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Abstract 
Nowadays, the damage severity evaluation in mechanical struc-
tures is mostly performed by analyzing the natural frequency shift. 
The non-isotropic materials, as the multi-layered ones, are wide-
spread in industrial applications, due to their interesting physic-
mechanical properties. Thus, a deeper approach of multi-layered 
beams becomes an important request in the research domain. This 
paper introduces a damage severity estimator by expressing the 
crack evolution as a function of stored energy. It is well known 
that the energy stored in a beam without damage is greater than 
the energy of that damaged beam. As a consequence, the beam 
deflection can be related to the stored energy. In this regard, the 
possibility to split the damage localization and the damage severi-
ty assessment has been proven, and also the graphical evolution of 
the natural frequency shift has been achieved as a function of the 
crack depth. The results achieved by the finite element method 
(FEM) and experimental tests are given in tables and graphics. 
For the first five vibration modes, a comparison was made be-
tween frequencies accomplished by analytical, numerical and ex-
perimental analyses, in order to give more credibility to the accu-
racy of the research data presented in this paper. 
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1 INTRODUCTION 

In the last decades, the techniques to monitor structures and evaluate their integrity has been per-
manently developed and improved. The main idea, on which these techniques are based, is to corre-
late the dynamical features of structures with their healthy state. In this way, the modal parameter 
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changes can indicate the occurrence of damage in the structure and, in some conditions, asses the 
damage location and severity (Morassi and Vestroni, 2008), (Doebling et al., 1998) and (Gillich et 
al., 2009). The structural health monitoring effectiveness depends on the applied techniques and the 
nature of the materials composing the structure (Gillich et al., 2010). 

A type of materials more and more used in various engineering applications is the multi-layered 
composite, due to its characteristics, which can be easily tailored for specific applications. The 
methods involved to assess damages in that kind of structures depend on the damage type, being 
mainly delamination and transverse cracks. In the case of cracks, it is important to have a bench-
mark of their extent. Concerning those structures and as far as the authors are aware, no mathe-
matical relation predicting the frequency change in relation to the crack depth was reported in the 
literature. 

The aim of this paper is to introduce a relation indicating the frequency shift of the bending vi-
bration modes with respect to the damage severity in case of a 5-layered composite. This relation 
offers an overview on the physical phenomenon, making it understandable, and it is a precious tool 
in evaluating damage severity in that type of composites. 
 
2 THE FRACTURE MECHANICS APPROACH 

The following alternative method is performed by many scientists, concerning the model of cracked 
beams, and it is based on the modeling of damage through a rotational spring (Chondros et al., 
1998). The damage is characterized by the spring constant eqK , which is expressed in a way to allow 

an analogy between different empirical expressions of stress intensity factors: 
 

1
eqK s

= , with ( )ˆ
h

s P a
EI

æ ö÷ç= ÷ç ÷ç ÷è ø
 (1)

 

where s is the damage severity, ( )ˆP a  is the expression of the stress intensity factor from fracture 

mechanics, EI  is the healthy beam flexural stiffness, h  is the thickness, a  is the damage depth 
and ˆ /a a h=  is the dimensionless damage depth. For the undamaged beam 0a   and eqK  = ∞. 

After (Liebowitz et al., 1967), (Rizos et al., 1990), (Okamura et al., 1969) and (Caddemi and 
Calio, 2009) one has the local compliance given by: 
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Alternatively, (Ostachowicz and Krawczuk, 1991) proposed the following expression: 
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Imposing a sequential rotation, the models of damage sustained by a continuous description of 
the beam stiffness reduction in the proximity of damage can be roughly appreciated by a method 
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that is fully-flexible, due to the fact that the concentrated flexibility reproduces the relative rotation 
of cross-section governed by the damage (Gillich et al., 2014). 

Some relations of the local bending are offered by (Bilello, 2001): 
 

( )
( )( )

( )2
ˆ ˆ2

ˆ
ˆ0.9 1

a a
P a

a

-
=

-
 (4)

 

and by (Chondros et al., 1998), who have created a lumped cracked flexibility model equivalent to 
their continuous model: 
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where 0.3v =  is the Poisson’s ratio. 
Fig. 1 presents the expressions of function P  in respect to depth â , where the continuous thick 

line represents the expression given in relation (2), the dotted line expression (3), the thin line rela-
tion (4) and the dashed line relation (5). 
 

 

Figure 1: Graphical representation of function P proposed by different authors. 

 
The previous formulae are empirically derived for rectangular cross-sections. For other cross-

section shapes further experimental research is required. 
 
