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Abstract 
Strand tension control is essential in suspension bridge safety. 
However, few quantitative studies have examined the bending 
rigidity and boundary condition behavior of strands in the anchor 
span of suspension bridges because of their special structure and 
complex configuration. In this paper, a new calculation method for 
strand tension is explored by using dynamic balance theory to 
determine the effect of bending rigidity and boundary conditions. 
The accuracy and effectiveness of the proposed method are tested 
and confirmed with verification examples and application on Nanxi 
Yangtze Suspension Bridge in China. The results indicated that 
only low-order frequency calculation could be used to calculate the 
strand tension without considering the effect of bending rigidity to 
ensure control accuracy. The influence of bending rigidity on the 
control precision is related to the tension and the length of the 
strands, which is significantly determined by the specific value 
between the stress rigidity and the bending rigidity. The uncertain 
boundary conditions of the anchor span cable, which are fixed 
between consolidated and hinged, also have a major effect on the 
control accuracy. To improve the accuracy of strand tension 
control, the least squares method is proposed during the tension 
construction control of the anchor span. This approach can 
significantly improve the accuracy of the tension control of the 
main cable strand. Some recommendations for future bridge 
analysis are provided based on the results of this study.  
 
Keywords 
Suspension bridge; dynamic balance method; bending rigidity; 
strand tension control; frequency method; least squares method. 
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1 INTRODUCTION 

During the erection of strands of a main cable in a suspension bridge, shape control of the main 
cable is mainly for the mid-span and side-span, while the inner tension control of the cable is mainly 
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for the strand of the main cable in the anchor span. In the structure, the spatial position of the 
splay saddle is directly affected by the tension control accuracy of the anchor span, while the linear 
position of the side-span structure and the mid-span are directly affected by the spatial position of 
the splay saddle. Furthermore, large deviations in the anchorage span cause the structure of 
anchoring force to be insufficient, thereby endangering the structure. Apparently, strand tension 
and spatial position are the two most important components in monitoring the main cable of a 
suspension bridge during its construction. The former is particularly important for the anchor span, 
and the latter is important for the middle and side spans. However, the structural linear position is 
decided by the force; thus, the former has a significant influence on the latter (Xu and Huang, 2002; 
Kreis and Andre, 2005; Yau, 2013; Wang et al., 2014). For the suspension bridge, the main cable 
consists of almost 100 strands, and the internal force of the main cable is equivalent to thousands of 
tons. Although a slight deviation is observed in the tension calculation of the strand, the 
accumulative deviation cannot be ignored. Therefore, large deviations in strand tension in the 
anchor span would lead to insufficient anchoring forces and result in potentially catastrophic failures 
(Wang et al., 2014; Loh and Chang, 2006; Cho et al., 2012). Meanwhile, tension control accuracy of 
the anchor span has a significant effect on the safety of a structure both during construction and 
service (Song et al., 2001; Geier et al., 2009; Fang and Wang, 2012). Therefore, the strand tension 
control of the anchor span is one of the most important tasks during strand construction of 
suspension bridges. 

At present, direct and indirect methods are the two main strand tension control methods. The 
direct method involves performing direct measurement using load measurement devices, whereas the 
indirect method performs an estimation based on the strand vibration. Direct methods measure 
strand tension by using a load cell or a pressure meter installed at the outset of a strand (Cho et al., 
2012). Although the direct method is accurate and straightforward, load measurement devices are 
costly and fragile (Song et al., 2001; Wang et al., 2015); for example, approximately 100 strands are 
arranged in each anchor span of a long-span suspension bridge, which makes these strands difficult 
to arrange on all anchoring points. To alleviate this problem, the indirect method was developed 
using vibration frequency of the strand, which is widely used in practice. However, the indirect 
method is easily affected by boundary conditions and bending rigidity (Ni, 2002; Riceiardi and 
Saitta, 2008; Liu and Liu, 2010; Choi and Park, 2011; Li et al., 2011). Many studies were conducted 
for cable tension control of cable-stayed bridges (Loh and Chang, 2007; Hua et al., 2009; Ye et al., 
2012), and a few conclusions could be taken as references for the strand tension control in the 
anchor span of suspension bridges. Although the structure characteristics between the strands in 
suspension bridges and the cables in cable-stayed bridges are similar, a detailed investigation 
showed that the former was shorter and stiffer, whereas the latter was longer and more flexible; 
references may be valuable for the latter but may not be directly used by the former. In addition, a 
notable detail is that accurate identification can be obtained by considering the effect of bending 
rigidity and boundary conditions (Ricciardi and Saitta, 2008; Zuo and Li, 2011). Strand tension 
control in suspension bridges needs further investigation.  

