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Abstract 
In this work, the modal characteristics, including modal damping, 
of FRP composite skin, honeycomb core sandwich panels with 
arbitrary geometries are computed using a mixed finite element-
meshless method. By using the meshless node distribution scheme 
in conjunction with the lagrangian quadrilateral interpolating func-
tions, the continuity of inter-elemental displacements is assured. 
Since the distribution of the elements is not limited to the geome-
try of the problem, any arbitrary geometry can be readily analysed 
by using the same node and element distributions. Using the first 
order shear deformation plate theory, together with a structural 
damping model, modal response results are produced for a number 
of sandwich panel geometries, including triangular, trapezoidal, 
circular as well as rectangular plates with different combinations of 
free and clamped edges. Results are compared with those reported 
in the literature, showing the viability and the accuracy of the 
method. 
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1 INTRODUCTION 

Aerospace structures bearing lateral loads are normally made from a light, spacer core sandwiched 
between two load-bearing skins. Increasingly, aerospace sandwich materials have fibre reinforced 
polymer (FRP) composites as their skins, and often a honeycomb material made from resin-soaked 
paper as their core. Compared to the traditional aluminium sandwich, not only do these materials 
enjoy a greater stiffness to weight ratio, they are also far more damped. 

Sandwich modal damping is a function of several factors, including the sandwich skin/core 
damping and thickness ratio, its planar aspect ratio and its end conditions. With multilayer FRP 
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skins, the skin damping capacity will itself be a function of layer orientation and stacking sequence. 
(Maheri et al., 2008; Maheri and Adams, 1994; Thamburaj and Sun, 2001). 

Some work on sandwich damping (Soovere, 1984; Meunier and Shenoi, 2001) have used a rate-
dependent viscoelastic damping model while others (Maheri et al., 2008; Koo and Lee, 1995; Yim 
and Gillespie, 2000) have opted for a simpler rate-independent structural damping model. Most 
often, carbon and glass fibre FRP composites can be considered to be rigid enough to render the 
viscoelastic effect negligible. A viscoelastic analysis, however, lends itself more to situations where 
highly viscoelastic materials are purposely added to the structure as a constrained or free layer to 
increase damping. 

Sandwich modal properties has long attracted a considerable attention. Various theories have 
been proposed regarding the mechanics of sandwich deformation and damping. Often, a simple, first 
order shear deformation theory has been used (Maheri et al., 2008; Liu and Zhao, 2001; Zhao and 
Stronge, 2006). To describe the sandwich shear deformation more accurately, higher order shear 
deformation theories have been developed (Liu and Zhao, 2007; Elmalichand Rabinovitch, 2012; 
Phan et al., 2013). Numerous factors influence sandwich damping, and these too have been the sub-
ject of some investigations (Maheri et al., 2008; Maheri and Adams, 1994; Thamburaj and Sun, 
2001; Yaman and Onal, 2015). 

The sandwich panels considered in the above studies have generally been of a rectangular shape. 
The primary aim of the present work was to devise a method through which FRP-Honeycom sand-
wich panels with any arbitrary geometry and boundary conditions could be readily and conveniently 
analysed for their modal characteristics, particularly structural damping. The first order shear de-
formation theory is used for sandwich deformation since any refinement in the damping results pro-
duced by a higher order theory is well within the expected tolerance of damping measurements. We 
have used a combination of the meshless node distribution and the finite element (FE) techniques in 
which, similar to the latter method, rectangular elements are arranged side by side so that they 
cover the domain of the problem, while the meshless technique is used to ensure the inter-elemental 
continuity of the displacement functions and their derivatives. The meshless node distribution whol-
ly covers the problem domain, and the boundary elements are of the same rectangular shape as the 
elements that lie within the geometric domain. Since some boundary elements could extend beyond 
the geometric bonds of the problem, the actual boundary is defined at the integration stage where 
the energies are computed only within the problem domain. Because the geometric bounds of the 
particular problem are independent of the node and element distributions, the same predefined nod-
al and elemental distributions may be used to analyse any arbitrary shape, thereby saving on com-
putational and human resources. 