3 AN EXACT MATHEMATICAL RELATION TO PREDICT FREQUENCY CHANGES IN DAMAGED 

BEAMS 

According to the weak points above highlighted, several conclusions regarding the conditions im-
posed for the breathing crack models can be formulated. The most important are: 

- for each vibration mode, a beam stores an amount of energy dependent on the structural 
stiffness; hence, one single frequency dependent of the stored energy is expected; 

- for the vibration analysis of beams with breathing cracks, the beam stiffness derived from 
static analysis is inappropriate;  
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- the two half periods ( / 2oT ), for the open and for the close stages, are identical. 

Because the statically derived flexural stiffness EI  about the axis of interest is not relevant to 
characterize the bending vibration of beams with breathing cracks, a new measure is required. Ac-
cording to the heretofore research performed, the deflection increase due to damage, achieved by 
applying an external load, is proposed as measure of the damage severity. 

In Fig. 2, the deflection of the original beam in healthy state due to dead weight is plotted by 
blue line and the deflection of the same beam having a crack near the fixed end is represented in 

magenta. Also, an equivalent beam having a reduced uniform flexural rigidity ( )eqEI  is shown in 

violet. We assumed both beams as having the same cross-section and mass. Further, the original 
damaged beam and the equivalent one have the same deflection at the free end, they storing the 
same amount of energy. This is in accordance to Castigliano’s second theorem, about displacements 
in a linearly elastic structure, which states that if two beams subjected to the same load present 
similar deflection, then they store the same amount of energy. 
 

 
 

a. b. 

Figure 2: 3D-schematics of the beam with the damage is pointed by red line (a); deflections for the healthy beam, 

damaged beam in open stage and equivalent beam under the dead mass (b). 

 
For the original healthy cantilever beam, the dead mass produces a deflection δU(L) that is de-

rived using the well-known relation: 
 

( )
4 3

8 8U
gAL MgL

L
EI EI

r
d = =  (6) 

 

where r  is the mass density, g the gravitational acceleration, A  the beam cross-section area, L  

the length and M  the mass. If damage occurs at the fixed end of the original beam (blue), the de-
flection increases (magenta) to ( )0 Ld . It happens because of a supplementary rotation in the dam-

aged region, for the rest of the beam the deflection and rotation gradient remaining as in the un-
damaged case. Now, it can be assumed that a healthy equivalent beam (violet) with a reduced con-
stant rigidity  eqEI  has the same deflection 0( )Ld . Note that, the equivalent beam cross-section 

area and mass density are maintained unchanged, in order to achieve the same mass distribution 
and total weight as for the original beam. In this case, the deflection of the equivalent beam is: 
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From Eqs. (6) and (7) result the original and equivalent beam rigidities: 
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It is possible to define the equivalent beam’s rigidity, in respect to the original rigidity and the 
deflection achieved by the two beams at the free end, as being: 
 

   
 0

eq U L
EI EI

L





 (9)

 

Now, the beam having the weak axis in vertical position is considered. As a consequence, the 
beam becomes straight, while the bending state under the dead mass is no longer present. By mov-
ing the free end away from the rest position with a small distance ( )w L , the beam stores energy. 

Releasing the free end, the beam starts to vibrate. In the absence of damping the energy is con-
served over time. The strain energy of the original beam achieves the highest value at the extreme 
positions, which is: 
 

( )( )2
02

L
U
P i i

EI
E w x dx- ¢¢= ò  (10)

 

This rule is also valid for the damaged beam, which has the maximum strain energy: 
 

( )
( )( )20

02
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L

P i i

EI
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Obviously, the healthy beam stores a bigger amount of energy related to the damaged one. At 
the rest position, the kinetic energy derived for the original beam achieves the maximum, being: 
 

( )( )22

02

L
U
K i U i

M
E w x dxw- = ò  (12)

 

For the damaged beam the maximum kinetic energy is: 
 

( )( )20 2
0 02

L

K i i
M

E w x dxw- = ò  (13)

 

Because the damaged beam stores lower energy than the original healthy beam, the angular fre-
quencies are in the relation 

0U i iw w- -> . 

In Eq. (10) to (13) ( )iw x  denotes the i-th mode shape and ( )iw x¢¢  is the curvature for the orig-

inal healthy and equivalent damaged mode i . The previously mentioned functions are not time-
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dependent, therefore indicating the amplitudes of the mode shapes and the curvatures. For the 
beam with one fixed and one free end 
 

( ) ( )cos cosh
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i i

i i i i i
i i

L L
w x x x x x

L L

a
a a a a

a a
+
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where ia is the wave number for the beam resulted as solutions of the characteristic equation. 

