456

Latin American Journal of
Solids and Structures

www.lajss.org

Order Shear Deformation Theory

Abstract

In this paper a new eight-unknown higher order shear deformation
theory is proposed to study the buckling and free vibration of func-
tionally graded (FG) material plates. The theory bases on full
twelve-unknown higher order shear deformation theory, simultane-
ously satisfies zero transverse shear stress at the top and bottom
surfaces of FG plates. Equations of motion are derived from Hamil-
ton’s principle. The critical buckling load and the vibration natural
frequency are analyzed. The accuracy of present analytical solution
is confirmed by comparing the present results with those available
in existing literature. The effect of power law index of functionally
graded material, side-to-thickness ratio on buckling and free vibra-
tion responses of FG plates is investigated.
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NOMENCLATURE
z, Y, 2 coordinates
a, b, h length, width, and thickness of the plate
P volume fraction index
U, U, W in-plane and transverse displacement at mid-plane of the plate
Uy, Uy, W, displacements of the mid-plane in the z; y; z directions
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NOMENCLATURE (continuation)

ug71);7 wS,H*,H*,H* higher-order terms of displacements in the Taylor series expansion
)y 2

w, w natural frequency and non-dimensional natural frequency

N, _,N, critical buckling load and non-dimensional critical buckling load
Q. stiffness coefficients of FG plates

NS)NSngy in-plane pre-buckling loads

V>V in-plane load parameters

E.v,p, Young’s modulus, Poisson coefficient, mass density of the ceramic

E v

2 Young’s modulus, Poisson coefficient, mass density of the metal

UV, K strain energy, external work, kinetic energy

1 INTRODUCTION

Ever since invented by Japanese scientists in the 80s of the last century, Functionally Graded Mate-
rials (FGMs) has been more and more widely applied in many fields such as aircraft industry, nuclear
industry, civil engineering, automotive, biomechanics, optics... Typical FGMs are composed of ce-
ramic and metal materials. Ceramic provides high temperature resistance while metals have high
toughness; thus FGMs are usually used in the manufacture of heat-resistance structural components
such as airplane fuselages or walls in nuclear reaction plants....The understanding of the behavior of
FGM, therefore, is very much desired. Studying the static and dynamic behavior of FGM structures
has become an interesting topic for researchers around the world.

There have been many computational models and methods of calculation proposed for FGM
plates. The classical plate theory (CPT) that bases on Kirchhoff-Love’s assumption, is only suitable
for thin plates since it ignores the effects of transverse shear deformation. For moderately thick plates,
numerical results calculated using CPT yield lower deflection, higher natural frequency and buckling
load in comparison with experimental results. In order to correct this inaptitude, the first-order shear
deformation theories (FSDT) have been initially proposed by Reissner and further developed by
Mindlin. Although FSDT describes more realistic behavior of thin to moderately thick plates, the
parabolic distribution of transverse shear stress through the thickness of the plate is not properly
reflected, thus the shear correction factor is introduced. The determination of this factor is not simple
as it depends on the loading, boundary condition, materials etc...

To avoid using shear correction factor, higher order shear deformation theories (HSDTs) are
proposed. Based on third order shear deformation theory with five displacement unknowns, Reddy
(2000) developed analytical and finite element solutions for static and dynamic analysis of functionally
graded rectangular plates. The formulation accounts for the thermo-mechanical coupling, time de-
pendency, and the von Karman-type geometric non-linearity. Bodaghi et al. (2010) used Reddy’s
third order shear deformation theory and Levy-type solution for buckling analysis of thick functionally
graded rectangular plates. Also with five displacement unknowns, Zenkour (2006) used his generalized
shear deformation theory to study static behaviors of simply supported functionally graded rectangu-
lar plate subjected to a transverse uniform load. Employing finite element method based on nine
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unknowns higher order shear deformation theory, Pandya and Kant (1988) investigated deflections,
in-plane and inter-laminar stresses of thick laminated composite plates. This displacement model
assumed non-linear and constant variation of in-plane and transverse displacement, respectively,
through the plate thickness. Using eleven-unknown displacement field and finite element method,
Talha and Singh (2010) analyzed static response and natural frequency of functionally graded plates.
Higher order terms of the displacement field are determined by vanishing the transverse shear stresses
on the top and bottom surfaces of the plate.Kim and Reddy (2013) also used acouple of stress-based
third-ordertheory with elevenunknowns to analyze the bending, vibration and buckling behaviors of
FG plates by analytical method. Based on the higher-order refined theories, Jha et al. (2012) presented
analytical solutions for free vibration analysis of simply supported rectangular functionally graded
plates. This HSDT introduces twelve displacement unknowns, and correctly describes the quadratic
distribution of transverse normal strain across the thickness although the values at the top and bottom
are non-zero. A comprehensive review of the various methods employed to study the static, dynamic
and stability behaviors of functionally graded plates can be found in the work of Swaminathan et al.
(2015). The review focuses on comparing the stress, vibration and buckling characteristics of FGM
plates using different theories. It is observed that most of the above mentioned HSDTs require addi-
tional computation efforts due to the additional unknowns introduced to them (usually nine, eleven
or thirteen unknowns depending on each particular theory).

