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Abstract 
In the present paper, buckling analysis of functionally graded rec-
tangular micro-plates, on the basis of strain gradient theory with 
one length scale parameter is studied. Considering the Kirchhoff 
plate theory and the principle of minimum total potential energy, 
governing equations of micro-plate subjected to in-plane loads are 
extracted. In accordance with functionally graded distribution of 
material properties through the thickness, higher order governing 
equation of sixth order is derived. Consequently, the stability equa-
tion is solved analytically for simply supported micro-plates and 
the effects of material properties, micro-structure parameters, di-
mensions and loading conditions are expounded on the critical 
buckling load. Developing the strain gradient theory for buckling 
analysis of micro-plates made of functionally graded material is a 
significant novelty of the presented study. 
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Rectangular micro-plate, Strain gradient theory, Buckling analysis, 
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1 INTRODUCTION 

Increasing demands of Micro Electro Mechanical Systems (MEMS) and Nano Electro Mechanical 
Systems (NEMS) in different fields, especially in bio-mechanics and smart systems, have attracted 
great numbers of researches toward these subjects. NEMS and MEMS usually are made out of dif-
ferent parts which can be modeled as micro beams or plates. For these models, the most import 
case of mechanical study is stability analysis. Therefore, buckling analysis of these structures is so 
important because in the bifurcation point, they buckle and become unstable. 
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Experimental studies on the plates and beams show the inevitable effect of small scale in micro 
and nano structures (Chong and Lam (1999), Lakes (1980) and (1986), Yang and Lakes (1982), 
Hofstetter et al. (2005)). Hence, utilizing classical theories (Wang et al. (2000)) for analyzing the 
members such as plates are modified depending on different proposed models. For investigation of 
micro-plates, different theories have been proposed by the researchers, e.g. strain gradient theory 
(Mindlin (1964), Mindlin and Eshel (1968)), couple stress theory (Toupin (1962)) and micro polar 
theory (Eringen (1966) and (1967)). In these theories, the effects of micro-structures and the size 
effects are considered in constitutive equations. 

Among the proposed theories, strain gradient theory is one of the most usable one which is a 
higher order generalized form of classical elasticity theory. According to the general form of Mindlin 
theory (Mindlin (1964)), strain energy density is composed of three terms. These terms are gradi-
ents of displacements, gradients of strain and gradients of rotation, respectively. In the couple stress 
theory, it is assumed that the energy density contain expressions of gradient of rotation and the 
conjugated stress. Mindlin and Eshel (1968) considered the first order gradient of strains in the en-
ergy density and proposed a form contains five elastic constants in addition to two usual Lam e´ 
constants for an isotropic linear elastic micro structured solid. 

A review of the above mentioned higher order theories of elasticity can be found in the works of 
Tiersten and Bleustein(1974), Vardoulakis and Sulem (1995), Lakes (1995), Papargyri-Beskou and 
Beskos (2008).  

A size dependent model for thin micro-plates (Kirchhoff micro-plates) has been presented by 
Farahmand et al. (2011) and Wang et al. (2011). They considered length scale parameters to cap-
ture the effect of size on the solution and improved the strain gradient theory in order to predict 
results for micro-plates. Papargyri-Beskou and Beskos (2008) investigated analytical solution for 
buckling analysis of strain gradient elastic thin micro-plates based on the Kirchhoff theory. The 
variational approach was utilized to determine the governing equations and boundary conditions in 
Lazopoulos work(2009).  

Since MEMS and NEMS components are usually subjected to the thermal effects (because of elec-
trical resistance), applying heat resistant materials in construction of their components is a challenging 
research topic in engineering. Recent development in the metallurgy engineering leads to suggest new 
materials which combine different layers (composites) with continuous distribution of material proper-
ties. Functionally graded (FG) distribution of materials was the proposed solution for the problem 
(Kiozumi (1997)). Functionally graded materials (FGMs) are usually combination of ceramic and 
metal. Beside the important mechanical properties of the metal part, the ceramic components in 
FGMs improve thermal capacity of the composite. Therefore, FGMs can be considered as suitable 
materials for micro-structures in variety of their applications, especially in MEMS. Several studies on 
the application of functionally graded materials for classical plate models were done (Mohammadi et 
al.(2009) and (2010)). Thinh et al. (2016) studied buckling and vibration analysis of functionally grad-
ed plates on the basis of eight unknown higher order shear deformation theory. They used Hamilton’s 
principle for determining the equation of motion. Wu et al. (2013) developed the unified formulations 
of finite cylindrical layer methods (FCLMs) based on the Reissner mixed variational theorem 
(RMVT) and the principle of virtual displacements (PVD) for the three-dimensional (3D) linear buck-
ling analysis of simply-supported, multilayered functionally graded material (FGM) circular hollow 
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cylinders and laminated composite ones under combined axial compression and external pressure. 
Buckling analysis of functionally graded rectangular plates based on the Kirchhoff plate theory was 
carried by Ramu and Mohanty (2014). Finite element method was used for analysis of plate subjected 
to uniaxial and biaxial distributed loads on the simply supported edges.  