Using Rayleigh’s principle, the energies are related as U U
P i K iE E- -=  respectively 0 0

P i K iE E- -= , 

and the angular frequencies result from Eq. (10) to (13), in: 
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From Eqs. (16) and (17), the ratio between the angular frequencies of the healthy beam, for any 
transverse vibration mode, and the corresponding angular frequencies of the damaged beam is: 
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Thus, the natural frequencies for a beam with stiffness decrease at the fixed end can be calcu-
lated by: 
 

( )
( )0

0

U
i U i

L
f f

L

d

d- -=  (19)

 

Note that Eq. (19) can be used for beams with any boundary conditions, because the ratio of 
the deflections ( )U Ld  and ( )0 Ld  just depends on the healthy and damaged beam stiffness, see Eq. 

(9). The single difference consists in the location where the damage and the maximum deflection are 
placed. 

Eq. (15) is valid for breathing cracks, i.e. cracks with the two walls in contact at the rest posi-
tion. Since the frequency drop is just related to the energy decrease, the relation is valid for open 
cracks as well, but in this case also a frequency increasing due to loss of mass is expected. 
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The frequency change 0 0i U i if f f- - -D = -  is an important indicator in damage detection. It 

can be derived from Eq. (19), as: 
 

( )
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( ) ( )
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0
0 0

0 0

1 U U
i U i i U i U i

L L L
f f f f f

L L

d d d

d d
- - - - -

æ ö -÷ç ÷çD = - = - =÷ç ÷ç ÷÷çè ø
 (20)

 

It is interesting to see how the frequencies change if the damage is not located at the fixed end. 
For this reason we consider a beam like that presented in Fig. 3, where three areas can be observed: 

the two healthy segments, having the moment of inertia 3 / 12I BH= , and the damaged slice with 
3 / 12CI Bh= . In the damaged area the neutral axis is deviated to the cross-section mid. 

 

 

Figure 3: Typical areas for a cracked beam 

 
While the mass distribution still constant, the bending moment ( )iM x  is easily derived for the 

healthy cantilever beam, being known that it is proportional to the mode shape second derivative. 
Thus, the dimensionless bending moment is similar to the dimensionless curvature ( ) ( )i iM x w x¢¢ . 

Here, both terms of the relation are made dimensionless, by the division to the highest value of the 
category; these are (0)iM  and (0)iw ¢¢ . 

In the case of partial stiffness decrease, as shown in Fig. 3, it is convenient to consider the effec-
tive bending moment ( )eff iM x- . It is the moment acting on a presumed healthy beam, but produc-

ing a similar effect as ( )iM x  on the damaged one. The relation between the two bending moments 

is: 
 

actual

reference

( ) ( )eff i i

I
M x M x

I- =  (21)

 

This has as consequences an increasing of the effective bending moment in the damaged slice. In 
Fig. 4 the apparent energy increase is presented for mode one and three. The blue bars indicate the 
normalized strain energy distribution along the healthy beam, derived as: 
 

2

0

1
( )

2

L
U
P i iE M x dx

EI-
é ù= ë ûò  (22)

 

From Fig. 4 results the participation of each slice to the total stain energy, for the different 
bending vibration modes. 
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a. b. 

Figure 4: The energy distributions for mode 1 and 3 of a damaged beam. 

 
The bars plotted by orange border reflect the apparent energy increase, if damage occurs in the 

individual slices. For the slice having as limits the distances a and b measured from the fixed end, 
the strain energy is: 
 

2 21 1
( ) ( )

2 2

b bbC
P i eff i ia a a

C

E M x dx M x dx
EI EI- -

é ù é ù= = ë ûë ûò ò  (23)

 

The orange full bar shows this increasing for the slice located around distance / 0.29x L = . 

Thus, the energy loss ratio is derived from the damaged and healthy state, as: 
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For the damaged case, the energy distribution along the beam in the explicit form is: 
 

2 2 2

0

1 1 1
( ) ( ) ( )

2 2 2

a b L
C
P i i i ia b

C

E M x dx M x dx M x dx
EI EI EI-
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where 0 a-  and b L-  are the healthy segments and a b-  is the damaged slice. 
In agreement with the Eq. (21) and considering the inverse effect of stiffness decrease to the 

stored energy, we can replace the actual bending moment in Eq. (25) by ( )( ) / ( )C CM x I I M x= . 