Based on the preceding brief review, existing analysis methodologies usually focus on cable 
tension control of cable-stayed bridges. To improve the accuracy of strand tension control in the 
anchor span of these bridges, this study explores a new calculation method based on dynamic 
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balance theory, considering the effect of the bending rigidity and the boundary conditions in 
particular. A numerical simulation was conducted and examples were verified to investigate the 
effectiveness of the proposed method. Then, the proposed method was applied to the strand tension 
control in a long-span suspension bridge, and the effectiveness was tested with the field data based 
on the arranged sensors and the true value of the design. Some conclusions and recommendations 
for future strand tension control of suspension bridges are given based on the method. 
 
2 DYNAMIC MODEL OF STRAND 

2.1 Model of Strand Vibration  

The strand of the main cable in the anchor span of a suspension bridge consists of multiple steel 
wires. Thus, the strands possess a certain bending rigidity. When we analyze the strand vibration 
included in the bending rigidity, we can denote the length of the cable as L, the angle of inclination 
as θ, the mass as m, the bending rigidity as EI, and the tension as T. The internal tension T 
remains unchanged when the cable vibrates slightly, as shown in Figure 1(a). 
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(a) Strand vibration model (b) Infinitesimal section model 

Figure 1: Models of strand vibration and infinitesimal section. 

 
To analyze the vibration equation of the cable, a section is randomly taken from within the 

length of the strand in an ideal state for analysis, as shown in Figure 2(b). The following can be 
deduced by establishing the dynamic balance equation in the y direction, as shown in Figure 2(b): 
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If the corner is infinitesimal when the strand vibrates slightly, then 
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and 
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Equation (4) can be deduced by substituting Equations (2) and (3) into (1), i.e., 
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and if 
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The following can be deduced by substituting Equation (5) into Equation (4):  
 

(4)

=EI T m
  
  

 
   (6) 

 

To establish Equation (6), we set both sides of the equation to be equal to the same constant c, 
i.e.,  
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The following can be deduced by breaking down Equation (7):  
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The following can be deduced by solving the first equation in Equation (8):  
 

( ) cos sint A t B t     (9) 
 

where = c

m
  is the circular frequency of the natural vibration of the strand. 

The following can be deduced by solving the second equation in Equation (8):  
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The pending unknown parameters A, B, C, D, E, and F in Equations (9) and (10) are 
determined by the boundary and initial conditions of the strand. The strand model with general 
boundary conditions can be simplified, as shown in Figure 2.  
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Figure 2: Strand model with general boundary conditions. 

 
In Figure 2, K1 and K3 are the rotating restraint rigidity on both ends of the strand. When K2 

and K4 are the vertical restraint rigidity on both ends of the strand, the boundary conditions of the 
strand are  
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Parameters C, D, E, and F are obtained from the jointly established Equations (11) and (12), 
which have non-zero solutions, to solve the relational equation between the frequency and the 
strand tension.  
 
2.2 Boundary Conditions  

2.2.1 Hinged on Both Ends 

In the calculation model shown in Figure 2, when both ends are hinged under boundary conditions, 
the corresponding restraint rigidity of the boundary is 
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The following can be deduced by establishing and solving Equations (12) and (13):  
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where fk in the equation is the frequency of order k when the strand vibrates, and
2
k

kf



 .  

 
2.2.2 Consolidated on Both Ends  

In the calculation model shown in Figure 2, when both ends are consolidated under boundary 
conditions, the corresponding restraint rigidity of the boundary is 
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The following can be deduced by establishing and solving Equations (12) and (15): 
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Equation (16) is a hidden expression and can be solved by using Matlab. 
 
3 VERIFICATION OF EXAMPLES 

To verify the calculation accuracy and effectiveness of the proposed method, four strands were 
taken as the verified examples, and hinged boundary conditions were considered during the 
calculation process, as shown in Figure 3. 
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(a) Calculation model of the strand (b) Section of the strand 

Figure 3: Model and section of the strand. 