Some studies were done on the micro-beams made out of FGMs, e.g., Ke and Wang (2011) in-
vestigated the dynamic stability of micro-beams made out of FG materials. They used the modified 
couple stress theory for analyzing a Timoshenko beam. It was assumed that material properties of 
the FG micro-beam fluctuate through the thickness, and that the material properties were estimat-
ed by Mori-Tanaka homogenization technique. Consequently, the effects of length scale parameter 
and material properties on the dynamic stability of the beam were then presented.  

Based on the modified couple stress theory, a new size dependent formulation for the functional-
ly graded Timoshenko beam was derived by Asghari et al. (2011). In that study, material properties 
were considered to vary through the thickness by power law distribution. The static and vibration 
responses of cantilever and simply supported beams were determined for different length scale pa-
rameters. Given the fluctuation of material properties in thickness direction, according to power law 
function, nonlinear vibration of size dependent functionally graded Timoshenko micro-beams was 
done by Ke et al. (2012).  

Modified couple stress theory of FG Timoshenko micro-beams, in addition to von Karman geo-
metric nonlinearity were used in their study to obtain higher order nonlinear governing equations. 
Moreover, different boundary conditions are surveyed by using the Hamilton principle in their work. 

As it was reviewed briefly, most of the studies on the FG micro-structures have been limited to 
beams not plates. Hence, in the present study, buckling analysis of thin functionally graded rectan-
gular micro-plates is presented. In accordace to the strain gradient theory along with inclusion of 
one length scale, governing equations are obtained for flextural rectangular micro-plate. Eventually, 
the effects of length scale parameter and material properties on the critical buckling loads of micro-
plate are investigated in detail. 
 
2 STRAIN GRADIENT RLSTICITY THEORY 

In micro-structures as the result of size effects, micro-structural effects should be considered in 
equations. According to the strain gradient theory, micro-structural effects are encountered by 
stress-strain relations in generalized form as follows 
 

),,,( 0  ngf (1) 
 

where 0  is initial stress,   is strain, g  is length scale parameter and   is strain gradient. The 

simplest possible version of strain gradient elasticity theory based on the Mindlin studies (Mindlin 
(1964), Mindlin and Eshel (1968)), (which contains five length scale constants in addition to the 
two Lam é constants) is a model with just one length scale constant in addition to the Lam é con-
stants. The constitutive equations for this model are given as (Yang et al. (2002)): 
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In the above equations,   and   are the total and the classical Cauchy stress tensors, respec-
tively. Also, parameter I  is the unit tensor,   and ( )tr   are the strain tensor and its trace which 

are expressed in terms of the displacement vector u  as: 
 

1 ( )
2

( ) .

T

tr





  

 

u u

u
 (3)

 

In Eq. (2), 2g  is the volumetric strain energy gradient coefficient or simply gradient coefficient 

where g  (length scale parameter) is defined as the internal or characteristic length of a microstruc-

ture. Also   and   are the two classical Lam é constants. 

Imposing the strain gradient term with length scale parameter in conventional elasticity as a 
constraint was discussed by Aifantis (1999) and Farahmand and Arabnejad (2010). Comparison of 
experimental results from torsion and bending tests of beams with the theoretical ones obtained 
from the study and other higher-order elasticity models reveal that magnitude of the gradient coef-
ficient g  (internal length) is of the same order as the diameter of the basic building block in a mi-

crostructure, e.g. the grain in metals or ceramics, the osteon in bones or the cell in foams (Farah-
mand and Arabnejad (2010)). 
 
3 GOVERNING EQUATIONS OF FUNCTIONALLY GRADED MICRO-PLATE 

Consider a thin flat rectangular micro-plate subjected to in-plane load as shown in Figure 1, where 
the z  coordinate is measured through the thickness direction, and variables x  and y  are in-plane 

coordinate.  
 

 

Figure 1: Rectangular micro-plate subjected to in-plane distributed load. 