By adding and subtracting the strain energy of the healthy slice a b-  in Eq. (25), one attains: 
 

2
2 2
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1 1
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b b
C C C
P i P i i ia a

C

I
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or in a comprehensive form: 
 

21
1 ( )

2

b
C C C
P i P i ia

I
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I EI- -

æ ö÷ç é ù÷= - -ç ÷ ë ûç ÷çè ø ò  (27) 

 



1534     G-R. Gillich et al. / A New Approach for Severity Estimation of Transversal Cracks in Multi-Layered Beams 

Latin American Journal of Solids and Structures 13 (2016) 1526-1544 

Substituting C
P iE -  in Eq. (22) and reducing the common factor, the energy loss ration becomes: 

 

2 2 2 2

0
22 2 2

0 0 0

( ) ( ) ( ) max ( )
1

max ( )( ) ( ) ( )

L b b

i i i iC a C a
i L L L

ii i i
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é ù é ù é ù é ù- -ë û ë û ë û ë û= - = -
é ùé ù é ù é ùë ûë û ë û ë û

ò ò ò
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In Eq. (28) the bending moment is made dimensionless by normalization. Let us denoted this 

moment as ( )iM x  and the moment acting in slice a b-  as 
2

( )
b

i ia
M x dxt é ù= ë ûò . Knowing that 

2

0
( ) 0.25

L

iM x dxé ù =ë ûò , the energy loss ratio becomes: 

 

( )4
1 i C

i

I I

I

t
h

-
= -  (29)

 

From Eq. (22) and Eq. (29), the relation between the natural frequencies for the beam with 
stiffness decrease and the healthy, it results: 
 

( )4
1

C
i CC i P i

iU
U i P i

I If E

If E

t
h- -

- -

-
= = = -  (30)

 

hence, the damaged beam’s frequencies are: 
 

( )4
1 i C

C i U i

I I
f f

I

t
- -

-
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and the frequency decrease due to the crack results: 
 

( )4
1 1 i C

C i U i C i U i

I I
f f f f

I

t
- - - -

é ù-ê úD = - = - -ê ú
ê úë û

 (32)

 

In the following, the frequency decrease is illustrated for a damage iteratively placed along the 
beam. The stiffness reduction manifests on a slice of width 0.01·L , thus one hundred cases are ana-
lyzed. Fig. 5 depicts the frequency shift for the vibration modes one and three, all analyzed cases 
being presented. 

Having a look onto Fig. 4 and 5, one can observe that the frequency drop is most important if 
the crack is located on slices where the normalized bending moment ( )iM x , i.e. the normalized cur-

vature ( )
( )

( )max
i

i
i

w x
w x

w x

¢¢
¢¢ =

é ù¢¢ë û
, is the unity, thus taking the highest value. For example, it is the 

fixed end for the cantilever beam, or the both ends of a double-clamped beam. In the case of simply 
supported beam, this location is reconfigured at each mode, for the first one being the mid-span. 
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a. b. 

Figure 5: Relative frequency shifts for the stiffness loss on a slice of width 0.01·L. 

 

From Fig. 4 and 5, one can also conclude that for the damage located in slices on which no 
bending moment acts, thus ( ) 0iw x¢¢ = , the frequency decrease is null. In intermediate positions the 

frequency change depends on the square of the normalized curvature ( )( )2iw x¢¢ . Regarding the di-

mensionless frequency drop achieved for the fixed end, it is similar for all weak-axis bending modes, 
being around 0.11 in our exemplification (see the red circle). This demonstrates that the severity is 

one for all modes, the effect being weighted by the square of the normalized curvature ( )( )2iw x¢¢ . 

Therefore, it is convenient to use the frequency decrease for the location with the highest frequency 
drop to express the damage severity: 
 

( ) ( )
( )

0

0

UL L

L

d d
g

d

-
=  (33)

 

Consequently, the frequency shift and the relative frequency shift (RFSh) for a damaged Euler-
Bernoulli beam with the transversal crack located at distance C from the fixed end are: 
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The natural frequency for this beam is 
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1 1C U U
C i U i U i i

C

L L L L
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L L

d d d d
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 (36)

 

This relation can be used to derive the frequency shift due to damage for beams with any sup-
port type, any crack location and severity. Moreover, it is applicable to beams with any cross-
section shape. The relation can be also used to contrive a database, containing numerous damage 
scenarios, which constitutes a benchmark for damage detection methods (Gillich and Praisach, 
2014), even if composite structures are analyzed (Gillich et al., 2012). 
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4 FINITE ELEMENT ANALISYS OF A 5-LAYER DAMAGED BEAM 

The numerical analysis of the damage depth effect on a 5-layered beam has been performed by 
means of Finite Element Method (FEM) in the ANSYS simulation software. The sandwich model 
was structured on three layers of steel and two of PVC, each one having 1 mm thickness. Steel lay-
ers are placed in the exterior and in the middle, PVC layers were interposed between them. We 
made use of rigid PVC, explicitly Poly (vinyl chloride), because it is a synthetic plastic polymer 
commonly used in construction. 

The most significant material properties for PVC and steel are provided in Table 1. It has to be 
specified that all the FEM simulations were performed by involving these material properties. Rele-
vant values of the geometrical characteristics for the beam model are presented in Table 2. 
 

