vertical pile inserted in a 
saturated soil mass and which is submitted to a lateral loading H at its head. In the mentioned 
reference, a semi-analytical finite element method based on discrete and continuous Fourier trans-
formations was used for the analysis of the saturated porous media. The pile diameter is 0.2pD m 

and this is inserted in a non-cohesive saturated soil deposit that follows the Mohr-Coulomb law. 
The influence of the dilatancy angle   in the soil and pile response was studied by the authors 

considering a constant porosity value along time. The initial effective stresses in the soil mass are 
determined with a lateral earth coefficient at rest of 0.5. The geometry of the problem, boundary 
conditions and the finite mesh used in this work are shown in Figure 8. It is important to comment 
that in Taibet and Carter (2001), a semi-analytical plane finite element mesh was used and this 
mesh served as a basis for the discretization of three-dimensional mesh shown in Figure 8(b). The 
pile is considered to be elastic and material properties are listed in Table 2. 
 
 
 



1558     J.L.P. Tamayo and A.M. Awruch / On the Validation of a Numerical Model for the Analysis of Soil-Structure Interaction Problems 

Latin American Journal of Solids and Structures 13 (2016) 1545-1575 

 
 

2.81 m

-12.0

-8.0

-4.0

0.0

4.0

8.0

12.0

-2.0 -1.0 0.0 1.0 2.0

τ
h

(k
P

a)

γh (%)

2.81 m

-12.0

-8.0

-4.0

0.0

4.0

8.0

12.0

-30 -25 -20 -15 -10 -5 0

τ
h

(k
P

a)

σ'v (kPa)

5.31 m

-12.0

-8.0

-4.0

0.0

4.0

8.0

12.0

-2.0 -1.0 0.0 1.0 2.0

τ
h

(k
P

a)

γh (%)

5.31 m

-12.0

-8.0

-4.0

0.0

4.0

8.0

12.0

-60 -50 -40 -30 -20 -10 0

τ
h

(k
P

a)

σ'v (kPa)

7.81 m

-16.0

-12.0

-8.0

-4.0

0.0

4.0

8.0

12.0

16.0

-2.0 -1.0 0.0 1.0 2.0

τ
h

(k
P

a)

γh (%)

7.81 m

-16.0

-12.0

-8.0

-4.0

0.0

4.0

8.0

12.0

16.0

-80 -60 -40 -20 0

τ
h

(k
P

a)

σ'v (kPa)

Figure 7: Cycles of shear stress-strain histories (left) and shear stress-effective vertical stress paths 

(right) in the soil at 2.81 m, 5.31 m, and 7.81 m depths 
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a) Transversal section b) Isometric view 

Figure 8: Geometry, boundary conditions and finite element mesh 

 
Material Property  Units 

Soil    

 Specific weight (γs) 17  kN/m3 

 Elasticity modulus (Es ) 30000  kPa 

 Coefficient of Poisson (νs) 0.3  

 Cohesion c 0.0  kPa 

 Friction angle (Ф’ ) 30 o 

 Dilatancy angle (Ψ) 0 (non-associative) or 30 (associative) o 

 Permeability (k) 1x10-4 m/s 

 Fluid specific weight (γf ) 10 kN/m3 

Concrete    

 Specific weight (γc) 23 kN/m3 

 Elasticity modulus (Ec ) 30x106 kPa 

 Coefficient of Poisson 
( )

0.2  

Table 2: Material properties. 

 
The finite element mesh is formed by 996 20-8 node hexahedral finite elements (20 nodes for the 

solid phase and 8 nodes for the fluid one) for simulating the saturated soil and 84 20-node hexahe-
dral elements for modeling the concrete pile. The number of equations to solve is 16032. In order to 
provide a direct comparison with the results provided by Taiebat and Carter (2001), all obtained 

results are expressed in terms of a dimensional time 2)1)(21()1( pssfssv DvvtEvkT   , load 

rate   vpf dTDHd 3/    and pile diameter pD . 