In this paper, a new higher order displacement field based on twelve-unknown higher order shear
deformation theory is developed to analyze the free vibration and buckling of functionally graded
plates. The new form is dictated by the satisfaction of vanishing transverse shear stress at the top
and bottom surfaces of the plate. With this proposed higher order displacement field, the number of
displacement unknowns reduces from twelve to eight, thus savingcomputational time and optimizing
the storage capacity of computers. The accuracy of the present theory is verified by comparisonwith
previous studies.

2 KINEMATICS

The displacement components u(z,y,z), v(x,y,2) and w(z,y,z) at any point in the plate can be expanded
in Taylor's series in terms of the thickness coordinate as (Jha — 2012):

u(@,y,2,t) = uy(z,y,) + 20, (z,9,8) + 2*u, (z,9.) + 2°0, (z,y,1);
(2,9, 2,1) = v, (2,9, 8) + 26, (2, y,8) + 2°v, (2,9, 8) + 2°6, (2, y,1); (1)
w(z,y,2,t) = w,(z,y,t) + 20, (z,y,t) + 2°w, (z,y,t) + 2°6. (z,y,1).

v, w, are

where u, v, w denote the displacements of a point along the (z,y, 2) coordinates. wu 0 Yo

0?
corresponding displacements of a point on the mid-plane. |, Hy and 6 are rotations of transverse

* >k

normal to the mid-plane about the yaxis, a-axis and zaxis, respectively. uo,vo,w;ﬁ;ﬁ; and 0 are
the higher-order terms in the Taylor series expansion and they represent higher-order transverse cross-

sectionaldeformation modes.
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For plates under bending, the transverse shear stresseso_, 0, must be vanished at the top and

bottom surfaces. These conditions lead to the requirement that the corresponding transverse strains

Yz

h
x, y,:I:E] = 0, we obtain:

h
on these surfaces to be zero. Fromy, {x, y,:I:E] =7

2
T Ly S (/A T
2 8 3h? o3 2
. 1 h o 4 1 )

The displacement field (1) becomes:

2 3
u =y + 20, —7(9 +a0., )~ S =le,(0, + 1wy, )+ |
o= 420,50, o) (0, 4 ol @)

w = w), +z«9z +2° w, +z56’z.
with:

4
¢, =—;¢ =—. (3-b)

Using the strain-displacement relations of the theory of elasticity, the linear strains are obtained:

_ .0 0 2_* 3.5 _ 0 0 2_* 3%,
emfel,—i—z/@'m—}—z em—}—z /@'m,ayfey—}—zkay—i—z £y+z /iy,
_ 0 0 2_*, _ 0 0 2_* 3.5,
€, =€, T2K, +2 EZ,’}/ =€, +zn +zs +z Ko (4-a)
_ _ 2 ¥ 3%
Ve fy —|—z/£ —I—Z’)/ + 2 HTZ,’}/W fy —l—zm +z 'yyz—i-z K,

yz
where:

0.0 0 _.0)_ 0,0 0 * )
{&?z,ey,&? ,%y}—{ 0.0 Y0y 0, Uy, Y, }{fi Ky K } {9”,0 211)0,014/—&—0%96},
¥ ok % *

€

Uu
%(9%9) (9 +e0.,).30,-(0,, +019“y)}'

{ J:’Ey’gz”ywy 17 z,xx 17 z,yy

{KJ;’K;’ ij} - 7§(02 (6“” + w ) + wO T )’ 3 (62 (ey,y + woﬁyy) + w(*;.,yy)7
fé(cg (QM +0,,+ 2w0‘wy) +2uw, Jy) )

{722,732} {w +0,,w, +9}{r€ﬁ,f§0}:{—019”, clezJ}

{7;’7;} = {_Cz (wO,m + 9.1)7_62 (wo,y + Hy)} {Kfz’ﬁyz} = {9;79;}

In the above formulas, a comma followed by x or y denotes differentiation with respect to the

———

(4-b)

coordinates x or yrespectively.
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3 CONSTITUTIVE EQUATION

Consider a simply supported linearly elastic rectangular FG plate of uniform thickness h as shown in
Figure 1. The Poisson’s ratio v is assumed to be constant across the plate thickness. The Young’s
modulus, the mass densityof the FG plate is assumed to follow the power law distribution alongthe
thickness, and expressed as (Reddy — 2000):

p

E(z):Ean(Ec—Em)%qL% (5-a)
p(z)=n, +(p, - pm)[% +%] (5-b)

In the above formula, subscript c refers to ceramic material and subscript m refers to metal
material of the FG plate. It is clear from the expression that the top surface (z =h/2) of the FG

plate is ceramic-rich and the bottom (z = —h /2) is metal-rich in constituents.

Figure 1: Geometry of FG plate with positive set of reference axes.