Name Poissin’s ratio   Mass density ρ Young’s modulus E  

Unit - kg/m3 N/m2 

PVC 0.3825 1300 2.41·109 

Steel 0.3 7850 2·1011 

Table 1: PVC and steel material properties 

 

Parameter Length L Width B Thickness h Mass M 

Unit mm mm mm kg 

Value 1000 50 5 0.523 

Table 2: Geometrical characteristics of 5-layered beam 

 
A static analysis was performed to find the beam deflections under dead mass. After that, the 

frequencies where investigated. The investigation firstly focused on the healthy beam. Afterwards, 
the beam cross section was locally reduced at the distance 6C  mm from the fixed end by a step of 
0.4 mm up to 4.8 mm. Depth levels around 1 and 3 mm were additionally considered in order to 
refine the analysis, in the end a number of 32 damage scenarios was resulted. For all damage sce-
narios, the damage width is 1 mm and its length is 50 mm the same with the beam width (see Fig. 
6). The first and the last case are depicted in Fig. 6. 
 

 
a. b. 

Figure 6: Presence of damage depth by two limit value in the 5-layer beam. 
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The simulation of different damage scenarios indicated the way of frequency shift in the case of 
damage evolution. The achieved natural frequency values are given in Table 3, together with the 
relative frequency shift C if -D derived with Eq. (36). In parallel, the deflection increase is indicated 

as well as the damage severity derived from Eq. (33). 
 
 

 

Figure 7: Evolution of damage severity against relative frequency shift. 

 
 

For the damage depth 0 - 4.8 mm a graphical representation of the damage severity evolution 
obtained by FEM is plotted by blue line in Fig. 7. Also, for the incipient damage depth a zoom of 
the curve is shown, in order to highlight the small severity values in this depth range. One can ob-
serve a sharp severity increase, when the steel sheets are completely sawn; it happens at damage 
depths of 1 and 3 mm. Thus, for an increased depth, over 3 mm, the reduced beam rigidity in the 
damaged area favors a strong severity increasing. The severity dramatically advances after the 
depth of 4 mm is achieved. It is worth to be mentioned that the plastic behavior occurs for extend-
ed depth, which explains the significant increase of deflection. The severity curve is compared 
against the relative frequency shift evolution derived for the first bending vibration mode. It was 
found a very good concordance between these two parameters, from the early damage stage until 
the plastic behavior occurs. This demonstrates that the proposed damage severity indicator is suita-
ble for the damage detection propose. 

Tables 4 and 5 present the first ten natural frequencies for a damage located at 274 mm from 
the fixed end, considering twelve relevant damage depths. The representation of the relative fre-
quency shift evolution achieved for these modes, is shown in Fig. 8. The normalization is performed 
in order to assure a qualitative comparison of these evolution curves by involving Eq. (36). 
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Damage depth 
[mm] 

Frequency 
[Hz] 

Relative frequen-
cy shift [-] 

Deflection 
[mm] 

Damage severity 
[-] 

0 4.457588 0 19.31522 0 

0.2 4.456568 0.0002288 19.32448 0.000239 

0.4 4.452995 0.0010304 19.35555 0.001043 

0.6 4.445269 0.0027636 19.42275 0.00278 

0.8 4.423971 0.0075415 19.60975 0.007595 

0.99 4.39469 0.0141103 19.87135 0.014294 

1 4.297331 0.0359516 20.77851 0.037188 

1.01 - - 20.97943 0.04219 

1.1 - - 21.48587 0.054694 

1.2 4.216425 0.0541017 21.57843 0.056964 

1.4 4.199927 0.0578029 21.7475 0.061096 

1.6 4.189053 0.0602421 21.85939 0.063822 

1.8 4.178995 0.0624987 21.9639 0.066363 

2 4.174335 0.0635441 22.01288 0.067551 

2.2 4.164286 0.0657985 22.11845 0.070108 

2.4 4.139949 0.071258 22.37691 0.076342 

2.6 4.097167 0.0808555 22.84288 0.087491 

2.8 3.991261 0.1046142 24.05981 0.116082 

2.99 3.857027 0.1347278 25.74397 0.154484 

3 3.489578 0.21716 31.36642 0.274332 

3.01 - - 33.25827 0.3122 

3.1 - - 39.26845 0.425844 

3.2 3.053069 0.3150849 40.81481 0.453647 

3.4 2.936541 0.3412265 44.06856 0.510479 

3.6 2.854865 0.3595493 46.58771 0.553051 

3.8 2.770193 0.3785444 49.43836 0.599861 

4 2.727175 0.3881949 50.98671 0.62472 

4.2 2.64152 0.4074106 54.30344 0.676733 

4.35 - - 59.66686 0.757587 

4.4 2.438428 0.4529715 63.59422 0.814508 

4.6 2.146669 0.5184237 81.81808 1.058139 

4.8 1.386807 0.6888884 194.7711 2.175502 

Table 3: Dimensionless frequency shifts for the first vibration mode and the deflections under the own mass 
considering the damage depth between 0 and 4.8 mm 
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Mode 
number i 