The proposed method in the present work has been compared with the Rayleigh-Ritz analysis of 
(Maheri et al., 2008). It is noted that while any arbitrarily shaped plate can be solved using the 
present method, the Rayleigh-Ritz analysis is limited to the solution of rectangular plates. 

A number of panel geometries, including triangular, trapezoidal, circular as well as rectangular 
shapes have been considered. Both clamped and free edges have been considered for the sandwich 
boundary conditions. Where available, the results have been compared with those previously report-
ed in the literature. 
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2 THEORY 

The discretization scheme used in the present work is based on a combination of the finite element 
and the meshless methods. Considering an element of a mid-plane symmetric sandwich plate with 
FRP skins and a honeycomb core (Figure 1), the displacements within the element are functions of 
the displacements in the sixteen surrounding nodes. As in the FE scheme, the sixteen-noded lagran-
gian quadrilateral is duly used for interpolation. These sixteen nodes constitute part of the meshless 
support domain for the points inside the element. 
 

 
Figure 1: Sandwich panel element in a meshless node distribution. 

 
Shown in Figure 2 is a 3-D diagram of the sandwich plate and its assumed DOFs which include 

the displacement w in the z-direction, and the two total rotations x  and y  about the y- and the 

x-axes respectively. Each rotation comprises the rotation due to bending and the rotation due to 
transverse shear. 
 

 

Figure 2: 3-D vision of sandwich panel and its DOFs. 

 
The plate’s displacement field according to the first order shear deformation theory is given as 

 



20     A. Abbasloo and M.R. Maheri / Prediction of Modal Damping of FRP-Honeycomb Sandwich Panels with Arbitrary Geometries 

Latin American Journal of Solids and Structures 14 (2017) 17-35 

( , )

x x

y y

u z

u z

w w x y




 
 

  Erro! Indicador não definido. 
 

Using the following usual convention in referring to the stress and strain components, 
 

xx 1,yy 2,zz 3,xz 4, yz 5,xy 6       
 

Then strain components    are found from Equations (1) as  
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Assuming that the strain energy of the sandwich element shown in Figure 1 is a piecewise func-
tion of the strain energies of the skins and the core, then it can be written as 
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(2)

 

in which L is the total number of layers in both skins, kz  and ( 1)kz   are the distances from the 

sandwich mid-plane to the outer and the inner faces of the kth layer of the skins respectively, hc is 
the core thickness, and 
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where Q    is the off-axis, plane stress orthotropic stiffness matrix for each layer k of the FRP 

laminate skins, and  cG  is the stiffness matrix of the core. The off-axis stiffness matrix Q    is 

given in terms of the on-axis stiffness matrix, [ ]i jQ , whose components are given in terms of the 

orthotropic elastic property constants of the skins as 
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The stress and strain transformation matrices in equation (1) are given as 

 

   

2 2 2 2

2 2 2 2

2 2 2 2

0 0 0 0 2
0 0 0 0 2

,0 0 0 0 0 0
0 0 0 0 0 0

2 2 0 0 0 0
where cos( ) and sin( )

mn mnm n m n

mn mnn m n m

T Tm n m n

n m n m

mn mn m n mn mn m n

m n

 

 

    
   
   
     
   
   
         

 

 (5)

 
It is noted that Equations (3) and (4) reflect the assumption that while the in-plane damping of 

the honeycomb material can always be neglected with little loss of accuracy, the shear damping of 
the skins can be significant depending on the skin/core relative thickness. 