The stress-strain relationship for the FG plate can be written as:

o, |@n @ @ 0 0 0]fe

g, Qy @y Gy 0 0 0 £,

o @y @ @y O 0 0|]e, (6-a)
= 1 -a

o /710 0 0 @, o olfh,

Uzz O O 0 0 Q55 0 ’yzz

o 10 0 0 0 0 Q|

o _,0 ) are the stresses, and (8 yE WE LY Y. Y ) are the strains with re-
Ty x’? Ty’ Tz Twz? Tyz? Ty

in which (a,a,a,a, ,
2?7y T2 T’ T yz

spect to axes z, 3, 2. The elements of stiffness matrix Qi]. are defined as follows:
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I (1-v)E
Qu _Q22 - Q33 _m’
Q12 = Q23 = le = W(El_m = Q21 = Q32 = Q31; (6-b)
Qu = G55 = Gy :2<1L+1/)'

4 EQUILIBRIUM EQUATIONS

Hamilton’s principle is used to derive the equations of motion. The principle can be stated in analyt-
ical form as:

0=

o

(6U + 6V — 6K ). (7-a)

where 8U is the variation of strain energy; 8V is the variation of external work; and dKis the variation
of kinetic energy.
The variation of strain energy of the plate can be calculated by:

h/2

U = f f (améew + Jyéey + JZ(SE-ZZ + Jzy(ﬁ’ywy + szé’yu + Jyz&yyz )dAdz (7-b)
A —h/2

The variation of work done by in-planeand transverse loads is given by:

e .
§V = [N&wUdA [qz ow dA (7-c)
_ 0? s o*
where N = N° % 4 2N? Do 4 N? %o
T 6{62 Ty 8$8$ Y 8y2

S S
and qj is the transverse load at the top surface of the plate, w’ = w, +—0 +—w, +§02 is the

transverse displacement of any point on the top surface of the plate; NS,N;,NSZ/ are in-plane pre-

buckling applied loads.
The variation of kinetic energy of the plate can be written in the form:

/2
6K = f f (@i + 960 + W )p(z)dAdz (7-d)

A —h/2

where the dot-superscript indicates the differentiation with respect to the time variable ¢, p (z) is the

mass density.
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Substituting the expressions for U, 6V, and 6K from Egs. (7b)—(7d) into Eq.(7a) and integrating
by parts, then collecting 6u0,6v0,6w0,69w,691/,692,6111;,69:, the following equations of motion of the

plate are obtained:

6“0 ) NT,T + N!t?/,y = IOUO + Jlga: - 512 (92,.17 + Clez,m) - g‘[f’) (CZU)O,.?? + wO,.z') (8_8‘)
51}0 ) nyf + Ny,y = ]OUO + Jley - 5'[2 (gzy + Clez,y) - 513 (CQwO,y + wO‘,y) (8_b)

6w, :%Z(M* oM M Y= (@, @) )+(Q, +Q,, )+ + N, =

ZT,xT xy,xy Y9y
. , » 1 ) . 1 . . 1 .
Lyi, + 1,0, + I,io, + 1,0, Jr51302 (uof + /UO‘y) + gcz‘]4 (em + Qy‘yy)— 61502V 0, - (8-¢)
1 9 sk 1 92 -e 1 9 .k
—EI5V 0. —51602 V7w, —51602V w,

50 C—Q(M + M, )*(M M, )60 +Q,

@’ g Y.y

S T T S (8-d)
= _Jlu[) - K291 + EJJQZT + 561J39z,z + §C2J4w0,z + §J4w0,.r
80 2 M (M +M '
Y E( wa T w)_( ma T ?/’y)_%Qy +Qy (8-€)
) 1o 1 e 1.1 . °
=—J,i, — KZHy +5J3627y —|—501J3027y —|—502J4w0’y +§J4w0,y
69:5 : §<Nz,zx + 2sz/zz/ + Nz/yy) - Nz + qz 5 + Nl = Ilw() + IZHZ + 512 (UO.Z + vO.y) + ISMO ( )
8-f
1 . .. e 1 e 1 g 1 .. 1 -
+57; (6,,+0,,)+ 1,0 — LV = LV LV, — VR
e 1 x x LR e - 1[0t 01,
Sy - g(MW +2M, + M) ) —2M, g TN = Ly L0 L S S L
. , 8-g)
1 691 89 oo 1 9 1 e 1 9 .. 1 9 ¥ (
+§J4 ax +8_; +1502 _EISV 92 —EI5CIV 02 _§IGCQV wo —glﬁv U)O
x C * * * * * * + h3 o
80" - E(N +ON o+ Ny,w) —3N + (5 n syj) —c (S, +8,, )+ TN, =
1 .. . 1 - s .. w1 o L oo S-h
51261 (u(),z + U[),y) +§¢1J3 <9x,z + Qw) + Ly, + 1,0, _21.461v 0, _ZI4C1V 0, — (8-h)
1 2. 1 2 L% . S
—gISV w, —gISC]V w, + I.w, +169z
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where, V* = 9% / 0z” +0* / 0y is Laplacian operator in two-dimensional Cartesian coordinate sys-

tem, and the stress resultants are defined by:

N, N: o, M, o, I
N N h/2 o M h/2 T nj2 |0,

y Ty | — y 2 . vyl — y R 3
N N [ - {1 z }dz, M f - zdz; Mi’ f o, 1% dz;

z Y, “h2| 2 z —h2 |z M -2 | g 9

vy ¥ gy Ty Ty Y

* h/2 * h/2
o S S o

@, Qz‘ = f [ “]{1 z2}dz; ; 4 = f [ "]{z ZB}dZ
Qy Qy ~h/2 Ty Sy Sy ~h/2 Ty

and (Ii’Ji’Kz) are mass inertias defined as:

h/2
{11712,13,14,15,16}: f p(z){z,zQ,z3,z4,z5,z6}dz
—h/2 (10)
1 ) 2 1.,
JiZIj*§]H202 ,1=134; K, 212751402+§I6.02
2 2 9 x 2 o 2 2 9 x
NY = L_a wo _A'_Ni‘H 8 01 +Ni+2 8 w() +Ni+3 8 Hz +NL a w(] +NH—1 8 Qz +NH_2 8 wO
! e e e Y9’ v 8y2 v 8y2 Y 8y2
* * * (11_3‘)
i+3 0%0 i 62“’0 i+l %0 i+2 32w0 i+3 %0 .
+N" —= 42N ———— 42N —= 42N ——— 42N —=2 1 =0,1,2,3.
oy W 0zdy ¢ 0xzdy W Qzdy W 9zdy
N?! NS ny 1
NN N 2
Né é ley 22
X v ay 1 h/2
NN Wl [ 12 {NO N® N }dz; (11-b)
Nt Nt N —h/2 |y
T y Ty
NN .
N6 N6 NS b
T Y Ty

5 NAVIER'S SOLUTION

Consider a simply supported rectangular FG plate with length a, width b under in-plane loads in two
directions ( Ng =7,

cr?

N; = ’VQNCT,NBy = 0). The associated simply supported boundary conditions

are as follows:

Atedgez=0and z = a: v :0,w0:0,0U:0,6Z:O,w;:O,H::O,Mmzo,M

0

At edge y=0and y = b: u0:0,w0:0,9$:0,ez:O,w;:O,OZZO,Myzo,M;:Q

Latin American Journal of Solids and Structures 13 (2016) 456-477



464  T.I. Thinh et al. / Vibration and Buckling Analysis of Functionally Graded Plates Using New Eight-Unknown Higher Order...

Following Navier’s solution procedure, the displacement variables are chosen to satisfy the above
simply supported boundary condition with the form(for the buckling and vibration problems, the
transverse load is set to be zero):

o0 e8] O o0
_ wt : . _ jwt .
UU (fL‘, Y, t) = E E uomne COS X S1In 6y, 1)0 ([E, Y, t) = E E vane S1n oxr Cos 6y,

m=1 n=1 m=1 n=1

w, (:L‘, v, t) = i i wOmneM sinaxsinfBy; 0 (x, v, t) = i i Hzmnew cos oz sin 3y,

o o o o
0, (:E, v, t) = Z Z HUmnem sin auw cos By; 0, (ac, v, t) = Z Z 0. e“! sin auz sin By, (12)
" "
w; (m, Y, t) = Z Z wgmnem sin oz sin By; 9: (m, Y, t) = Z Z Hzmnem sin az sin Gy.
m=1 n=1 m=1 n=1
p, =0
where: i = \/—_1 is the imaginary unit. v, v, . w, .0 Hym", Gmn,w;mn, Qjmn are coefficients, and
w is the natural frequency; m,n =1,3,5,7,....
Substituting Eq. (12) into Eq. (8a-h), the closed-form solutions can be obtained from:
S1 S 513 S0 Si5 16 17 S8 Uy
So1 Sy 53 Soa So5 56 Sy Sas Y%
Sy Sy Sy TRy Sy Sy S36 Syr + Ky S35 o
Sn S 513 Si Sa 546 a7 S8 2 [ M] 01 -0 (13-2)
S51 Sxo 53 S5a 55 S56 857 Sss v |10,
S61 o2 63 Soa Se5 Sa6 T Keg So7 Ses T Kigg 9,
Sy S Stk sy sy S76 Spp + ko S8 w,
Ss1 s Ss3 Sy Sg5 Sge T Ky 578 Sy T Kgg 0;
where the elements of matrix [S], [M] are defined in the Appendix, and:
2 2 h’ 2 2
kyy =N, (7104 +7,0 ); kyy = oy = kg = NCTE(%_OC +7,0 )3
h'! 2 2 ‘ 2 2 (13-b)
ks = kg = ki = Nm»_(%a + 7,0 ); kg =N —(71a 700 )

80 448

The system of Eq. (13a) maybe used to obtain the solutions of the buckling problem soft he FG
plates by dropping all the inertia terms (w = 0), and the solutions of the free vibration problems of
the plates by removing in-plane loads (N, = 0).
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6 RESULTS AND DISCUSSION

With self-developed Matlab’s code, various numerical examples are presented and discussed for veri-
fying the accuracy and efficiency of the present theory in predicting the buckling and vibration re-
sponses of simply supported FG plates. The considered FG plate composesof aluminum (as metal)
and alumina (as ceramic) with the following material properties:

Al:Ew = 70 GPa, 1 = 0.3, om — 2702 kg/m?;
AlO3: E. = 380 GPa, n— 0.3, ge= 3800 kg/m”.