 
Based on the classical (Kirchhoff) plate theory (CPT), the displacement field is expressed as 

metal 
 

),(),,(),,(),,( ,, yxwzyxuzwvzyxuzwuzyxu zyyxx 
 (4)

 

where xu  and yu  are in-plane displacement in x  and y  directions, respectively and zu  is the 

transverse displacement. Also, u  and v  are mid-plane displacements and (, )  indicates differentia-
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tion with respect to the variables. Considering Von-Karman hypothesis for linear terms, the kine-
matic relations of micro-plate are written as 
 

2xx x x yy y y xy xy xy xyzk zk zk             (5) 
 

In the above equations, strain and curvature components are defined as 
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In order to obtain the equilibrium equations of rectangular micro plate, the principle of mini-
mum total potential energy is utilized. Hence, 
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So the resulting equilibrium equations for a micro plate are 
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In the mentioned equations, iP  is buckling load, iN  and iM  ( , , )i x y xy  are force and moment 

resultants which are obtained by integration of corresponding stress components over the thickness, 
and are defined as 
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In determining the force and moment resultants, constitutive equations are needed to define 
stresses in terms of strain components.  
In study of micro-plates, scale of dimensions and effect of micro-structure on the behavior of micro-
plates are important; hence higher order theories are usually used for modeling the micro-structures. 
In the present study, strain gradient theory is used for modeling the effects of micro scale on rela-
tions. Therefore, stress and strain are related not only as the classic form but also considering the 
gradient of strain. Hence, stress and strain components are related as  
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where 2  is the two dimensional Laplacian operator in Cartesian coordinate 
2 2

2
2 2( )
x y

 
  

 
. Fur-

thermore, in Eq. (9), the parameter ( )E z  represents the elastic modulus and   is the Poisson ratio. 

Here, the “classic” expression refers to the state of length scale parameter equals zero ( 0)g  . Since 

it is supposed that the micro-plate is made out of functionally graded materials (FGMs), the mate-
rial properties are function of thickness variable. Thus, let material properties such as elasticity 
modulus modeled by the power law function through the thickness as 
 

mccm
n

cmm EEEhzEEzE  )/2/1()(  (11)
 

where subscripts c  and m  refer to the ceramic and metal components, respectively. Moreover, h  is 
plate’s thickness  / 2 / 2h z h    and n  is known as FGM index  0n  . In addition, it was shown 

that variation of Poisson ratio with respect to the coordinates is not significant in FGMs, so   is 
supposed to be constant (Mohammadi et al. (2010)).  

Substituting Eqs. (10) and (11) in Eqs. (9) and simplifying the results yields the following rela-
tion for force and moment resultants 
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where the components of the matrix, shown in Eq. (12), are  
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Substituting Eqs. (12) into Eqs. (8) leads to the governing equilibrium equations. Following the 
same procedure as was explained in by Javaheri and Eslami (2002) the stability equation for buck-
ling analysis of FG micro-plate is obtained for a rectangular plate as 
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is interpreted as the equivalent flexural rigidity of functionally graded micro-plate. It is clear that 
the stability Eq. (14) is changed to the classic form of stability equation for macro-plates by setting 
the length scale parameter to zero.  
 
4 NAVIER SOLUTION  

Having an analytical methodology, Navier solution is considered. Therefore, it is assumed that mi-
cro-plate is simply supported along all edges.  

By using the principle of minimum potential energy and variational approach, the out of-plane 
boundary are determined as 
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where   denotes the bounds of micro-plate. Also, ,n nnM M  and nV  are called bending moment, 

higher order bending moment and effective shear force. 
Equivalent form of boundary conditions for simply supported edges parallel to the x  axis are 

determined as  
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It should be noted that, in the above conditions, the first and second equations are called classi-
cal boundary conditions, while the third one is called non-classical boundary conditions. 
Based on the Navier solution, the deflection function is assumed as 
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It is easy to show that, solution (18) satisfies the prescribed classic and non-classic boundary 
conditions (17).  

Also, for solving the stability equations, pre-buckling forces are needed which are determined 
from the equilibrium conditions. Since the micro-plate is subjected to uniform in-plane compressive 
distributed load, the pre-buckling forces are constant and obtained as x yP P RP   , where R is 

load parameter. Load parameter R  identifies the loading conditions, e.g. micro-plate is loaded uni-
axially if 0R  , subjected to biaxial compressive load if 1R   and biaxial compressive and tensile 
load if 1R   .  

Upon substituting Eqs. (18) in Eq. (14) and simplifying the resulted equation, the buckling load 
P  is obtained as  
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Eq. (19) gives the buckling load for functionally graded micro-plates where the critical buckling 
load is the minimum buckling load. It is clear that micro-structure effect influence the buckling 
load. Moreover considering the size-effects changes the critical buckling load. 
 