Equation (1) in equation (2) will give 
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in which ks is a shear correction factor, normally assumed to be about 5/6. For each node p, the 
displacements can be written in terms of the 16-noded lagrangian interpolating functions ( i ) as 
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Therefore, the curvatures { }  in equation (1) can be written as 
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Substituting equation (8) in equation (6) will give the element’s strain energy as 
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A convenient measure of structural damping is the specific damping capacity, SDC, usually 

shown by the symbol   (not to be confused with the plate rotations shown in Fig. 2), which is 
defined as the ratio of the damping energy to the maximum strain energy, thus 
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Similar to the strain energy, we assume that the damping energy of the sandwich element is al-
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in which the skin damped stiffness matrix ( )[ ]kSR  and core damped stiffness matrix [ ]cR  are given in 

terms of the damping matrixes [ ]s  and [ ]c  as 
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in which the factors [ ]i j  quantify the proportion of the energy loss in each cycle of vibration due 

to the relevant stress components. 
It is noted that the skin and core stiffness Equations (3) and the analogous damping equations 

(14) reflect the assumption that while the in-plane damping of the honeycomb material can be ne-
glected with little loss of accuracy, the shear damping of the skins can be significant depending on 
the skin/core relative thickness. 

From equation (9), the element damping energy is accordingly given as 
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The element’s kinetic energy is given as 

 

2 2 3 3 3 2 21 (2 ( ) ( ( ) )( ))d d
2 2

1
1e

e s c s c x yc cT h h w h h h x y          Ω  (17)

 

in which   is the natural frequency, h is the total panel thickness, and s  and c  are skin and 

core mass densities respectively. Substituting for w, x  and y  from equation (7) in equation (17) 

will give the latter equation as 
 

2 (( ))e ij xi x j yiij i j yjT m ww I      (18)
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in which 
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The displacements within each element of the discretised plate are computed from the dis-

placements in the sixteen nodes that immediately surround the element (Figure 3) using the lagran-
gian quadrilateral interpolating functions. Hence, the displacement functions in each element 1 are 
computed from the nodes that are shared by that element and the three successive neighboring 
elements on each side. The sixteen nodes that surround the element are effectively the support do-
main that is used in the meshless method. This support domain has an overlap with the surround-
ing elements which should ensure the continuity of the displacements and their first and second 
derivatives at the elements’ boundaries. 
 

 
Figure 3: Elements and their shared domains in a rectangular plate. 

 
The total strain, damping and kinetic energies of the plate in terms of the elemental energies 

are given respectively as 
 

1 1 1
, ,

n n n

e e e
e e e

U U U U T T
  

       (20)

 
in which n is the number of elements. Since the total energy of the system is constant at any given 
time, one may write 
 

constant,U T   (21)
 
thus, 
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in which N is the total number of nodes. One may further write 
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in which [K] and [M] are the stiffness and mass matrices respectively. In order to determine the 
elements of the stiffness and mass matrices of the panel, the elemental stiffness and mass matrices 
are considered 
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Using Equation (9) in equation (24), the elemental stiffness matrix is given as 
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where Aij, Bij etc. have been given in Equations (10). 
Similarly, the elemental mass matrix is given by Equations (18) and (25) as 
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where mij and ijI  have been given in Equations (19). 

As shown in Figure 3, the nodes are denoted by both the local as well as global numbers. The 
element matrices [Ke] and [Me] are obtained using the local numbers, and the elements of these ma-

trices are lodged in the global matrices [K] and [M] using the interrelationship between the local 
and the global numbers, thus obtaining the full global matrices. By substituting these matrices in 
Equations (23) before substituting the resulting equations into Equation (22), the following general-
ized eigenvalue problem is obtained, the solution of which yields the natural frequencies and mode 
shapes of the panel 
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The eigenvector produces nodal displacements that have been assigned a global number. Again, 
the interrelation between the local and the global nodal numbers is used to determine the local 
nodal displacements, and hence the strain and damping energies, of each element. The SDC for 
each mode is then computed by using the first two of the energy equations (20) in equation (11). 

The method of solution in this study can be generalized for a panel with any arbitrary shape, as 
well as a rectangular geometry. In Figure 4, one such arbitrary shape is considered. The nature of 
the node distribution shown is what is typically required for the analysis, in that the extension of 
node distribution beyond the boundary is needed to provide the support domain for the boundary 
elements. 
 