For convenience, the following non-dimensional forms are used:

Eh? . N o p
D=——<—— N ="9—; O=uwh|—-

12(1—%2)’ T D’ E

In order to emphasize the efficiency of present eight-unknown HSDT, the calculated results are
compared with other shear deformation theories. The following models of shear deformation theories
are used in this section:

HSDT-12: HSDT-5: HSDT-4:
= 0 2w+ 220 3 9 ow ow
U uo—l—za;l—zuo—l—z‘ a u:u0+29$_4i29”l+ wo; w=1,—2z b_ s
v=1v, +20, + 221); + z50;; 3| 7 Ox oz or
w=w, + 20, + 2w, +2°0; 47" Ow V=1 —Zawb—faw‘s'
- z! g _ _0 . - 0 1
0 2 0 V=1, + z¢9y o g + oy | oy Jy
w=w, + W,
W= w,. "
where f= z——Sin[Tr—Z].
s h

6.1 Buckling Analysis

Example 1. Functionally gradedAl/Al2O3 square (b/a=1) and rectangular (b/a=2) plates subjected
to biaxial compression (y1 = -1, y2 = -1) are considered. Table 1 gives some numerical results showing
the accuracy of the present non-dimensional buckling loads with various values of side-to-thickness
ratio. The obtained results based on proposed HSDT are compared with the results of Thai and Choi
(2012) whichwere based on an efficient and simple refined theory. The theory, which Thai and Choi
used is similar with the classical plate theory in many aspects; it accounts for a quadratic variation
of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions
on the top and bottom surfaces of the plate. A good agreement between the results is observed.

Latin American Journal of Solids and Structures 13 (2016) 456-477



466  T.I. Thinh et al. / Vibration and Buckling Analysis of Functionally Graded Plates Using New Eight-Unknown Higher Order...

b/ a/h  Method
) 0 0.5 1 2 5 10 20 100
Thai
80105 53127 41122 31716 25265 22403  2.0035  1.6293
5 (2012)
Present  8.0826 5.3716 4.1643 3.2132  2.5549  2.2621  2.0205  1.642
Thai
ol 9.2803  6.0615  4.6696  3.6315  3.0177 27264  2.4173  1.9099
0 (02)
Present  9.3139  6.0810 4.6867 3.6455 3.0280 2.7346 2.4236 1.9146
Thai
o 0.6764  6.2834  4.8337  3.7686  3.1724  2.8834  2.5494  1.9961
1 20 (2012)
Present  9.6831  6.2887 4.8384 3.7723  3.1753  2.8857 2.5512  1.997
Thai
ol 90.7907  6.3485  4.8818  3.8088  3.2186 29307  2.5891  2.0217
50 (2012)
Present  9.7918  6.3494 4.8826  3.8095 3.2191 2.9311 2.5894  2.021
Thai
ol 9.8073  6.3579  4.8888  3.8147  3.2254 29376  2.5948  2.0254
100 (2012)
Present  9.8075 6.3581 4.8890 3.8148 3.2255 2.9377  2.5949  2.025
Tha
hai 53762  3.5388 27331 21161  1.7187  1.5370  1.3692  1.0990
5 (2012)
Present  5.4090 3.5652 2.7563 2.1348 1.7320 1.5474 1.3772 1.1051
Tha
hai 59243  3.8565 29680  2.3117  1.9332 17517 15510  1.2200
10 (2012)
Present  5.9343 3.8644 2.9758 2.3174 1.9374 1.7551 1.5536  1.221
Thai
ol 6.0794  3.8565  3.0344  2.3665  1.9955  1.8152  1.6044  1.2547
2 2 (2012)
Present  6.0821 3.9473 3.0363 2.3680 1.9967 1.8161 1.6051 1.255
Thai
ol 6.1244  3.9708  3.0533 23823  2.0137  1.8338  1.6200  1.2647
50 (2012)
Present  6.1248 3.9711 3.0536 2.3826 2.0139 1.8340 1.6201  1.264
Thai
o 6.1308  3.9744  3.0560  2.3846 20164  1.8365  1.6222  1.2662
100 (2012)
Present  6.1309  3.9745 3.0561 2.3847 2.0164 1.8366 1.6223  1.266

Table 1: Non-dimensional critical buckling load Ncr

of simply supported Al/Al2O3 plate subjected

to biaxial compression (y1 = -1, y2 = -1).

Example 2. In this example, a moderately thick (a/h = 10) rectangular (b/a = 2) FG plate with

different values of power law index p is examined. Table 2 contains the non-dimensional buckling

loads calculated by present and various shear deformation theories: first-order shear deformation
theory with 5 unknowns (FSDT), third-order shear deformation theory with 5 unknowns (HSDT-5),
simple higher-order shear deformation theory with 4 unknowns (HSDT-4), and full higher-order shear

deformation theory with 12 unknowns (HSDT-12). Fig. 2 exhibits a variation of non-dimensional

buckling loads ]\Afﬁr versus power law index p of rectangular FG plates (b/a = 2, a/h = 10)with various

types of loading. It is observed that the non-dimensional critical buckling load decreases as p increases,
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the variation of the non-dimensional buckling load is considerable when p is small, and the fully-
ceramic plate gives the largest critical buckling load. An excellent agreement between the results
predicted by present HSDT and full HSDT with 12 displacement unknowns for all values of power

law indexis shown.

