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Flexural motions under accelerating loads of structurally pre-
stressed beams with general boundary conditions

Abstract

The transverse vibration of a prismatic Rayleigh beam rest-

ing on elastic foundation and continuously acted upon by

concentrated masses moving with arbitrarily prescribed ve-

locity is studied. A procedure involving generalized finite

integral transform, the use of the expression of the Dirac

delta function in series form, a modification of the Struble’s

asymptotic method and the use of the Fresnel sine and cosine

functions is developed to treat this dynamical beam prob-

lem and analytical solutions for both the moving force and

moving mass model which is valid for all variant of classical

boundary conditions are obtained. The proposed analyti-

cal procedure is illustrated by examples of some practical

engineering interest in which the effects of some important

parameters such as boundary conditions, prestressed func-

tion, slenderness ratio, mass ratio and elastic foundation are

investigated in depth. Resonance phenomenon of the vibrat-

ing system is carefully investigated and the condition under

which this may occur is clearly scrutinized. The results pre-

sented in this paper will form basis for a further research

work in this field.
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1 INTRODUCTION

Studies concerning the flexural vibrations of a structural elements carrying moving mass has

been an area of active research for more than a century in many diverse areas such as civil,

structural, mechanical and aerospace engineering. Initially, this class of problem was first

applied in the design of railway bridges and the application was later extended to other trans-

portation engineering such as the design of bridges, guideways, overhead cranes, cableways,

rails, roadways, runways, tunnels, and pipelines with moving masses [2]. Evidently, extensive

researches have been conducted by many researchers particularly on the analysis of continuous

elastic system under the actions of moving sub-system [1, 3–5, 7, 8, 11, 12, 14–17, 19, 21];

this is of course due to its enormous practical significance. In general, most of the previous
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publications dealt with a beam model whose dynamic characteristics are described by Euler-

Bernoulli beam equations. It is however well known that if the slenderness ratio is large, or

vibration of higher modes is concerned, the use of classical Bernoulli-Euler beam theory can-

not ensure sufficient accuracy. Thus, a beam theory which takes into account the effects of

shearing deformation or rotatory inertia or both must be adopted for more accurate analysis

[10].

Even with the inclusion of shear deformation and rotatory inertia into the equation of

motion, a good number of these studies have considered a much simpler problem where the

motion of the moving mass is described by a constant velocity type of motion. However,

situation arises when the moving mass accelerates by a forward force or decelerates, reduces

speed and come to rest at any desired position on the beam and causing the friction between

the mass and the beam to increase considerably. Under such condition, the vibrating system

exhibits dynamic behaviour which may be more complicated.

Previous studies where such a dynamical system was investigated are Wang [20] who studied

the dynamical analysis of a finite inextensible beam with an attached accelerating mass. He

employed the Galerkin procedure in conjunction with the method of numerical integration to

tackle the partial differential equations which describe the transient vibrations of the beam-

mass system. He concluded that the applied forward force amplifies the speed of the mass and

the displacement of the beam. Though the theory developed here is versatile, its application is

only limited to the case of beams executing flexural motions according to the simple Bernoulli-

Euler theory of flexure. Nevertheless, it is easy to see that a typical element of an elastic system

performs not only a translatory motion but also rotates [18]. Hilal and Ziddeh [6] investigated

the vibration analysis of beams with general boundary conditions traversed by a single point

force traveling with variable velocity. They obtained analytical solution to the beam problem

and compared the results with same beam under the actions of a concentrated force traveling at

constant velocity. Their method of solution is only suitable to handle an approximate model

in which the vehicle-structure interaction is completely neglected; this type of beam model

has been described by Guiseppe and Alessandro [13] as the crudest approximation known to

the literature of assessing the dynamic response of an elastic system which supports moving

concentrated masses. Lee [9] tackled the transverse vibration of a Timoshenko beam acted on

by an accelerating mass. In his study, he presented numerical results for a prescribed constant

acceleration or deceleration and the slenderness ratio of the beam. He figured-out that the

separation of the mass from the beam may occur for a Timoshenko beam when the traveling

speed of the mass is large due to large initial traveling speed or large prescribed acceleration.

Nevertheless, his method of solution is incapable of handling moving load problems involving

end conditions other than simple ones.