An elastic analysis of the problem was first conducted to evaluate the accuracy of the present 
model. A horizontal load H  was applied rapidly to the pile head, thereafter the load was held con-
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stant with time (ramp load). The predicted lateral displacement of the pile head in the direction of 
the applied load is plotted against the dimensionless time, vT  in Figure 9. Results of the analysis 

using the discrete and continuous Fourier series method suggested by Taiebat and Carter (2001) are 
also shown for comparison. As it may be observed, the results of the analysis using the discrete 
Fourier approach are in close agreement with the results obtained in the present analysis. 
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Figure 9: Lateral displacement at pile head 

 
Secondly, in a series of elasto-plastic analysis, the total lateral load was varied from 

35 pf DH   to 360 pf DH  , where f  is the specific weight of the water . In each case the total 

load was applied during a time interval of 0001.0vT , with a loading rate of 100000 . This 

loading rate was sufficiently high to approximate an initial undrained loading. Thereafter, the load 
was held constant in time and the analysis was continued, allowing excess pore pressures to dissi-
pate, and thus for the soil to consolidate. The time-dependent lateral displacements at the pile head 
predicted by the elasto-plastic analyses with both associated (dilatancy and friction angles are 
equal) and non-associated (null dilatancy angle) flow rules are plotted in Figure 10 for the particu-

lar case of 315 pf DH  . The response of the pile in elastic soil is also presented. 

The largest pile head displacement is predicted by the elasto-plastic soil model with a non-
associated flow rule. This displacement value is almost twice the value predicted by using an associ-
ated flow rule. The stiffer behavior of a pile in soil with associated flow rule can be attributed to the 
dilative characteristics of the soil after failure. Expansion of the soil after failure increases confining 
pressures which in turn increase soil resistance, causing stiffer behavior in comparison to the behav-
ior of soil with non-associated flow rule (Taiebat and Carter, 2001). The predicted load-horizontal 
displacement curves at the pile head under fully drained (load is applied slowly) and undrained 
conditions are presented in Fig. 11. 
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In order to permit a direct comparison with the results provided by Taiebat and Carter (2001), 
the excess pore pressures p  are expressed in a non-dimensional form  pf Dp / .The distributions 

of the dimensionless excess pore pressures at the end of rapid loading for 315 pf DH   are shown in 

Figures 12(a)-(b) for the cases of soil with an associated and non-associated flow rule, respectively. 
The interested reader can compare these distributions with those provided in the work of Taiebat 
and Carter (2001) and good agreement can be inferred. 
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Figure 10: Lateral displacement at pile head 
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Figure 11: Lateral displacement at pile head versus applied lateral force H 
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a) Associated flow rule b) Non-associated flow rule 

Figure 12: Dimensionless excess pore pressure close to the pile 

 
3.3 Soil-Pile System Under Harmonic Load (Abdoun, 1997) 

In the centrifuge test reported by Abdoun (1997), a single pile model (called model No 3 in the ex-
perimental work) was embedded in a saturated soil deposit and submitted to a lateral movement at 
its base. The experiment was conducted using the rectangular, flexible-wall laminar box container 
shown in Figure 13(a). The soil profile consists of two layer of fine Nevada sand saturated with 
water: a top liquefiable layer of relative density, Dr = 40% and 6 m prototype thickness, and a bot-
tom slightly cemented non-liquefiable sand layer with a thickness of 2 m. According to the experi-
mental work, the cemented non-liquefiable sand layer has similar properties of a non-liquefiable 
sand layer with Dr = 60%. Material properties are listed in Table 1. The prototype single pile is 0.6 
m in diameter, 8 m in length, has a bending stiffness, EI = 8000 kN.m2, and is free at the top. The 
model has an inclination angle of 2o (model scale) and is subjected to the predominantly 2Hz har-
monic base excitation shown in Figure 14 with a peak acceleration of 0.3g, where g is the gravity 
acceleration. 