Loading type (1, ¥2)

P Method
(-1, 0) (0, -1) (-1, -1)
FSDT 1.5093 6.0372 1.2074
HSDT-4 1.5094 6.0376 1.2075
0 HSDT-5 1.5093 6.0373 1.2075
HSDT-12 1.5119 6.0475 1.2095
Present 1.5119 6.0475 1.2095
FSDT 0.7564 3.0255 0.6051
HSDT-4 0.7564 3.0257 0.6051
! HSDT-5 0.7564 3.0255 0.6051
HSDT-12 0.7581 3.0324 0.6065
Present 0.7582 3.0326 0.6065
FSDT 0.5900 2.3600 0.4720
HSDT-4 0.5889 2.3558 0.4712
2 HSDT-5 0.5890 2.3558 0.4712
HSDT-12 0.5901 2.3606 0.4721
Present 0.5904 2.3616 0.4723
3 FSDT 0.5359 2.1436 0.4287
HSDT-4 0.5337 2.1350 0.4270
HSDT-5 0.5338 2.1353 0.4271
HSDT-12 0.5348 2.1390 0.4278
Present 0.5351 2.1404 0.4281
FSDT 0.4960 1.9839 0.3968
HSDT-4 0.4923 1.9694 0.3939
° HSDT-5 0.4925 1.9700 0.3940
HSDT-12 0.4933 1.9733 0.3947
Present 0.4936 1.9744 0.3949
FSDT 0.4497 1.7990 0.3598
HSDT-4 0.4462 1.7848 0.3570
10 HSDT-5 0.4463 1.7851 0.3570
HSDT-12 0.4471 1.7883 0.3577
Present 0.4471 1.7886 0.3577

Table 2: Comparison of non-dimensional critical buckling load Nm" of plates under different loading types

with different values of power-law index p (b/a = 2, a/h = 10).
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Figure 2: The variation of non-dimensional critical buckling load ]\A]cr of rectangular plate versus power law

index p (b/a = 2, a/h = 10) with various shear deformation theories.

Example 3. Thick and thin rectangular FG plates (p = 5)with side-to-thickness ratio varies from 5
to 100 are analyzed using present HSDT and various shear deformation theories. The non-dimensional

buckling loads NFT under uniaxial and bi-axial compression are presented in Table 3. Fig. 3 shows a
variation of non-dimensional buckling loads Ncr with respect to side-to-thickness ratio a/hof rectan-

gular FG plates (b/a = 2, p = 5). It can be seen that the non-dimensional buckling load increases by
the increase of thickness ratioa/h, and the variation of the non-dimensional buckling loadbecomes
significant for thick plate.The difference in the results obtained using proposed HSDT and the rest of
HSDT increases with a decreases in the value of the side-to-thickness ratioa/h.It is emphasized that
the proposed HSDT model contains a fewer number of unknowns than those associated with the full
HSDT theory. However, an excellent agreement between the results predicted by present HSDT and
full HSDT with 12 displacement unknowns also can be observed, and FSDT overestimates the buck-
ling loads of FG thick plate as it neglects the thickness stretching effect.
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Loading type (Y1, Y2)

a/h Method
(-1,0) (0,-1) (1,-1)
FSDT 0.4489 1.7956 0.3591
HSDT-4 0.4374 1.7495 0.3499
’ HSDT-5 0.4379 1.7515 0.3503
HSDT-12 0.4405 1.7620 0.3524
Present 0.4413 1.7650 0.3530
FSDT 0.4960 1.9839 0.3968
HSDT-4 0.4923 1.9694 0.3939
10 HSDT-5 0.4925 1.9700 0.3940
HSDT-12 0.4933 1.9733 0.3947
Present 0.4936 1.9744 0.3949
FSDT 0.5093 2.0373 0.4075
HSDT-4 0.5084 2.0334 0.4067
20 HSDT-5 0.5084 2.0336 0.4067
HSDT-12 0.5086 2.0345 0.4069
Present 0.5087 2.0348 0.4070
30 FSDT 0.5119 2.0475 0.4095
HSDT-4 0.5114 2.0458 0.4092
HSDT-5 0.5115 2.0458 0.4092
HSDT-12 0.5116 2.0462 0.4092
Present 0.5116 2.0464 0.4093
FSDT 0.5132 2.0528 0.4106
HSDT-4 0.5130 2.0521 0.4104
50 HSDT-5 0.5130 2.0522 0.4104
HSDT-12 0.5131 2.0523 0.4105
Present 0.5131 2.0524 0.4105
FSDT 0.5137 2.0550 0.4110
100 HSDT-4 0.5137 2.0548 0.4110
HSDT-5 0.5137 2.0548 0.4110
HSDT-12 0.5137 2.0549 0.4110
Present 0.5137 2.0549 0.4110

Table 3: Comparison of non-dimensional critical buckling load N of plates under different loading types

with various values of side-to-thickness ratio a/h (b/a = 2, p = 5).

6.2 Free Vibration Analysis

Example 4. The next verification is performed for moderately thick and thick FG square plates.
Different values of power law index are considered. The non-dimensional fundamental frequencies are
given in Table 4. Obtained results are compared with solutions using first-order and higher-order
shear deformation theories provided by Hosseini-Hashemi (2011), and sinusoidal shear deformation
theory provided by Thai (2013). It can be seen that the difference between the results is very small.
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Power law index (p)

a/h Method 0 05 ) 1 10
FSDT (Hosseini-2011) 0.2112 0.1805 0.1631 0.1397 0.1324
- HSDT (Hosseini-2011) 0.2113 0.1805 0.1631 0.1398 0.1301
HSDT-4 (Thai-2013) 0.2113 0.1807 0.1631 0.1377 0.1300
Present 0.2122 0.1816 0.1640 0.1386 0.1307
FSDT (Hosseini-2011) 0.0577 0.0490 0.0442 0.0382 0.0366
10 HSDT (Hosseini-2011) 0.0577 0.0490 0.0442 0.0381 0.0364
HSDT-4 (Thai-2013) 0.0577 0.0490 0.0442 0.0381 0.0364
Present 0.0578 0.0491 0.0443 0.0381 0.0364

Table 4: Comparison of non-dimensional fundamental frequency & of square plate.