Thus, this work therefore, assesses the dynamic behaviour of a structurally prestressed

uniform Rayleigh beam resting on elastic foundation and traversed by masses traveling at

an arbitrarily prescribed velocity. Effects of some very important beam parameters on the

motions of the vibrating systems are investigated.
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2 THEORETICAL FORMULATION

Consider the flexural motion of a uniform finite Rayleigh beam resting on an elastic foundation

and carrying a relatively large mass M . The mass M is assumed to touch the beam at time t

= 0 and travel across it with a non-uniform velocity such that the motion of the contact point

of the moving load is described by the function

f(t) = x0 + ct +
1

2
at2 (1)

where x0 is the point of application of force P = Mg at the instance t = 0, c is the initial

velocity and a is the constant acceleration of motion. Furthermore, the beam’s properties such

as moment of inertiaI, and the mass per unit length µ of the beam do not vary along the span

L of the beam.

The equation of motion with damping neglected is given by the fourth order partial differ-

ential equation

EI ∂4V (x,t)
∂x4 −N ∂2V (x,t)

∂x2 + µ∂2V (x,t)
∂ t2

− µR0
∂4V (x,t)
∂x2∂ t2

+KV (x, t)
+Mδ [x − (x0 + ct + 1

2
at2)] [∂

2V (x,t)
∂ t2

+2(c + at)∂
2V (x,t)
∂x∂ t

+ (c + at)2 ∂2V (x,t)
∂x2 + a∂V (x,t)

∂x
]

=Mgδ [x − (x0 + ct + 1
2
at2)]

(2)

where x is the spacial coordinate, t is the time, V (x, t) is the Transverse Displacement, EI is

the flexural rigidity of the structure, µ is the mass per unit length of the beam, N is the axial

force, R0 is the rotatory inertia factor, K is the elastic foundation stiffness, M is the mass

of the traversing concentrated load, g is the acceleration due to gravity and δ (⋅) is the well

known Dirac delta function.

The boundary conditions of the structure under consideration is arbitrary and the initial

conditions without any loss of generality is taken as

V (x,0) = 0, ∂V (x,0)
∂t

= 0∀ x (3)

Since the load is assumed to be of mass M and the time t is assumed to be limited to that

interval of time within which the mass is on the beam, that is

0 ≤ f(t) ≤ L (4)

3 ANALYTICAL PROCEDURES

Equation (2) is a fourth order partial differential equation which in addition to being singular

has variable coefficients. In this section, a general approach is developed in order to solve

the initial value problem. The approach involves expressing the Dirac delta function as a
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Fourier cosine series and then reducing the modified form of the fourth order partial differential

equation above using the generalized finite integral transform. The resulting transformed

differential equation having some variable coefficients is then simplified using the modified

Struble’s asymptotic technique.

3.1 The generalized finite integral transform

For the dynamical systems, the governing equation is a fourth order partial differential equation

with variable and singular coefficients. The Generalized Finite Integral Transform (GFIT) is

employed to remove the singularities in the governing equations and to reduce it to a sequence

of second order ordinary differential equations with variable coefficients. This generalized finite

integral transform is defined by

V (m, t) = ∫
L

0
V (x, t)Um(x)dx (5)

with the inverse

V (x, t) =
∞
∑
m=1

µ

Vm
V (m, t)Um(x) (6)

where

Vm = ∫
L

0
µU2

m(x)dx (7)

and Um(x) is any function chosen such that the pertinent boundary conditions are satisfied.

An appropriate selection of functions for beam problems are beam mode shapes. Thus, the

mth normal mode of vibration of a uniform beam

Um(x) = sin
λmx

L
+Am cos

λmx

L
+Bm sinh

λmx

L
+Cm cosh

λmx

L
(8)

is chosen as a suitable kernel of the integral transform (5) where, λm is the mode frequency, Am,

Bm, Cm are constants which are obtained by substituting (8) into the appropriate boundary

conditions.

3.2 Operational simplification

By applying the generalized finite integral transform (5), equation (2) can be written as

H1θ(0, L, t) +H1θA(t) −H2θB(t) + Vtt(m, t) −R0θC(t) +H3V (m, t) + θD(t) + θE(t) + θF (t) + θG(t)
= Mg

µ
Um (x0 + ct + 1

2
at2)

(9)

where

H1 =
EI

µ
,H2 =

N

µ
,H3 =

K

µ
(10)
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θ (0, L, t) = [∂
3V (x, t)
∂x3

Um(x) −
∂2V (x, t)
∂x2

dUm(x)
dx

+ ∂V (x, t)
∂x

d2Um(x)
dx2

− V (x, t)d
3Um(x)
dx3

]L
0

(11)

θA(t) = ∫
L

0
V (x, t)d

4Um(x)
dx4

dx (12a)