 
As indicated in Figure 3, the strand with a high internal tension can be taken as a beam (Song 

et al., 2001; Wang et al., 2015), and the bending rigidity of strand can be expressed as follows: 
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where E is the Young's modulus of the steel wire, I is the moment of inertia for the strand, Ii is the 
moment of inertia for the ith high strength galvanized steel wire, Di is the diameter of the ith high-
strength galvanized steel wire, and li is the distance from the center of the ith steel wire circle to the 
centroidal axis of the strand section.  

The area of the section of the strand is the sum of that of the high-strength galvanized steel 
wire, and the mass of the strand per meter can be obtained as follows: 
 

n

i=1
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where A is the area of the strand, Ai is the area of each high-strength galvanized steel wire, and ρ is 
the density of the high-strength galvanized steel wire. 

A combination of Equations (17) and (18) indicates that the bending rigidity and the mass per 
meter of the strand can be obtained and listed as shown in Table 1. 
 

Strand No. 
Theoretical Tension 

T (kN) 
Bending Rigidity 

EI (kN·m2) 
Angle of Inclination 

 (°) 
Length 
L (m) 

Mass 
m (kg/m)

1st 1400 158.54 38 40 20.41 

2nd 1200 158.54 38 40 20.41 

3rd 1400 158.54 38 30 20.41 

4th 1200 158.54 38 30 20.41 

Table 1: Material parameters of the strand 

 
Table 1 shows that the strands are classified into two different tensions and lengths. Therefore, 

the tension of a strand with different tensions and lengths can be studied. 
The effectiveness of the proposed method is verified and compared by combining the given 

theoretical value and the results without considering bending rigidity (Xu and Huang, 2002). The 
tension of the strand was calculated according to the natural vibration frequencies of the top 10 
orders, as shown in Table 2, where Tfi is the cable tension deduced from frequency fi of order ith. 
 

Strand tension 
based on order 
of frequency 

Calculation Method 

Xu and Huang (2002)
2

2
2

4
k

mL
T f

k
   

Proposed method in Equation (14) 
2 2 2

2
2 2

4
k

mL k
T f EI

k L


     

1st 2nd 3rd 4th 1st 2nd 3rd 4th 

Tf1 1418  1218  1424  1223  1417  1217  1422  1221  

Tf2 1424  1223  1434  1232  1420  1219  1427  1225  

Tf3 1433  1230  1447  1244  1424  1221  1431  1228  

Tf4 1446  1241  1459  1261  1430  1225  1431  1233  

Tf5 1449  1255  1472  1274  1425  1231  1429  1231  

Tf6 1456  1269  1481  1276  1421  1234  1418  1213  

Tf7 1453  1281  1473  1273  1405  1233  1388  1188  

Tf8 1452  1280  1460  1272  1389  1217  1349  1161  

Tf9 1442  1268  1451  1250  1363  1189  1310  1109  

Tf10 1427  1253  1445  1228  1329  1155  1271  1054  

Table 2: Comparison between calculation and analysis values of strand tension (kN). 

 
Different calculation methods can be obtained by comparing the calculated value with the use 

of the two different methods in Table 2. The variations between the theoretical reference value and 
calculated value under different order frequencies are compared and shown in Figure 4. 
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(a) Proposed Method by Xu and Huang [1] (b) Proposed method in this paper 

Figure 4: Comparison of variations with different methods. 

 
A comparison between Table 1 and Figure 4 indicated that the calculated strand tensions 

according to the 1st and 10th frequencies varied significantly from the theoretical value shown in 
Table 2. However, according to the construction requirement for cable-supported bridges in the 
Chinese code (Wang et al., 2014), the permissible error of strand tension is 3%. Further 
investigation indicated that only the first and second orders of the frequency met the requirements 
simultaneously by using the method proposed by Xu and Huang (2002). Meanwhile, the order of 
the frequency from 1 to 7 meets the requirements for all of the four studied strands by adopting the 
method proposed as Equation (14) in this paper. Consequently, only the first two order frequencies 
can be used to calculate the strand tension by utilizing the method proposed by Xu and Huang 
(2002), which is suitable only for low-order frequency calculation. However, additional orders are 
provided for more options when the effect of bending rigidity is considered in the proposed method, 
which is suitable for low-order and high-order frequency calculations.  