5 NUMERICAL RESULTS AND DISCUSSION  

For having a numerical study and investigation, it is assumed that FG micro-plate is made of sili-
con-carbide as the ceramic part ( 420 )cE GPa  and aluminum as metal part ( 70 )mE GPa . Also, 

the Poisson ratio is constant and equal to 0.3  .  
To keep the generality of study, results are presented in non-dimensional form. Therefore, the 

non-dimensional buckling load of micro-plate is defined as  
 

cD

Pb
P

2
 (20)

 

where P  is the buckling load, cD  is the equivalent flexural rigidity based on the ceramic part 

( 0n  ) and b  is the length of micro-plate. 
In table 1, the non-dimensional critical buckling load is tabulated versus different aspect ratios, 

micro-structure parameters and loading conditions. As table shows, increasing the index of FGM 
decreases the non-dimensional critical buckling load. Also, increasing the micro-structure parameter 
increases the buckling load. 
 

ba /  bg / n 0R 1R  1R  

0.5 

0.1 
0 92.122 73.697 122.83 
1 44.597 35.678 59.466 
2 34.067 27.253 45.423 

0.33 
0 393.17 314.54 524.25 
1 190.34 152.27 253.80 
2 145.40 116.31 193.86 

1 

0.1 
0 47.273 23.636 122.84* 
1 22.883 23.636 59.465* 
2 17.480 8.7396 45.423* 

0.33 
0 124.35 62.172 524.25* 
1 60.192 30.096 253.79* 
2 45.980 22.989 193.86* 

1.5 

0.1 
0 52.937 16.288 122.84* 
1 25.627 7.8851 59.466* 
2 19.577 6.0235 45.427* 

0.33 
0 118.27 36.390 390.23* 
1 57.255 17.616 188.91* 
2 43.737 13.457 144.31* 

* Indicates higher mode of buckling. 

Table 1: Non-dimensional critical buckling load 3( *10 )P  for functionally graded micro-plate. 
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In Figure 2, the effect of micro-structure parameter on the non-dimensional critical buckling 
load is plotted for different loading conditions. It is clear that raising the micro-structure parameter 
is resulted in increasing the non-dimensional critical buckling load. The difference is more apparent 
as the micro parameter involved in equations. Also, load carrying capacity is more significant for 
the case of 1R    in comparison with the other cases.  
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Figure 2: Non-dimensional critical buckling load versus the microstructure parameter. 

 
Variation of buckling load versus the material properties is depicted in Figure 3. As shown in the 

figure, increasing the index of FGM diminishes the critical buckling load. This refers to increasing 
the portion of metal component in comparison with the ceramic component in FG composition. 
Therefore, micro-plate with higher portion of metal has lower flexural rigidity and simply buckle. 
Also as it is illustrated in this figure, loading conditions affect the critical buckling load. Presence of 
tensile load, severely increase the load carrying capacity where biaxial compressive load, drops the 
buckling load.  

In Figure 4, the effect of aspect ratio ( / )a b  on the non-dimensional critical buckling load is 

presented. Since the critical buckling load corresponds to the smallest possible buckling load, there-
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fore micro-plate may buckle in different mode. As Figure 4 shows, the buckling mode depends on 
different parameters. It is indicated that loading conditions influence on the buckling mode. So that, 
micro-plate, subjected to biaxial compressive load, regardless of aspect ratio, always buckles in the 
first mode. In the case of 0R   and 1R   , buckling mode depends on the aspect ratio. Increasing 
the aspect ratio causes the micro-plate buckle in higher modes.  
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Figure 3: Variation of non-dimensional critical buckling load versus the index of FGM and different loading conditions. 
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Figure 4: Variation of non-dimensional critical buckling load with respect to aspect ratio. 
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In Figure 5, the effect of length scale parameter on the critical buckling load is presented. Ac-
cording to the figure, it is clear that depending on the loading conditions and aspect ratio, micro-
plate may buckle in different modes. Also it is inferred that in each aspect ratio, increasing the 
length scale parameter postpone the buckling mode.  
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Figure 5: Effect of length scale parameter on the critical buckling mode. 

 
Different mode shapes are shown in Figure 6. 
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Figure 6: Different buckling mode shapes. 
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6 CONCLUSION  

In the present study, by considering strain gradient theory, buckling analysis of thin rectangular 
functionally graded micro-plates was surveyed. Using variational approach and principle of mini-
mum total potential energy, higher order governing equations were determined which contain the 
microstructure parameters. It was assumed micro-plate is made of functionally graded material with 
power law distribution of material properties through the thickness. Finally, the stability equation 
was solved analytically for a simply supported micro-plate and critical buckling loads were ob-
tained. It was concluded that increasing the index of FGM decrease the non-dimensional critical 
buckling load. Also, increasing the microstructure parameter decreases the buckling load. It was 
inferred that load carrying capacity is greatly depends on the loading conditions. Accordingly, pres-
ence of tensile load increases the load capacity. In addition, buckling may occur in higher modes, 
where the mode is affected by the aspect ratio or loading conditions. 
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