The centrifuge test was simulated using the above-described three-dimensional finite element 
model. As it may be observed in Figure 13(b), the soil domain and the single pile were discretized 
using 3D 8-8 node and 8-node brick finite elements, respectively. The finite element size in the mesh 
is limited to a maximum value in order to permit a good wave transmission (see example of section 
3.1). A half mesh configuration is used due to symmetry considerations. The number of degrees of 
freedom in the mesh is 6056. The boundary conditions were (i) dynamic excitation was defined as 
the recorded base acceleration, (ii) at any depth, displacement degrees of freedom of the downslope 
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and upslope boundaries were tied together (both horizontally and vertically) to reproduced a 1D 
shear beam effect, (iii) the soil surface was traction free, with zero prescribed pore pressure, and (iv) 
the base and lateral boundaries were impervious. A static application of gravity (model own weight) 
was performed before seismic excitation. The resulting fluid hydrostatic pressures and soil stress-
states served as initial conditions for the subsequent dynamic analysis. The Rayleigh damping ma-
trix was used with a damping coefficient of 5 %. 

 

 
(a) Instrumentation used in model 3 (b) Finite element mesh (in prototype scale) 

Figure 13: Geometry and mesh of the finite element model. 
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Figure 14: Movement at base (Abdoun 1997). 

 
With a mild inclination of 2o, model 3 attempts to simulate an infinite slope subjected to shak-

ing parallel to the slope. However, it was noted that, in the centrifuge test, the soil surface gradual-
ly lost the slope and became level during the shaking phase. To simulate such behavior of losing the 
surface slope, a horizontal component of gravity varying with time was applied to the finite element 
simulation. The load-time history of the applied horizontal gravity component was calculated based 
on the recorded lateral displacement at ground surface (Lu et al., 2004). Figures 15(a)-(b) displays 
the computed lateral displacements and pore pressure ratios, respectively, at the end of the analysis. 
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As it can be seen, liquefaction was reached down to a depth of 5.0 m (see Figure 15(b)), as indicat-
ed by the pore-pressure ratio ru approaching to 1.0 (ru = vp   /  where p  is the excess pore pres-

sure and v   is the initial effective vertical stress). The Nevada sand layer remained liquefied until 

the end of shaking and beyond. Thereafter, excess pore pressure started to dissipate. 
The mild inclination of model 3 also imposed a static shear stress component (due to gravity), 

causing accumulated cycle-by-cycle lateral deformation. The recorded and computed short-term and 
long-term excess pore pressure histories for two control points (PP1 and PP2) at depths of 1 m and 
5 m are compared in Figure 16 and Figure 17, respectively. Both computed and recorded results 
displayed a number of instantaneous sharp pore pressure drops after initial liquefaction. The numer-
ical results obtained in the works of Lu et al. (2004) and Valsamis (2008) are also depicted for com-
parison. 
 

(a) Deformed mesh (m) 

(b) Potential of liquefaction (ru) 

Figure 15: Finite element results at the end of shaking. 
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Figure 16: Short-term excess pore pressure time histories of PP1 and PP2 
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Figure 17: Long-term excess pore pressure time histories of PP1 and PP2 

 
The permanent lateral displacement of the ground surface after shaking is approximately 100 

cm. All lateral displacement occurred in the top 6.0 m within the liquefiable sand layer. The top 
graph in Figure 18 shows the recorded and computed pile lateral displacement at the soil surface 
during and after shaking. The computed pile lateral displacement increased to 40 cm and decreased 
to approximately 8 cm at the end of shaking. The bottom slightly cemented sand layer, as indicated 
in the bottom graph, did not slide with respect to the base of the laminar box. Lateral displace-
ments at some other control points in the soil mass are also shown in Figure 18. 