 
Figure 4: Defining the geometry of the problem. 

 
As the figure indicates, for an arbitrary geometry two types of elements are used. The type 1 el-

ement lies entirely within the panel and, therefore, is the same element as previously introduced in 
Figure 1. However, the type 2 element shown in Figure 5, lies on the plate boundary and is no long-
er of a rectangular shape. In order to compute the stiffness and mass matrices of this element, it is 
only necessary to carry out the integrals in Equations (10) and (19) within the geometric bounds of 
this element. 
 

 
Figure 5: The type 2 element. 

 
Thus, the procedure for the solution of the problem outlined in Figure 4 is the same as that for 

a rectangular plate except that the integrations are carried out to within the actual boundary of the 
type 2 element. 



30     A. Abbasloo and M.R. Maheri / Prediction of Modal Damping of FRP-Honeycomb Sandwich Panels with Arbitrary Geometries 

Latin American Journal of Solids and Structures 14 (2017) 17-35 

It is possible to extend the analysis in an analogous manner to include the through-thickness 
dimension as well, thereby removing the need for the requirement of an explicit formulation for the 
lateral shear deformations. However, the solution would obviously expend a substantially more 
computational resources than a two-dimensional analysis. 
 
3 RESULTS 

The sandwich panels considered are made from CFRP skins and aluminium or Nomex honeycomb 
core materials. The mechanical and damping properties of the skins and of the core are given in the 
following tables. It is noted that these data are actual test results which have been obtained in pre-
vious works for the CFRP skin (Maheri et al., 2008) and the honeycomb core (Adams and Maheri, 
1993). The honeycomb web is aligned along the x direction (Figure 2). 
 

E1 
(GPa) 

E2 
(GPa) 

G12 
(GPa) 

Ψ1 
(%) 

Ψ2 
(%) 

Ψ12 
(%) 

Ψ13 
(%) 

Ψ23 
(%) 

12 
ρ 

(kg/m3) 

271.0 6.02 5.46 0.45 7.30 8.16 8.16 8.16 0.34 1563.3 

Table 1: [-60, 0, 60] CFRP skin mechanical and damping data. 

 

Gxz 
(MPa) 

Gyz 
(MPa) 

Ψxz 
(%) 

Ψyz 
(%) 

ρ 
(kg/m3) 

140.0 75.4 0.74 1.02 40.39 

Table 2: Aluminium core honeycomb mechanical and damping data. 

 

Gxz 
(MPa) 

Gyz 
(MPa) 

Ψxz 
(%) 

Ψyz 
(%) 

ρ 
(kg/m3) 

40.0 29.0 11.2 10.5 40.43 

Table 3: Nomex core honeycomb mechanical and damping data. 

 
Modal response results were obtained for a number of mid-plane symmetric, carbon fibre rein-

forced polymer (CFRP) skin, honeycomb core sandwich panels with arbitrary geometries and differ-
ent boundary conditions. Direct comparison with published results were possible only in the case of 
rectangular plates with all-free boundary conditions (Table 4), since these were the only compatible 
published results available. 

Table 4 shows a comparison of the present results with those of (Maheri et al., 2008) where the 
method of Rayleigh-Ritz (RR) as well as experimental measurements (Exp) have been used to pro-
duce modal data for the all-free, rectangular panels with CFRP skins and aluminium honeycomb 
core. A high degree of correlation is observed between the present results and both the theoretical 
and the experimental results of the earlier work. It should be pointed out, however, that the test 
results quoted in Table 4 have been obtained for testing the plate in-vacuo, as the proportion of air-
damping is significantly high in the overall damping of light sandwich structures (Maheri et al., 
2008). 
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CFRP skin, Alum. HC core panels: a=b= 400 (mm), hc = 24.315 (mm), h = 24.915 (mm) 

Mode Shape 

    

Freq. 
(Hz) 