Example 5. Non-dimensional frequencies @ of moderately thick rectangular FG plates (b/a = 2,
a/h = 10) for different values of power law index p and various modes of vibration are presented in
Table 5. Figure 4 illustrates the variation of non-dimensional fundamental frequency (m=n=1) with
respect to power law index p. As can be seen from the presented results, the non-dimensional natural
frequencydecreases with increasing value of power law index p. It is basically due to the fact that
Young’s modulus of ceramic is higher than metal.For the same value of p, the non-dimensional
natural frequency increases for higher modes. Figure 4 also shows that the non-dimensional natural-
frequency decreases significantly when p is small.

Table 6 shows non-dimensional frequencies w of thin to thick rectangular FG plates (b/a = 2, p
= 5) for different values of side-to-thickness ratio a/hand various modes of vibration. Figure 5 depict
the variation of non-dimensional fundamental frequency (m=n=1) with respect to side-thickness-ratio
a/h.

Similarly it is observed that the non-dimensional frequency decreases as the side-to-thickness ratio
decreases. The fall in non-dimensional frequency is observed up to around a/h =20, beyond this no
changes in non-dimensional frequency are distinguished.
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Figure 4: Comparison of the variation of Figure 5: Comparison of the variation of
non-dimensional fundamental frequency w non-dimensional fundamental frequency
of square plate versus power law index p. of square plate versus thickness ratio a/h.
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Mode (m,n)
P Method
1(1,1) 2(1,2) 3(2,1) 3(2,2)
FSDT 0.0365 0.0577 0.1183 0.1376
HSDT-4 0.0365 0.0577 0.1183 0.1377
’ HSDT-5 0.0365 0.0577 0.1183 0.1376
HSDT-12 0.0365 0.0578 0.1186 0.1381
Present 0.0365 0.0578 0.1186 0.1381
FSDT 0.0279 0.0442 0.0909 0.1059
HSDT-4 0.0279 0.0442 0.0909 0.1059
! HSDT-5 0.0279 0.0442 0.0909 0.1059
HSDT-12 0.0280 0.0443 0.0912 0.1063
Present 0.0280 0.0443 0.0912 0.1063
FSDT 0.0254 0.0401 0.0825 0.0961
HSDT-4 0.0254 0.0401 0.0823 0.0958
2 HSDT-5 0.0254 0.0401 0.0823 0.0958
HSDT-12 0.0254 0.0401 0.0825 0.0961
Present 0.0254 0.0402 0.0826 0.0962
3 FSDT 0.0246 0.0388 0.0796 0.0927
HSDT-4 0.0245 0.0387 0.0792 0.0921
HSDT-5 0.0245 0.0387 0.0792 0.0921
HSDT-12 0.0245 0.0387 0.0794 0.0923
Present 0.0245 0.0388 0.0794 0.0924
FSDT 0.0240 0.0379 0.0775 0.0901
HSDT-4 0.0239 0.0377 0.0767 0.0890
° HSDT-5 0.0239 0.0377 0.0767 0.0891
HSDT-12 0.0239 0.0377 0.0769 0.0893
Present 0.0239 0.0377 0.0770 0.0894
FSDT 0.0232 0.0366 0.0746 0.0867
HSDT-4 0.0231 0.0364 0.0738 0.0856
10 HSDT-5 0.0231 0.0364 0.0738 0.0856
HSDT-12 0.0231 0.0364 0.0740 0.0859
Present 0.0231 0.0364 0.0740 0.0859

Table 5: Non-dimensional frequency & of plates with different values of power-law index p (b/a = 2, a/h = 10).

All above obtained results are studied using different plate theories. From table 5 and 6, it is
apparent that the present proposed HSDT and full HSDT with 12 displacement unknowns give almost
identical results for all values of power law index p and side-to-thickness ratio a/h. This emphasizes
again, the benefits of the proposed HSDT in comparison with the full HSDT, as the proposed HSDT
uses fewer displacement unknowns but requires less computational effort.
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Mode (m,n)
a/h Method
1(1,1) 2(1,2) 3(2,1) 3(2,2)
FSDT 0.0901 0.1380 0.2630 0.3001
HSDT-4 0.0890 0.1357 0.2560 0.2915
’ HSDT-5 0.0891 0.1358 0.2563 0.2918
HSDT-12 0.0893 0.1363 0.2582 0.2943
Present 0.0894 0.1365 0.2586 0.2946
FSDT 0.0240 0.0379 0.0775 0.0901
n HSDT-4 0.0239 0.0377 0.0767 0.0890
HSDT-5 0.0239 0.0377 0.0767 0.0891
HSDT-12 0.0239 0.0377 0.0769 0.0893
Present 0.0239 0.0377 0.0770 0.0894
FSDT 0.0061 0.0097 0.0205 0.0240
HSDT-4 0.0061 0.0097 0.0204 0.0239
20 HSDT-5 0.0061 0.0097 0.0204 0.0239
HSDT-12 0.0061 0.0097 0.0204 0.0239
Present 0.0061 0.0097 0.0204 0.0239
30 FSDT 0.0027 0.0043 0.0092 0.0108
HSDT-4 0.0027 0.0043 0.0092 0.0108
HSDT-5 0.0027 0.0043 0.0092 0.0108
HSDT-12 0.0027 0.0043 0.0092 0.0108
Present 0.0027 0.0043 0.0092 0.0108
FSDT 0.0010 0.0016 0.0033 0.0039
- HSDT-4 0.0010 0.0016 0.0033 0.0039
HSDT-5 0.0010 0.0016 0.0033 0.0039
HSDT-12 0.0010 0.0016 0.0033 0.0039
Present 0.0010 0.0016 0.0033 0.0039
FSDT 0.0002 0.0004 0.0008 0.0010
@ HSDT-4 0.0002 0.0004 0.0008 0.0010
HSDT-5 0.0002 0.0004 0.0008 0.0010
HSDT-12 0.0002 0.0004 0.0008 0.0010
Present 0.0002 0.0004 0.0008 0.0010