Damage depth [mm] – Damage location C = 274 [mm] 

0 0.4 0.8 1.2 1.6 2 

1 4.457588 4.453703 4.44109 4.323778 4.309279 4.300839 

2 27.84403 27.84233 27.83379 27.74211 27.73108 27.7247 

3 77.56287 77.50425 77.29646 75.37508 75.15085 75.0222 

4 150.8723 150.7908 150.5094 148.0918 147.8249 147.6733 

5 247.0677 247.0654 247.0647 247.0583 247.0544 247.0511 

6 364.9251 364.7244 364.0628 358.1151 357.4334 357.0411 

7 503.067 502.5984 501.0597 488.8718 487.629 486.9366 

8 659.9959 659.8149 659.2557 655.0976 654.6692 654.4304 

9 834.1504 834.0533 833.8118 831.6734 831.41 831.2426 

10 1023.954 1023.159 1020.622 999.0905 996.7881 995.495 

Table 4: Frequency values for ten vibration modes considering the damage depth between 0 and 2 mm 

 

Mode 
number i 

Damage depth [mm] – Damage location C = 274 [mm] 

2.4 2.8 3.2 3.6 4 4.4 

1 4.270118 4.203756 3.563213 3.419569 3.318866 2.805408 

2 27.70243 27.65384 27.19954 27.10738 27.0445 26.75454 

3 74.56347 73.60228 66.35173 65.15142 64.38062 61.19796 

4 147.1425 146.0627 139.4981 138.6129 138.0717 136.0146 

5 247.0491 247.0436 247.0193 247.0075 246.994 246.9909 

6 355.6458 352.8154 333.9272 331.3033 329.6788 323.4274 

7 484.5077 479.8296 457.4701 455.1791 453.8575 449.0691 

8 653.6296 652.0409 644.5765 643.7273 643.2199 641.3758 

9 830.7425 829.7737 822.2759 821.0884 820.2481 816.9608 

10 990.584 980.611 925.845 920.5633 917.6103 904.3562 

Table 5: Frequency values for ten vibration modes considering the damage depth between 0 and 4.8 mm 

 

 

Figure 8: Normalized frequency shift evolution of a 5-layered beam, taken for the relevant domain of analysis 
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By representing the frequency shift as the effect of damage depth evolution, it was verified that 
it takes the same allure for all vibration modes. This demonstrates the fact that the split of damage 
location issue and damage severity evaluation is very possible. 

From Fig. 8 it is quite easy to observe that the allure of the normalized frequencies is similar to 
the damage severity, being in the relation: 
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In fact, it is easy to accomplish the normalized frequency of any bending mode for the cracked 

beam from the damage severity g  and the square of the curvature ( )( )2iw C¢¢ . At the mode five, 

which has an inflection point at   274C = mm, the frequency shift is minimal. In contrast, mode 
one achieves the highest curvature among all the ten analyzed modes, thus the biggest frequency 
change is observed. 
 
5 EXPERIMENTAL TESTS ON A 5-LAYER DAMAGED BEAM 

Experimental tests have been performed on a beam of 5 layers. The beam structure is like the one 
described in section 3 and also the distance of damage accomplishment is =  274C mm. The test 
stand, presented in Fig. 9.a, is structured to meet real condition and also those from numerical sim-
ulation. Obviously, the goal was to confirm the method results achieved by mathematical calculus 
and FEM. 

To complete the mechanical part of the stand, a vibration data processing and analyzing system 
was provided. The system is based on a piezo-accelerometer Kistler 8772, designed to fine sensing 
the vibration waves and send three analog signals, corresponding to each axis, to the acquisition 
board. Acquisition board consists of a compact chassis NI cDAQ-9172 and the signal acquisition 
module NI 9234. Acquisition board sends binary encoding data to the computer. The computer runs 
an application in LabView software, special designed to fine processing the vibration data, for accu-
rate frequency identification (Onchis et al., 2012). The accelerometer physical position is nearby the 
free end of the beam. A general view of the test stand is given in Fig. 9.a. The accelerometer posi-
tion (SP) is highlighted. 
 

 
a) b) 

Figure 9: General view of the test stand and magnification of the first step damage 
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Crack evolution was achieved by a 0.4 mm sequential step saw cutting, until the first layer of 
steel was entirely damaged and the second layer of PVC was almost damaged. In the last step, the 
damage reached a 1.6 mm depth. This strategy has been adopted because the last 0.4 mm of PVC 
does not significantly affect the entire beam stiffness. 