Present method 795 1225 1474 1814 

Numeric (Maheri et al., 2008) 796 1221 1469 1817 

Experiment (Maheri et al., 2008) 757 1202 1471 1755 

SDC. 
(%) 

Present method 1.06 1.03 0.78 0.99 

Numeric (Maheri et al., 2008) 1.03 1.00 0.76 0.97 

Experiment (Maheri et al., 2008) 1.11 1.51 1.06 1.21 

Table 4: Comparison of the present results with those of (Maheriet al.,2008)  
for a symmetric, CFRP skin, aluminium HC core sandwich panel 

 
In Table 5, the results of a mesh-refinement examination have been tabulated for the first four 

modes of the above plate. These results show that while convergence of the SDC results in all 
modes occurs for as coarse as a 6ൈ6 nodes mesh, a somewhat finer 10ൈ10 mesh would suffice to 
ensure of a complete convergence in both the frequency and damping values in all the modes con-
sidered. The present results were obtained using a 14×14 mesh.	
 
 

CFRP skin, Alum. HC core panels: a=b= 400 (mm), hc = 24.315 (mm), h = 24.915 (mm) 

 

    

Quantity 
of nodes 

Freq. 
(Hz) 

SDC. 
(%) 

Freq. (Hz) 
SDC. 
(%) 

Freq. (Hz)
SDC. 
(%) 

Freq. (Hz) 
SDC. 
(%) 

4×4 803.9 1.05 1358.7 1.06 1719.3 0.74 2090.9 0.98 

6×6 798.5 1.06 1251.6 1.04 1522.8 0.77 1861.4 0.98 

8×8 796.1 1.06 1227.9 1.03 1479.0 0.78 1818.9 0.99 

10×10 795.6 1.06 1225.9 1.03 1475.3 0.78 1815.1 0.99 

12×12 795.5 1.06 1225.6 1.03 1474.8 0.78 1814.4 0.99 

14×14 795.4 1.06 1225.4 1.03 1474.3 0.78 1814.2 0.99 

16×16 795.4 1.06 1225.4 1.03 1474.3 0.78 1814.2 0.99 

Table 5: An examination of the mesh refinement requirement for complete convergence. 
 

Tabulated in Tables 6, to 9 are the modal characteristics, including modal damping, of symmet-
ric sandwich panels with different geometries. In each case, free (F) and/or clamped (C) edges have 
been considered. 
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CFRP skin, Nomex. HC core panels: a=b= 400 (mm), hc=24.315, h= 24.915 (mm) 

Mode Shape 
(CCCC) 

    

Freq. (Hz) 814.1 1239.0 1347.6 1665.1 

SDC. (%) 9.7745 9.8721 10.0962 10.2235 

Mode Shape 
(CCCF) 

    

Freq. (Hz) 583.7 968.8 1094.5 1400.8 

SDC. (%) 9.0122 8.8828 9.5757 9.7142 

Mode Shape 
(CCFF) 

    

Freq. (Hz) 306.0 721.3 800.3 1154.7 

SDC. (%) 6.1249 8.0177 8.3659 9.0493 

Mode Shape 
(CFCF) 

    

Freq. (Hz) 605.0 713.6 1150.4 1211.0 

SDC. (%) 9.6462 8.8021 8.7383 9.9814 

Mode Shape 
(CFFF) 

    

Freq. (Hz) 196.1 355.4 725.4 936.9 

SDC. (%) 4.4649 6.2149 8.0913 8.3440 

Mode Shape 
(FFFF) 

    

Freq. (Hz) 595.9 889.5 1012.8 1125.4 

SDC. (%) 5.9674 6.7851 7.1415 8.2916 

Table 6: Modal characteristics results for the symmetric, CFRP skin, Nomex.  
HC core sandwich panels with different boundary conditions. 
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CFRP skin, Nomex. HC core panels: d= 400 (mm), hc,= 24.315, h = 24.915 (mm) 

Mode Shape 
Clamped edge 

    

Freq. (Hz) 601.7 949.9 961.3 1299.0 

SDC. (%) 9.9240 9.7237 9.5659 9.5414 

Mode Shape 
Free edge 

    

Freq. (Hz) 896.1 1285.4 1422.9 1424.7 

SDC. (%) 6.8606 8.1703 8.8596 8.8468 

Table 7: Modal characteristics results for the symmetric, CFRP skin,  
Nomex. HC core circular panels with free and clamped edges. 