θB(t) = ∫
L

0

∂2V (x, t)
∂x2

Um(x)dx (12b)

θC(t) = ∫
L

0

∂4V (x, t)
∂x2∂t2

Um(x)dx (12c)

θD(t) = ∫
L

0

M

µ
δ [x − (x0 + ct +

1

2
at2)] ∂

2V (x, t)
∂t2

Um(x)dx (12d)

θE(t) = ∫
L

0

2M(c + at)
µ

δ [x − (x0 + ct +
1

2
at2)] ∂

2V (x, t)
∂x∂t

Um(x)dx (12e)

θF (t) = ∫
L

0

M (c + at)2

µ
δ [x − (x0 + ct +

1

2
at2)] ∂

2V (x, t)
∂x2

Um(x)dx, and (12f)

θG(t) = ∫
L

0

aM

µ
δ [x − (x0 + ct +

1

2
at2)] ∂V (x, t)

∂x
Um(x)dx (12g)

In order to evaluate the integrals (12a-12g), use is made of the property of the Dirac Delta

function as an even function to express it in Fourier cosine series namely:

δ [x − (x0 + ct +
1

2
at2)] = 1

L
+ 2

L

∞
∑
n=1

cos
nπ

L
(x0 + ct +

1

2
at2) cos nπx

L
(13)

Thus, in view of (6), using equation (13) in equation (9), after some simplification and

rearrangements one obtains
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V tt(m, t) + [ω2
n +

K

µ
]V (m, t) −R0

∞
∑
k=1

V tt(k, t)Ha(k,m) −
N

µ

∞
∑
k=1

V (k, t)Ha(k,m)

+ε∗ {
∞
∑
k=1

V tt(k, t)Hb(k,m) + 2
∞
∑
n=1

∞
∑
k=1

V tt(k, t)Hc(k,m,n) cos
nπ

L
(x0 + ct +

1

2
at2)

+ 2(c + at)
∞
∑
k=1

V t(k, t)Hd(k,m) + 4(c + at)
∞
∑
n=1

∞
∑
k=1

V t(k, t)He(k,m,n) cos
nπ

L
(x0 + ct +

1

2
at2)

+(c + at)2
∞
∑
k=1

V (k, t)Hf(k,m) + 2(c + at)2
∞
∑
n=1

∞
∑
k=1

V (k, t)Hg(k,m,n) cos
nπ

L
(x0 + ct +

1

2
at2)

+a
∞
∑
k=1

V (k, t)Hi(k,m) + 2a
∞
∑
n=1

∞
∑
k=1

V (k, t)Hj(k,m,n) cos
nπ

L
(x0 + ct +

1

2
at2)} =

Mg

µ
[sin λm

L
(x0 + ct +

1

2
at2)+Am cos

λm
L
(x0 + ct +

1

2
at2) +Bm sinh

λm
L
(x0 + ct +

1

2
at2)+

Cm cosh
λm
L
(x0 + ct +

1

2
at2)]

(14)

where

Ha(k,m) =
1

τk(x) ∫
L

0
U
′′

k (x)Um(x)dx (15a)

Hb(k,m) =
1

τk(x) ∫
L

0
Uk(x)Um(x)dx (15b)

Hc(k,m,n) =
1

τk(x) ∫
L

0
Uk(x)Um(x) cos

nπx

L
dx (15c)

Hd(k,m) =
1

τk(x) ∫
L

0
U
′

k(x)Um(x)dx (15d)

He(k,m,n) =
1

τk(x) ∫
L

0
U
′

k(x)Um(x) cos
nπx

L
dx (15e)

Hf(k,m) =
1

τk(x) ∫
L

0
U
′′

k (x)Um(x)dx (15f)

Hg(k,m,n) =
1

τk(x) ∫
L

0
U
′′

k (x)Um(x) cos
nπx

L
dx (15g)

Hi(k,m) =
1

τk(x) ∫
L

0
U
′

k(x)Um(x)dx (15h)

Hj(k,m,n) =
1

τk(x) ∫
L

0
U
′

k(x)Um(x) cos
nπx

L
dx (15i)
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ω2
n =

λ4m
L4

EI

µ
(15j)

ε∗ = M

µL
(15k)

Equation (14) is the transformed equation governing the problem of a uniform Bernoulli-

Euler beam on a constant elastic foundation. This coupled non-homogeneous Second order

ordinary differential equation holds for all variants of the classical boundary conditions.