For each damage step, a number of five tests in identical testing conditions have been under-
taken. Each value shown in Tables 6 to 8 represents the average of five measurements. Fig. 9.b 
depicts the first damage step, the breathing space being bordering by black areas for more clearness. 

To have a better visibility over the results, Table 6 shows an edifying comparison between the 
frequency values achieved from mathematical calculus (Mat), FEM and average of experimental 
tests (AU), regarding the first five vibration modes of the undamaged 5-layer beam. 
 

Mode 
Frequency results [Hz] 

Mat FEM AU 
1 4.452 4.453 4.446 
2 27.9 27.818 27.864 
3 78.128 77.502 77.803 
4 153.102 150.78 151.989 
5 253.061 246.96 248.592 

Table 6: Measurements of 5-layer healthy beam 
 

Table 7 offers an example of the test results evaluation for the second damage level. The average 
(AD2) of the five test values, for the first five vibration modes, is given. In Table 8, four-figure values 
have been taken, in order to increase the accuracy of interpretation, so that closer values can be dis-
tinguished in an easier way. While the third vibration mode in FEM has an important evolution, in 
the experimental part it is less visible. As a general observation, in case of higher or lower vibration 
modes, the evolution cannot be clearly identified, the results tend to spread over randomly. 
 

Mode 
Tests results of frequency measurement [Hz] 

AD2 [Hz] 
1 2 3 4 5 

1 4.406 4.416 4.418 4.424 4.419 4.417 
2 27.755 27.673 27.759 27.864 28.146 27.839 
3 77.453 77.474 77.459 77.498 77.513 77.479 
4 150.842 151.648 152.023 151.973 152.125 151.722 
5 247.629 247.879 248.674 249.395 248.866 248.489 

Table 7: Measurements of 5-layer beam, having a 0.8 mm damage depth and x = 274 mm 

 

Mode 
Frequency measurements [Hz] 

0 0.4 0.8 1.2 1.6 
1 4.4459 4.4376 4.4171 4.4116 4.4112 
2 27.8641 27.8573 27.8394 27.8312 27.8294 
3 77.8027 77.7519 77.4788 77.4370 77.4363 
4 151.9892 151.8990 151.7222 151.6311 151.6294 
5 248.5915 248.5902 248.4893 248.4440 248.4396 

Table 8: Frequency measurements of 5-layer beam for damage evolution from 0.4 to 1.6 



1542     G-R. Gillich et al. / A New Approach for Severity Estimation of Transversal Cracks in Multi-Layered Beams 

Latin American Journal of Solids and Structures 13 (2016) 1526-1544 

 

Figure 10: Achievement of frequency shift evolution from experimental tests 

 
In the image of Fig. 10, it is clear that the evolution shapes of the frequency shift from the ex-

perimental measurements almost respect the most important aspects, as well as in the case of nu-
merical simulation or mathematically derived. Individually taken, the vibration modes, regarding 
the order and the distribution of graphical evolutions, do not match a rational form, which can be 
assessed by comparing the mathematical, the numerical and the experimental results. 
 
6 CONCLUSIONS 

The analysis of beam deformed shape in the transversal vibration modes explicitly showed the pres-
ence of several areas where the displacement from the equilibrium position and the curva-
ture/bending moment indicates maximum and null values. These areas are different in relation to 
vibration modes and depend on the support type. Regarding the beam characteristics length and 
slenderness, they do not affect the relative position of characteristic areas. 

FEM applied to the multi-layered damaged beams demonstrates a deterministic relation be-
tween the areas with zero curvature, defining maximum and the variation of frequencies. Thus, the 
greatest values of frequency shift, due to the damage, are achieved in the areas of maximum curva-
ture, and no frequency shift is accomplished in the zero curvature points. 

The mathematical relation proposes to determine certain damage in multi-layered beams has 
been confirmed by FEM and an important amount of real experiments. Differences of a maximum 
of 3.5 % were achieved by comparing results from the mathematical calculation, FEM and experi-
mental tests. 

An important accomplishment was to determine the evolution shape of frequency shift as a 
function of damage depth for a given damage position among the beam length. These frequency 
shift evolutions for isotropic materials in correspondence to the damage have been a long time ago 
determined by other researchers. They are available for rectangular cross sections. 

In this paper, the beam loss energy dependency of its deflection modification was proven. This 
fact allows the establishment of a severity coefficient, as a function of the beam deflection. The 
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severity coefficient, for a given vibration mode, can be computed by considering the beam deflection 
determined for the real damage (stiffness decreasing at exact places of the damage position). 