A comparison of Equation (14) and Figure 4 indicated that the effect of bending rigidity of the 
strand depends on the frequency order and the ratio of the first and second parts on the right side 
of Equation (14). The order of the frequency from 1 to 7 meets the requirements of this study when 
the parameters and tension of the strand are fixed, the order of k is high, and the variation is great; 
similar conclusions were obtained by Song et al. (2001). When the strand parameters are fixed, the 
tension, frequency, and relative value of the first part of Equation (14) decreases, and the effect of 
the bending rigidity of the strand increases. When the strand and tension parameters are fixed, the 
length decreases, the relative value of the second part of Equation (14) increases, and the effect of 
the bending rigidity of the strand increases. When the strand and tension parameters are fixed, the 
bending rigidity increases, the relative value of the second part of Equation (14) increases, and the 
effect of the second part increases. 
 
4 APPLICATION ON NANXI YANGTZE BRIDGE  

Nanxi Yangtze Bridge, located in southeastern China, is a single-span suspension bridge with a steel 
box and a stiffening girder with a main span of 820 m, as shown in Figure 5. The southern and 
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northern banks are the tunnel and gravity anchorages, respectively. The main cable consists of 87 
strands, and each strand consists of 127-wire galvanized steel wires. The number of strands for the 
side span is 89. Some strands were taken as studied cases, as shown in Figure 6(a). 
 

 

Figure 5: Layout of Nanxi Yangtze Bridge during construction. 

 
During the construction of this bridge, only 12 high-precision pressure sensors were arranged in 

each anchor span for bridge construction monitoring, while nearly 100 strands need to be controlled. 
Thus, the tension of the strand in the anchor span is controlled by using a combination of string 
vibration method (see Figure 6) and pressure sensor method (see Figure 7) during construction. 
Field data could be acquired directly through the pressure sensor method, and that of the string 
vibration method could be calculated by using Equations (14) and (16).  
 

 
(a) Distribution of studied strands (b) Frequency testing in the field 

Figure 6: Frequency testing of the studied strands in the anchor span. 

 
During field testing, the temperature in the anchor span is stable, and the tension of the strand 

has a fixed value within a short time. However, in the indirect method, the value of the frequency 
test (see Figure 6(b)) always fluctuates, and the amplitude of fluctuation varies from –0.05 to 0.05 
Hz. Thus, the frequency of the field test is the average of the three measure values for each tested 
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strand. In the direct method, the field tension of the strand T1 is stable and unchanged because the 
temperature is stable within a short period, and the field data are recorded directly as strand 
tension T1. 
 

  
(a) Pressure sensors (b) Tension testing in the field 

Figure 7: Tension testing of studied strands in the anchor span. 

 
A comparison of the data obtained by the string vibration method, the pressure sensor method, 

and the theoretical value for the design is shown in Table 3. As indicated in Table 3, T1 is the field 
value with arranged sensors, T2 and T3 are the calculated values derived by Equations (14) and (16) 
with consideration of the effect of the temperature, T4 is the fitted value by T2 and T3, and T5 is 
the true value of the design.  

The effect of temperature on T2 and T3 can be indicated as follows: 
 

( )
    

t dT t t EA

t EA




    
   

 (19)

 
where ΔT is the influence value of the tension for the strand by temperature variation, tt is the 
temperature of field testing, td is the design reference temperature, ΔT is the value of the 
temperature variation, α is the coefficient of linear expansion, E is Young’s modulus of the steel 
wire, and A is the area of the strand. 

As shown in Table 3, T1 is closest to T5 and the difference between T1 and T5 is the smallest. 
The relative difference between T2 and T5 is larger than that of T3 and T5, which indicates that the 
boundary conditions significantly affect the results of the test and calculation through the frequency 
method. The boundary condition for the strand in the anchor span is neither hinged nor 
consolidated but in between. To further examine the situation of the boundary conditions, the 
variations under different order frequencies are calculated, as shown in Figure 8. 

A comparison of Table 3 with Figure 7 indicates that the variations for T1 and T5 vary from 
0.02% to 0.69%, from 6.37% to 7.70% for T2 and T5, and from 0.85% to 2.55% for T3 and T5. 
Evidently, the variations of T2 and T5 are larger than those of T3 and T5, and those of T1 and T5 
are the smallest, indicating that the direct method using load measurement devices has the highest 
accuracy, followed by the method in Equation (14), whereas that of Equation (16) is the worst. The 

Pressure sensor 
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accuracy of T1 and T2 satisfied the 3% requirement, whereas that of T3 did not. This finding shows 
that the boundary conditions significantly affect the frequency method for the strand of the anchor 
span in suspension bridges, and the boundary conditions of the studied strands are fixed between 
hinged and consolidated. Further investigation is needed to determine whether the boundary 
conditions tend to hinge or consolidate needs.  
 