In what follows, two special cases of equation (14) are considered

3.3 Solution of the transformed governing equation

Case I: The Moving Force Problem. The differential equation describing the behaviour of

a Rayleigh beam on an elastic foundation to a moving force moving at variable velocity may

be obtained from equation (14) by setting ε∗ = 0. It is an approximate model, which assumes

the inertia effect of the moving mass negligible and only the force effect of the moving load is

taken into consideration, thus in this case one obtains

V tt(m, t) + [ω2
n +

K

µ
]V (m, t) −R0

∞
∑
k=1

V tt(k, t)Ha(k,m) −
N

µ

∞
∑
k=1

V (k, t)Ha(k,m) =

Mg

µ
[sin λm

L
(x0 + ct +

1

2
at2)+Am cos

λm
L
(x0 + ct +

1

2
at2) +Bm sinh

λm
L
(x0 + ct +

1

2
at2)+

Cm cosh
λm
L
(x0 + ct +

1

2
at2)]

(16)

Evidently, an exact analytical solution to equation (16) is not possible. Though the equa-

tion may readily yield to numerical technique, an analytical approximate method is desirable as

solutions so obtained often shed light on vital information about the vibrating system. Thus,

we are going to use a modification of the asymptotic method due to Struble’s extensively

discussed in [14]. To this effect, equation (16) is rearranged to take the form

V tt(m, t) +
γ2
nf

[1 − ε0LHa(m,m)]
V (m, t) −

ε0

[1 − ε0LHa(m,m)]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞
∑

k = 1
k ≠m

LHa(k,m)V tt(k, t) +N0

∞
∑

k = 1
k ≠m

Ha(k,m)V (k,m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
Mg

µ [1 − ε0LHa(m,m)]
[sin

λm

L
(x0 + ct +

1

2
at2) +Am cos

λm

L
(x0 + ct +

1

2
at2) +Bm sinh

λm

L
(x0 + ct +

1

2
at2)

+ Cm cosh
λm

L
(x0 + ct +

1

2
at2)]

(17)

where
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ε0 =
R0

L
, N0 =

LN

R0µ
, γ2nf = ω2

nk−N0Ha(m,m), ω2
nk = ω2

n+
K

µ
and Ha(m,m) =Ha(k,m) ∣k=m

(18)

By this technique, one seeks the modified frequency corresponding to the frequency of the

free system due to the presence of the effect of the rotatory inertia. An equivalent free system

operator defined by the modified frequency then replaces equation (17). Thus, we set the

right-hand-side of (17) to zero and consider a parameter η0 < 1 for any arbitrary ratio ε0,

defined as

η0 =
ε0

1 + ε0
(19)

so that

ε0 = η0 +O(η20) (20)

Substituting equation (20) into the homogeneous part of equation (17) one obtains

V tt(m, t) + γ2
nf (1 + η0LHa(m,m))V (m, t)−

η0(1 + η0LHa(m,m))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞
∑

k = 1
k ≠m

LHa(k,m)V tt(k, t) +N0

∞
∑

k = 1
k ≠m

Ha(k,m)V (k,m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0
(21)

When η is set to zero in equation (17) a situation corresponding to the case in which the

rotatory inertia effect is regarded as negligible is obtained, then the solution of equation (17)

can be written as

V nf(m, t) = Cnf cos [ωnf t − ψnf ] (22)

where Cnf , ωnf and ψnf are constants.

Furthermore as η0 < 1 Struble’s technique requires that the asymptotic solutions of the

homogeneous part of the equation (17) be of the form

V (m, t) = Λ(m, t) cos [ωnf t − ϕ(m, t)] + η0V̄ (1, t) +O(η20) (23)

where Λ(m, t) and ϕ(m, t) are slowly varying functions of time.

To obtain the modified frequency, equation (23) and its derivatives are substituted into

equation (21) and neglecting terms which do not contribute to variational equations, one

obtains.

2Λ(m, t)γnf ϕ̇(m, t) cos [γnf t − ϕ(m, t)] − 2Λ̇(m, t)γnf sin [γnf t − ϕ(m, t)]
−η0γ2nfLHa(m,m)Λ(m, t) cos [γnf t − ϕ(m, t)] = 0

(24)

Latin American Journal of Solids and Structures 7(2010) 285 – 306



S.T. Oni et al / Flexural motions under accelerating loads of prestressed beams with general boundary conditions 293

retaining terms to O(η0) only.
The variational equations are obtained by equating the coefficients of sin [γnf t − ϕ(m, t)]

and cos [γnf t − ϕ(m, t)] on both sides of the equation (24). Thus,

−2Λ̇(m, t)γnf = 0 (25)

and

2Λ(m, t)γnf ϕ̇(m, t) − η0γ2nfLHa(m,m)Λ(m, t) = 0 (26)

Solving equations (25) and (26) respectively gives

Λ(m, t) = Cmf (27)

and

ϕ(m, t) = −
η0LγnfHa(m,m)

2ωnf
t + ψmf (28)

where C0
mf and ψmf are constants.