 

CFRP skin, Nomex. HC core panels:  
a=b= 400 (mm), hc,= 24.315, h= 24.915 (mm)  

 

Mode Shape 
CCC 

    

Freq. (Hz) 1348.7 1902.1 2185.1 2488.3 

SDC. (%) 10.4005 10.4153 10.4806 10.5082 

Mode Shape 
CCF 

   
Freq. (Hz) 787.9 1268.7 1615.5 1820.5 

SDC. (%) 9.1864 9.6788 9.6950 9.9518 

Mode Shape 
CFF 

    

Freq. (Hz) 292.8 733.6 901.3 1291.1 

SDC. (%) 5.9824 7.9784 7.4185 9.0745 

Mode Shape 
FFF 

    
Freq. (Hz) 837.2 1116.7 1407.5 1420.5 

SDC. (%) 6.6980 7.6200 8.7411 8.5280 

Table 8: Modal characteristics results for the symmetric, CFRP skin,  
Nomex. HC core triangular panels with different boundary conditions. 

a

b
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CFRP skin, Nomex. HC core panels:  
a=b= 400 (mm), hc =24.315, h= 24.915 (mm) 

Mode Shape 
CCCC 

    

Freq. (Hz) 1030.3 1419.7 1751.8 1882.7 

SDC. (%) 10.1838 10.1574 10.3458 10.2493 

Mode Shape 
CCCF 

   
Freq. (Hz) 624.3 1088.5 1261.7 1577.5 

SDC. (%) 8.7628 9.4860 9.1760 9.8772 

Mode Shape 
CCFF 

    

Freq. (Hz) 510.7 844.6 1238.1 1340.2 

SDC. (%) 7.9008 8.7065 9.1239 9.3688 

Mode Shape 
CFFF 

    

Freq. (Hz) 211.9 511.2 676.7 1056.4 

SDC. (%) 5.2095 6.5687 7.9930 8.4498 

Mode Shape 
FFFF 

    

Freq. (Hz) 721.5 906.0 1169.1 1271.3 

SDC. (%) 6.4716 7.1738 8.0930 8.2458 

Table 9: Modal characteristics results for the symmetric, CFRP skin,  
Nomex. HC core Trapezoid panels with different boundary conditions. 

 
The results in these tables show that a correlation generally exists between the amount of the 

fixity of the plate and the modal damping, in that damping increases with the number of fixed edg-
es. Restricted edges inhibit the movement of the skins relative to each other and this increases the 
degree of the interlocking between the lateral displacement of the plate and the shear deformation 
of the core, resulting in increased core damping. Furthermore, increased fixity of the panel makes 
modal damping increasingly invariant of the sandwich mode shape. 
 
 

/ 2a

a

b
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4 CONCLUSIONS 

Modal damping of sandwich panels comprising FRP skins and a honeycomb core can be computed 
using the mixed finite element-meshless technique. This is a viable and accurate method for predict-
ing the modal response of sandwich panels with arbitrary geometries and different boundary condi-
tions. The method is versatile, in that it can readily and conveniently use the same initially set-up 
node and element distributions to analyse different geometries. Furthermore, the continuity of the 
displacements at the elements’ boundaries are assured. 
A number of sandwich panels with different geometries and boundary conditions were considered 
and, where possible, the modal characteristics, including the damping results were compared with 
those reported in the literature, whereupon it was shown that a high degree of correlation exists 
between the two sets of results. It was further shown that as the number of fixed edges increases, 
the sandwich damping increases and it becomes increasingly invariant of the sandwich mode shape. 
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