Figure19 shows the profile of pile lateral displacements obtained with the present numerical 
model for the time in which the maximum lateral displacement occurs at the pile head. In the same 
graph are also depicted the pile displacement predictions according to some simplifying approaches 
based on the works of Valsamis et al. (2012), Brandenberg (2005), Cubrinovski et al. (2006), 
Tokimatsu and Asaka (1998), American Petroleum Institute (API, 2005), High Pressure Gas Safety 
Institute of Japan (HPGS, 2000) and Railway Technical Research Institute (RTR, 1999). All these 
references have used a methodology based on the subgrade reaction approach (p-y method). As it 
may be observed, there is a great difference among all methodologies. The closer predictions to the 
experimental values are due to the works of RTR (1999), API (1995) and Brandenberg (2005). 

Because it is true that major liquefaction does not necessarily takes place at the end of the 
shaking, in Figure 20 is depicted the liquefaction evolution measured by the ru factor at different 
time instants. As it may be observed, a dilatation zone appears close to the pile head (blue color 
zones). At the end of the shaking (after 25 seconds of analysis), liquefaction almost took place in 
the top liquefiable sand layer, thus reflecting a similar condition as established in the experimental 
work (Lu et al., 2004). 

Figure21 shows the cycles of shear stress-strain histories in the soil mass for depths of 1.5 m, 3.5 
m and 5.5 m, respectively, in the soil zones close to the pile (near field) and at the edge of the lami-
nar box (free-field). As it may be observed, the maximum shear deformation component expressed 
in percentage occurs for a depth of 1.5 m (around 22%) in the near field, while it is around 23% in 
the free-field for a depth of 3.5 m. As it was stated in the introduction section, liquefaction and 
associated shear deformation in the present example are considerable. 
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Figure 18: Lateral displacement at various monitoring points 
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Figure 19: Profile of pile lateral displacements 

 

 
1.25 s 2.5 s 

 
5 s 7.5 s 

 
10 s 12.5 s 

 
15 s 16.5 s 

 
20 s 25 s 

Figure 20: Evolution of liquefaction in the soil mass measured by the liquefaction potential factor ru. 
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Figure 22 shows the shear stress- effective vertical stress paths during shaking for the soil zones 
located in the near field and free-field. As it may be inferred from the graphs, all soil samples have 
an initial effective vertical stress and a static shear stress value as a result of the initial conditions of 
the soil (gravity load) and due to the surface inclination. During shaking the effective vertical stress 
is almost reduced to zero for various soil depths due to soil liquefaction. 
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Figure 21: Cycles of shear stress-strain histories in the soil at 1.5 m, 3.5 m, and 5.5 m depths for model 
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Figure 22: Shear stress-vertical effective stress paths in the soil at 1.5 m, 3.5 m, and 5.5 m depths 

 
3.4 Soil-Structure Interaction Examples Under Harmonic Load 

In order to show the potentiality of the present numerical model, a soil-structure interaction prob-
lem is studied. A steel frame building is supported by a group of concrete piles which are square 
and have a length and side length of 10.5 and 0.5 m, respectively. The number of piles in the group 
is 35 (configuration 7x5, seven piles along the x direction and five piles along the y direction with a 
space ratio s/d = 3, where d is the side length of the pile and s is the distance among piles) and 
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they are joined together by a concrete cap. The soil domain is defined by a region of 41.5 m x 30.5 
m x 14m along the x, y and z directions, respectively. The typical story height of the steel frame is 3 
m and this story is composed of three and two spans of 3.25 m each one along the x and y direc-
tions, respectively. The finite element mesh used in the analysis is shown in Figure 23 and it is 
formed by 1380 8-node hexahedral finite elements for modeling the pile and cap, 15816 8-8 node 
hexahedral finite elements for modeling the soil domain, 230 8-node quadrilateral zero-thickness 
contact elements for modeling the soil-pile interface and 228 2-node truss elements for modeling the 
steel frame. A half mesh configuration is used due to symmetry considerations and the number of 
degrees of freedom to solve is 77980. The structural steel properties used in the computations corre-
spond to a W13x426 section with a specific weight of 7.8 kN/m3. In order to show liquefaction, the 
soil mass is considered to be composed of a uniform liquefiable sand layer with a relative density Dr 
= 40% (see Table 1). The load is applied at the base of the model by using the E-W component of 
the Centro earthquake (1940) as shown in Figure 24. The predominant frequency of the earthquake 
is 2Hz and the damping ratio for the Rayleigh damping matrix is 5%. The boundary conditions 
used in the example of section 3.3 are also used here. 
 