Therefore, when the effect of the rotatory inertia is considered, the first approximation to

the homogeneous system is

V (m, t) = C0
mfCos [γmf t − ψmf ] (29)

where

γmf =
γnf

2
[2 + η0LHa(m,m)] (30)

represents the modified natural frequency due to the effect of the rotatory inertia R0. It is

observed that when η0 = 0, we recover the frequency of the moving force problem when the

rotatory inertia effect of the beam is neglected. Thus, to solve the non-homogeneous equation

(17), the differential operator which acts on V (m, t) and V (k, t) is replaced by the equivalent

free System operator defined by the modified frequency γmf , thus using equation (30) the

homogeneous part of equation (17) can be written as

d2V (m, t)
dt2

+ γ2mfV (m, t) = 0 (31)

Hence, the entire equation (17) takes the form

d2V (m, t)
dt2

+ γ2mfV (m, t)= P 0
mf [sin

λm
L
(x0 + ct +

1

2
at2) +Am cos

λm
L
(x0 + ct +

1

2
at2)

+Bm sinh
λm
L
(x0 + ct +

1

2
at2) +Cm cosh

λm
L
(x0 + ct +

1

2
at2)]

(32)
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where

P 0
mf =

Mg

µ [1 − η0LHa(m,m)]
(33)

Solving equation (32) in conjunction with the initial conditions gives expression for V̄ (m, t)which
on inversion yields

V (x, t)=
1

τ∗(x)

∞
∑
m=1

⎛
⎝
P 0
mf sinγmf t

γmf

(D13S [q12 + q10t] −D14C [q12 + q10t] −D11S [q11 + q10t] +D12C [q11 + q10t]

+D23C [q11 + q10t] +D24S [q11 + q10t] −D21C [q12 + q10t] −D22S [q12 + q10t] +E14erfi [q22 + q20t]
−E13erf [q22 + q20t] +E12erfi [q21 + q20t] −E11erf [q21 + q20t] +E24erf [q22 + q20t] +E23erfi [q22 + q20t]

+E22erf [q21 + q20t] + −E21erfi [q21 + q20t] −C0
2) −

P 0
mf cosγmf t

γmf

(D11C [q11 + q10t] +D12S [q11 + q10t]

−D13C [q12 + q10t] −D14S [q12 + q10t] +D21S [q12 + q10t] −D22C [q12 + q10t] −D23S [q11 + q10t]
−D24S [q11 + q10t] + iE11erf [q21 + q20t] + iE12erfi [q21 + q20t] + iE13erf [q22 + q20t]
+iE14erfi [q22 + q20t] + iE21erfi [q21 + q20t] − iE22erf [q21 + q20t] − iE23erfi [q22 + q20t]

+iE24erf [q22 + q20t] +C0
1))(sin

λmx

L
+Am cos

λmx

L
+Bm sinh

λmx

L
+Cm cosh

λmx

L
)

(34)

where C(x) and S(x) are the well known time-dependent Fresnel integrals defined by

C(x) = ∫
x

0
cos

πt2

2
dt and S(x) = ∫

x

0
sin

πt2

2
dt

and

D11 =
1

2
√
a0

√
π

2
Cos( b

2
1

4a0
− c0) ,D12 =

1

2
√
a0

√
π

2
Sin( b

2
1

4a0
− c0)

D13 =
1

2
√
a0

√
π

2
Cos( b

2
2

4a0
− c0) ,D14 =

1

2
√
a0

√
π

2
Sin( b

2
2

4a0
− c0)

D21 =
Am

2
√
a0

√
π

2
Cos( b

2
2

4a0
− c0) ,D22 =

Am

2
√
a0

√
π

2
Sin( b

2
2

4a0
− c0)

D23 =
Am

2
√
a0

√
π

2
Cos( b

2
1

4a0
− c0) ,D24 =

Am

2
√
a0

√
π

2
Sin( b

2
1

4a0
− c0)