Another advantageous method to determine the energy changing supposes that the beam deflec-
tion is achieved for the damage translated in the fixing point, and being weighted by the curvature 
square value for each vibration mode. 

For the 5-layered beam three levels and two deep values are noticed, for which important shifts 
are observed, precisely at one and three mm depth. Frequency shift evolution, depending on dam-
age depth, shows the same allure, and the amplitude is affected by the severity in that vibration 
mode. The reduced stiffness effect given by the middle steel layer is achieved because of the zero 
closing of material stress in the area. 

The mathematical relation that defines frequency shift, depending on the damage depth and lo-
cation, was employed to achieve a complex and complete database, generally available for any 3- or 
5-layered beams. Also, based on this database a non-invasive control method has been developed. 
Its viability was certified by laborious laboratory tests, like those shown in this paper. 
 

Acknowledgement 

The work has been funded by the Sectoral Operational Programme Human Resources Development 2007-2013 of the 
Ministry of European Funds through the Financial Agreement POSDRU/159/1.5/S/132395. 

 

References 

Bilello, C. (2001). Theoretical and experimental investigation on damaged beams under moving systems, 
Ph.D.Thesis, Universita degli Studi di Palermo, Italy. 

Caddemi, S., Calio, I. (2009). Exact closed-form solution for the vibration modes of the Euler-Bernoulli beam with 
multiple open cracks, Journal of Sound and Vibration 327: 473-489. 

Chondros T.J., Dimarogonas A.D., Yao J. (1998). A continuous cracked beam vibration theory, Journal of Sound 
and Vibration 215(1): 17–34. 

Doebling, S.W., Farrar, C.R., Prime, M.B. (1998). A summary review of vibration based damage identification 
methods, Shock Vibration Digest 30(2): 91-105. 

Gillich, G.R., Abdel Wahab, M., Praisach, Z.I., Ntakpe, J.L. (2014). The influence of transversal crack geometry on 
the frequency changes of beams, Proceedings of International Conference on Noise and Vibration Engineering (IS-
MA2014) and International Conference on Uncertainty in Structural Dynamics (USD2014): 485-498. 

Gillich, G.R., Birdeanu, E.D., Gillich, N., Amariei, D., Iancu, V., Jurcau, C.S. (2009). Detection of damages in sim-
ple elements, Annals of DAAAM, Proceedings of the 20th International DAAAM Symposium, vol. 20: 623-624. 

Gillich, G.R., Praisach, Z., Onchis, D.M. (2010). About the effectiveness of damage detection methods based on 
vibration measurements, Latest trends on Engineering Mechanics, Structures, Engineering Geology, p. 204-209. 

Gillich, G.R., Praisach, Z.I. (2013). Damage-patterns based method to locate discontinuities in beams, Proceedings of 
SPIE, vol. 8695, no. 869532, DOI: 10.1117/12.2009122. 

Gillich, G.R., Praisach, Z.I. (2014). Modal identification and damage detection in beam-like structures using the 
power spectrum and time-frequency analysis, Signal Processing, vol. 96, Part: A, Special Issue: p. 29-44 

Gillich, G.R., Praisach, Z.I., Negru, I. (2012). Damages Influence on dynamic behaviour of composite structures 
reinforced with continuous fibers, Materiale Plastice 49(3): 186-191. 



1544     G-R. Gillich et al. / A New Approach for Severity Estimation of Transversal Cracks in Multi-Layered Beams 

Latin American Journal of Solids and Structures 13 (2016) 1526-1544 

Liebowitz, H., Vanderveldt, H., Harris, D.W., (1967). Carrying capacity of notched column, International Journal of 
Solids and Structures 3(4): 489–500. 

Morassi, A., Vestroni, F. (2008). Dynamic methods for damage detection in structures, CISM Courses and Lectures, 
Springer Wien New York, vol. 499. 

Okamura, H., Liu, H.W., Chu, C.S., Liebowitz, H. (1969). A cracked column under compression, Engineering Frac-
ture Mechanics, vol. 1, no. 3, p. 547-564. 

Onchis-Moaca, D., Gillich, G.R., Frunza, R. (2012). Gradually improving the readability of the time-frequency spec-
tra for natural frequency identification in cantilever beams, Proceedings of the 20th European Signal Processing 
Conference (EUSIPCO), Book Series: European Signal Processing Conference: 809-813. 

Ostachowicz, W.M., Krawczuk, C. (1991). Analysis of the effect of cracks on the natural frequencies of a cantilever 
beam, Journal of Sound and Vibration 150(2): 191-201. 

Rizos, P.F., Aspragathos, N., Dimarogonas A.D. (1990). Identification of crack location and magnitude in a cantile-
ver beam from the vibration modes, Journal of Sound and Vibration 138(3): 381-388. 