Table 6: Non-dimensional frequency @ of plates with different values of side-to-thickness a/h (b/a = 2, p = 5).

7 CONCLUSIONS

The new eight-unknown HSDT is proposed based on full twelve-unknown HSDT and satisfies van-
ishing transverse stresses at the top and bottom surface of FG plates. The accuracy of numerical
solutions has been validated against existing results in available literatures.The effects of the side-to-
thickness ratio and the power law index of constituent volume fraction on the buckling loads and on
the natural frequencies are also discussed. The results show that the buckling loads increase, and the
natural frequencies decrease significantly with increasing power law index. It can be observed by
the presented results that the gradation of the constitutive components is an important parameter
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for buckling and free vibration analysis of FG plates.The present formulation for FG plates involves
less computation compared to full twelve-unknown higher-order shear deformation theory,while gives
identical results as full twelve-unknown higher-order shear deformation theory.The numerical results
of critical buckling loads and natural frequencies should serve as a reference for any other analyti-
cal /computational model of FG plates.

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED)
under grant number: 107.02-2013.25 .

References

Bodaghi, M., Saidi, A, R. (2010). Levy-type solution for buckling analysis of thick functionally graded rectangular
plates based on the higher-order shear deformation plate theory. Applied Mathematical Modelling 34, 3659-3673.

Hosseini-Hashemi, S., Fadae,e M., Atashipour, S.R. (2011). Study on the free vibration of thick functionally graded
rectangular plates according to a new exact closed-form procedure. Composite Structures 93(2), 722-735.

Hosseini-Hashemi, S., Fadaee, M., Atashipour, S.R. (2011). A new exact analytical approach for free vibration of
Reissner-Mindlin functionally graded rectangular plates. International Journal of Mechanical Science. 53(1), 11-22.

Jha, D.K., Kant, T., Singh, R.K. (2012). Higher order shear and normal deformation theory for natural frequency of
functionally graded rectangular plates. Nuclear Engineering and Design. 250, 8-13.

Kim, J., Reddy, J.N. (2013). Analytical solutions for bending, vibration, and buckling of FGM plates using a couple
stress-based third-order theory. Composite Structures 103(2013) 86-98

Pandya, B.N., Kant, T. (1988). Finite element stress analysis of laminated composites using higher order displacement
model. Composites Science and Technology. 32, 137-155.

Reddy, J.N. (2000). Analysis of functionally graded plates. International Journalfor Numerical Methods in Engineering
47(1-3),663-84.

Shufrin, I., Eisenberger, M. (2005). Stability and vibration of shear deformable plates-first order and higher order
analyses. International Journal of Solids and Structures. 42(3-4), 1225-1251.

Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M., Carrera, E. (2015). Stress, vibration and buckling analyses of
FGM plates - A state-of-the-art review. Composite Structures. 120, 10-31.

Talha, M., Singh, B.N. (2010). Static response and free vibration analysis of FGM plates using higher order shear
deformation theory. Applied Mathematical Modelling. 34, 3991-4011.

Thai, H. T., Choi, D. H. (2012). An efficient and simple refined theory for buckling analysis of functionally graded
plates. Applied Mathematical Modelling 36, 1008-1022

Thai, H.T., Vo, T. P. (2013). A new sinusoidal shear deformation theory for bending, buckling, and vibration of
functionally graded plates. Applied Mathematical Modelling. 37, 3269-3281.

Zenkour, A. M. (2006). Generalized shear deformation theory for bending analysis of functionally graded plates. Applied
Mathematical Modelling. 30, 67-84.

Latin American Journal of Solids and Structures 13 (2016) 456-477



474  T.I. Thinh et al. / Vibration and Buckling Analysis of Functionally Graded Plates Using New Eight-Unknown Higher Order...

Appendix A. Elements of [D1], [D2], [D3], [D4] matrices.

A, A, 4A4; B, B, B, ¢, C, C, D, D, 4, B, Cy Dy,
A21 A22 A23 BQI 22 23 021 22 023 D21 D22 [D ]: B44 044 D44 E44
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Coefficients of matrix [S].

D ¢ D _c 2D, ¢
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3 3 3
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