E11 =
Bm
√
π

8
√
a0

e
− b23

4a0
−c0e

b23
2a0 ,E12 =

Bm
√
π

8
√
a0

e
− b23

4a0
−c0e2c0 ,E13 =

Bm
√
π

8
√
a0

e
− b24

4a0
−c0e

b24
2a0

E14 =
Bm
√
π

8
√
a0

e
− b24

4a0
−c0e2c0 ,E21 =

Cm
√
π

8
√
a0

e
− b23

4a0
−c0e2c0 ,E22 =

Cm
√
π

8
√
a0

e
− b23

4a0
−c0e

b23
2a0
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E23 =
Cm
√
π

8
√
a0

e
− b24

4a0
−c0e2c0 ,E24 =

Cm
√
π

8
√
a0

e
− b24

4a0
−c0e

b24
2a0

q10 =
2a0√
2πa0

, q11 =
b1√
2πa0

, q12 =
b2√
2πa0

, q20 =
2a0
2
√
a0
, q21 =

b3
2
√
a0
, q22 =

b4
2
√
a0

a0 =
λma

2L
, b1 =

cλm
L
− γmf , b2 =

cλm
L
+ γmf , b3 =

cλm
L
− iγmf , b3 =

cλm
L
+ iγmf

C0
1 =D11C (q11) +D12S (q11) −D13C (q12) −D14S (q12) +D21S (q12) −D22C (q12) −D23S (q11) −D24C (q11)
+iE11erf (q12) + iE12erfi (q21) + iE13erf (q22) + iE14erfi (q22) + iE21erfi (q21) − iE22erf (q21) − iE23erfi (q22)
+iE24erf (q22)

C0
2 =D13S (q12) −D14C (q12) −D11S (q11) +D12C (q11) +D23C (q11) +D24S (q11) −D21C (q12) −D22S (q12)
+E14erfi (q22) −E13erf (q22) +E12erfi (q22) −E11erf (q21) +E24erf (q22) +E23erfi (q22) +E22erf (q21)
+E21erfi (q21)

i =
√
−1

and

τ∗(x) = ∫
L

0
U2
m(x)dx (35)

Equation (34) represents the transverse displacement response to forces moving with non-

uniform velocities of prestressed uniform Rayleigh beam resting on elastic foundation and

having arbitrary end support conditions.

Case II: The Moving Mass Problem. In the mass of the moving load is commensurable

with that of the structure, the inertia effect of the moving mass is not negligible. Thus, in

this case, ε∗ ≠ 0, and the solution of the entire equation (14) is required. This is termed

the moving mass problem. Evidently, a closed form solution of equation (14) is not possible.

Again, an approximate analytical method due to Struble is resorted to. It is remarked at

this juncture that neglecting the terms representing the inertia term of the moving mass, we

obtain equation (17). The homogeneous part of this equation can be replaced by a free system

operator defined by the modified frequency γmf due to the presence of the effect of rotatory

inertia. Thus, equation (14) can be written in the form
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V tt(m, t) + γ2
mfV (m, t) + ε∗ {

∞
∑
k=1

V tt(k, t)Hb(k,m) + 2
∞
∑
n=1

∞
∑
k=1

V tt(k, t)Hc(k,m,n) cos
nπ

L
(x0 + ct +

1

2
at2)

+2(c + at)
∞
∑
k=1

V t(k, t)Hd(k,m) + 4(c + at)
∞
∑
n=1

∞
∑
k=1

V t(k, t)He(k,m,n) cos
nπ

L
(x0 + ct +

1

2
at2)

+(c + at)2
∞
∑
k=1

V (k, t)Hf (k,m) + 2(c + at)2
∞
∑
n=1

∞
∑
k=1

V (k, t)Hg(k,m,n) cos
nπ

L
(x0 + ct +

1

2
at2)

+a
∞
∑
k=1

V (k, t)Hi(k,m) + 2a
∞
∑
n=1

∞
∑
k=1

V (k, t)Hj(k,m,n) cos
nπ

L
(x0 + ct +

1

2
at2)} =

Mg

µ
[sin

λm

L
(x0 + ct +

1

2
at2)

+ Am cos
λm

L
(x0 + ct +

1

2
at2) + Bm sinh

λm

L
(x0 + ct +

1

2
at2) + Cm cosh

λm

L
(x0 + ct +

1

2
at2) ]

(36)

As in the previous case, an exact analytical solution to the above equation is not possible.