Strand No. 

Field data  Calculation data 
Tension for 

design 
 T5 (kN) 

Frequency 
(Hz) 

Temperature 
(°C) 

Measured by 
pressure sensors

T1 (kN) 
 

Calculated by
Equation 

(14) 
T2 (kN) 

Calculated by 
Equation (16) 

 T3 (kN) 

Fitted by least 
squares method 

T4 (kN) 
 

1st 1.782 23.5 222.11  208.97 228.17 225.01 223.65 

6th 1.772 23.4 222.82  206.2 225.25 222.10 222.87 

15th 1.793 22.8 226.72  210.67 229.9 226.76 226.83 

30th 1.763 24.3 218.52  203.25 222.12 218.99 218.71 

41st 1.766 23.9 220.61  203.65 222.53 219.40 220.65 

46th 1.731 25.7 210.38  194.56 212.96 209.86 210.55 

53rd 1.672 28.4 196.13  181.51 199.31 196.22 196.34 

54th 1.721 26.2 207.55  191.63 209.87 206.78 207.49 

55th 1.72 26.8 202.88  191.28 209.49 206.41 204.29 

62nd 1.66 28.9 193.71  179.17 196.86 193.77 193.91 

Note: T2 and T3 have been revised according to Equation (19). 

Table 3: Comparison of strand tensions 
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Figure 8: Comparison of variations between field, calculation, and designed data. 

 
For clear and definite strand boundary conditions, the least squares method was introduced in 

the analysis of T2 and T3. By calculation, fitted value T4 can be expressed by T2 and T3, i.e., 
 

T4 = 0.3224T2 + 0.6908T3 (20)
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A comparison of the coefficients in Equation (20) indicates that the boundary conditions for the 
strand in the anchor span that tends to hinge has a 32% probability, and the boundary conditions 
for the strand in the anchor span that tends to consolidate has a 68% probability, which denotes 
that the boundary conditions significantly tend to consolidate. After fitting, strand tension T4 can 
be obtained by Equation (20). The corresponding data items of T2 and T3, as shown in Table 3, and 
the variations of T3 and T5 can be determined and illustrated in Figure 7.  

Based on Figure 8 and Table 3, the variations of T4 and T5 vary from 0.03% to 1.04% and the 
average variation is 0.35%. The accuracy of the tension control of the strand in the anchor span can 
be significantly improved using the least squares method. A comparison of T1 and T4 shows that 
the fitted value T4 is very close to the measured value T1 by the pressure sensors, and the average 
value of the variation for T1 and T5 is 0.19%, which implies that T4 is almost as accurate as T1.  
 
5 CONCLUSIONS 

In this paper, a new calculation method for strand tension is explored by using dynamic balance 
theory to determine the effect of bending rigidity and boundary conditions. Comparative studies are 
conducted using the proposed method for strand tension control with the examples and field data. 
The following conclusions are obtained: 

1. In the frequency method, only the low-order frequency calculation can be considered to 
calculate the strand tension without considering the effect of bending rigidity to ensure 
control accuracy. If the effect of bending rigidity is considered, the high-order frequency 
calculation can be used to calculate the strand tension with high accuracy.  

2. The influence of bending rigidity depends on the value of internal tension, strand length, and 
value of bending rigidity. For the strand of the anchor span in a suspension ridge and a 
similar strand, the length is short and the internal tension is low. Under this condition, the 
effect of bending rigidity is significant and its effect should be considered.  

3. During strand construction in the anchor of a suspension bridge, the strand tension always 
starts from a low-stress to a high-stress state. For tension control accuracy, the effect of 
bending rigidity must be considered in the initial low-stress phase, whereas the project 
requirements must be considered in the late high-stress phase.  

4. The boundary conditions of the strand significantly affect the calculation results. The 
boundary conditions of the strand in the anchor span are between hinged and consolidated, 
with an inclination to consolidate.  

5. Under incomplete and inexplicit boundary conditions, the proposed least squares method is 
an effective, direct, and economical choice to improve the tension control accuracy of the 
strand in the suspension bridge anchor. 
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