a) Isometric view of soil-frame system b) Plane xz c) Plane yz 

Figure 23: Finite element mesh for soil-steel frame system 
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Figure 24: The Centro Earthquake (1940, E-W component) 

 
In Figure 25 is shown the evolution of the liquefaction potential factor ru for different time 

steps. As it may be observed, liquefaction starts after 4 seconds of analysis in the soil zones among 
piles. Thereafter, the liquefaction mechanism spreads out to the lateral edges of the soil domain. 
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Figure 26 shows the lateral displacement histories at the pile cap and stories of the steel frame. As 
it may be observed, the maximum lateral displacement at the cap is around 0.10 m. Because the 
soil zones among piles are almost liquefied and there is not exist a non-liquefiable surface layer, the 
soil zones surrounding the piles do not provide a rigid lateral support, thus pile lateral displace-
ments increase considerably. 
 

  
a) 2 s b) 4 s 

  
c) 8 s d) 16 s 

  
e) 20 s f) 30 s 

Figure 25: Evolution of liquefaction potential according to ru factor 

 
In order to study the soil-structure effect in the problem, Figure 27 shows the axial force histo-

ries in truss elements for the case of the steel frame clamped to the ground directly (fixed base) and 
when the soil domain is included in the analysis (flexible case). It may be observed that both cases 
yielded considerably different axial forces in the elements with the absolute higher values associated 
to the flexible base condition. Precisely, Figure 28 shows the axial force histories in two representa-
tive elements namely element 1 and element 2 (see Figure 23) of the steel frame for both supporting 
conditions. 
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Figure 26: Horizontal displacements at different levels of the structure 

 

  
a) 4 s (fixed base) b) 4s (flexible base) c) 12 s (fixed base) 

  
d) 12 s (flexible base) e) 20 s (fixed base) f) 20 s (flexible base) 

  
g) 30 s (fixed base) h) 30 s (flexible base) 

Figure 27: Axial force histories in truss elements (kN) 
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Figure 28: Axial force histories in elements 1 and 2 

 
As it may be observed, the axial forces in these elements are significantly different for the cases 

of rigid and flexible base support. Thus, for the present example, the soil deposit must be included 
in the analysis. This result was expected since the soil mass is represented by a loose sand layer, 
which is not rigid at all. 
 
4 CONCLUSIONS 

In this study, a computer program for the three dimensional finite element analysis of soil-structure 
systems was developed. The numerical model uses the coupled dynamic field equation with the u-p 
formulation of Biot’s theory for modeling saturated soils, while concrete caps and piles are modeled 
as monophasic materials. The superstructure can be modeled by using shell, solid and beam-column 
finite elements. The numerical model is firstly validated with some benchmarks found in the tech-
nical literature. Detailed comparison between numerical and experimental results for soil and soil-
pile systems showed acceptable matching. Also, the numerical model was able to predict dilatation 
zones close to the pile heads, which characterize soil-pile systems involving liquefaction. Only after 
validation processes have been successfully completed, the following parametric studies can be done 
with the aim of the present numerical tool. Numerical modeling and simulation can be used to pre-
dict the behavior of piles or pile groups embedded in fully saturated soils and thus used to improve 
design in terms of safety and economy. When liquefaction is involved in the analysis, a complex 
constitutive model capable of simulating dilatancy and cyclic mobility in the soil mass was proved 
to perform well. Potentiality of the numerical tool is shown by modeling a steel frame building sup-
ported by a group of concrete piles under seismic load. The obtained results showed that the soil 
zones among piles have a high potential of liquefaction (ru close to one). Also, axial forces in the 
steel frame elements are underestimated when the frame is considered to be clamped to the ground 
directly. Studies are in progress in order to improve the modeling of hysteretic damping in the soil. 
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