The same technique used in case I is employed to obtain the modified frequency due to the

presence of the moving mass, namely

γmm = γmf

⎧⎪⎪⎨⎪⎪⎩
1 − η

∗

2

⎡⎢⎢⎢⎣
Hb(m,m) −

(c2Hf(m,m) + aHi(m,m))
γ2mf

⎤⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
(37)

where

η∗ = ε∗

1 + ε∗
and ε∗ = M

µL
, Hb(m,m) =Hb(k,m)∣

k=m
,

Hf(m,m) =Hf(k,m)∣
k=m

Hi(m,m) =Hi(k,m)∣
k=m

(38)

retaining O (λ) only.
Thus, equation (36) takes the form

d2V (m, t)
dt2

+ γ2mmV (m, t)= η∗Lg [sin
λm
L
(x0 + ct +

1

2
at2) +Am cos

λm
L
(x0 + ct +

1

2
at2)

+Bm sinh
λm
L
(x0 + ct +

1

2
at2) +Cm cosh

λm
L
(x0 + ct +

1

2
at2)]

(39)

This is analogous to equation (32). Thus, using similar argument as in case I, V (m, t) can
be obtained and which on inversion yields

V (x, t)=
1

τ∗(x)

∞
∑
m=1

η∗Lg

γmm
(sinγmmt (D13S [q12 + q10t] −D14C [q12 + q10t] −D11S [q11 + q10t] +D12C [q11 + q10t]

+D23C [q11 + q10t] +D24S [q11 + q10t] −D21C [q12 + q10t] −D22S [q12 + q10t] +E14erfi [q22 + q20t]
−E13erf [q22 + q20t] +E12erfi [q21 + q20t] −E11erf [q21 + q20t] +E24erf [q22 + q20t] +E23erfi [q22 + q20t]

+E22erf [q21 + q20t] + −E21erfi [q21 + q20t] −C0
2) − cosγmmt (D11C [q11 + q10t] +D12S [q11 + q10t]

−D13C [q12 + q10t] −D14S [q12 + q10t] +D21S [q12 + q10t] −D22C [q12 + q10t] −D23S [q11 + q10t]
−D24S [q11 + q10t] + iE11erf [q21 + q20t] + iE12erfi [q21 + q20t] + iE13erf [q22 + q20t]
+iE14erfi [q22 + q20t] + iE21erfi [q21 + q20t] − iE22erf [q21 + q20t] − iE23erfi [q22 + q20t]

+iE24erf [q22 + q20t] +C0
1) ) (sin

λmx

L
+Am cos

λmx

L
+Bm sinh

λmx

L
+Cm cosh

λmx

L
)

(40)
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where all parameters are as previously defined, but γmm has replaced γmf

Equation (40) represents the transverse displacement response to concentrated masses,

moving with non-uniform velocity of highly prestressed uniform Rayleigh beam resting on

elastic foundation. Equation (40) is valid for all variants of classical boundary conditions.

4 APPLICATIONS

In this section, the forgoing analyses are illustrated by various practical examples. Specifically,

classical boundary conditions such as simply supported boundary conditions, clamped-clamped

end conditions and clamped-free end conditions are considered.

4.1 Simply Supported Boundary Conditions

In this case, the displacement and the bending moment vanish. Thus

V (0, t) = 0 = V (L, t), ∂2V (0, t)
∂x2

= 0 = ∂
2V (L, t)
∂x2

(41)

Hence for normal modes

Um(0) = 0 = Um(L),
∂2Um(0)
∂x2

= 0 = ∂
2Um(L)
∂x2

(42)

which implies that

Uk(0) = 0 = Uk(L),
∂2Uk(0)
∂x2

= 0 = ∂
2Uk(L)
∂x2

(43)

Applying (41) and (42), one obtains

Am = Ak = 0; Bm = Bk = 0; Cm = Ck = 0
λm =mπ and λk = kπ (44)

Thus, the moving force problem is reduced to a non-homogeneous second order ordinary

differential equation

d2V (m, t)
dt2

+ α2
mfV (m, t) =

Pmf

µ
sin(x0 + ct +

1

2
at2) (45)

where

α2
mf =

EI (mπ
L
)4 + K

µ
+ N

µ
(mπ

L
)2

1 +R0 (mπ
L
)2

and Pmf =
Mg

1 +R0 (mπ
L
)2

(46)

Equation (45) when solved in conjunction with the initial conditions, one obtains an ex-

pression for V (m, t) which on inversion yields
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V (x, t)= 2

L

∞
∑
m=1

Pmf
√
π

2µαmf

√
2a0
(sinαmf t [cos(

b22
4a0
− c0)S (

b2 + 2a0t√
2πa0

) −C (b2 + 2a0t√
2πa0

) sin( b
2
2

4a0
− c0)

+ cos( b
2
1

4a0
− c0)S (

b1 + 2a0t√
2πa0

) −C (b1 + 2a0t√
2πa0

) sin( b
2
1

4a0
− c0) − cos(

b22
4a0
− c0)S (

b2√
2πa0

)

+C ( b2√
2πa0

) sin( b
2
2

4a0
− c0) − cos(

b21
4a0
− c0)S (

b1√
2πa0

) +C ( b1√
2πa0

) sin( b
2
1

4a0
− c0)]

− cosαmf t [cos(
b21
4a0
− c0)C (

b1 + 2a0t√
2πa0

) + S (b1 + 2a0t√
2πa0

) sin( b
2
1

4a0
− c0)−

cos( b
2
2

4a0
− c0)C (

b2 + 2a0t√
2πa0

)−S (b2 + 2a0t√
2πa0

) sin( b
2
2

4a0
− c0) − cos(

b21
4a0
− c0)C (

b1√
2πa0

)−

S ( b1√
2πa0

) sin( b
2
1

4a0
− c0)

+ cos( b
2
2

4a0
− c0)C (

b2√
2πa0

)+

S ( b2√
2πa0

) sin( b
2
2

4a0
− c0)]) (sin

mπ

L
x)

(47)

which represents the transverse displacement response to forces moving with non-uniform

velocity of a simply supported uniform Rayleigh beam resting on elastic foundation.

Following arguments similar to those in the last sections, use is made of the modified

asymptotic method due to Struble to obtain the modified natural frequency due to the presence

of inertia terms for the simply supported beam given as

αmm = αmf

⎧⎪⎪⎨⎪⎪⎩
1 − η

2

⎡⎢⎢⎢⎣
2 +
(2c2R(m,m) −R2(m,m,n))

α2
mf

⎤⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
(48)

where

R(m,m) = (mπ
L
)
2

and R2(m,m,n) =
∞
∑
n=1

8am2

L (4m2 − n2)
cos

nπ

L
(x0 + ct +

1

2
at2) (49)

neglecting higher order terms of λ. Thus, the simply supported moving mass problem reduces

to

d2V (m, t)
dt2

+ α2
mmV (m, t) = ηLg sin

mπ

L
(x0 + ct +

1

2
at2) (50)

which when solved in conjunction with the initial conditions gives expression for V (m, t) and
on inversion gives
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V (x, t)= 2

L

∞
∑
m=1

ηLg
√
π

2µαmm

√
2a0
(sinαmmt [Cos(

b22
4a0
− c0)S (

b2 + 2a0t√
2πa0

) −C (b2 + 2a0t√
2πa0

) sin( b
2
2

4a0
− c0)

+ cos( b
2
1

4a0
− c0)S (

b1 + 2a0t√
2πa0

) −C (b1 + 2a0t√
2πa0

) sin( b
2
1

4a0
− c0) − cos(

b22
4a0
− c0)S (

b2√
2πa0

)

+C ( b2√
2πa0

) sin( b
2
2

4a0
− c0) − cos(

b21
4a0
− c0)S (

b1√
2πa0

) +C ( b1√
2πa0

) sin( b
2
1

4a0
− c0)]

− cosαmmt [cos(
b21
4a0
− c0)C (

b1 + 2a0t√
2πa0

) + S (b1 + 2a0t√
2πa0

) sin( b
2
1

4a0
− c0)−

cos( b
2
2

4a0
− c0)C (

b2 + 2a0t√
2πa0

)−S (b2 + 2a0t√
2πa0

) sin( b
2
2

4a0
− c0) − cos(

b21
4a0
− c0)C (

b1√
2πa0

)−

S ( b1√
2πa0

) sin( b
2
1

4a0
− c0)+ cos( b

2
2

4a0
− c0)C (

b2√
2πa0

) + S ( b2√
2πa0

) sin( b
2
2

4a0
− c0)])(sin

mπ

L
x)

(51)

This represents the transverse-displacement response to a concentrated mass moving with

non-uniform velocity of a simply supported uniform Rayleigh beam resting on elastic founda-

tion.

5 COMMENTS ON CLOSED FORM SOLUTIONS

It is pertinent at this juncture to establish conditions under which resonance occurs. This

phenomenon in structural and highway engineering is of great concern to researchers or in

particular, design engineers, because, for example, it causes cracks, permanent deformation

and destruction in structures. Bridges and other structures are known to have collapsed as a

result of resonance occurring between the structure and some signals traversing them.

Equation (47) clearly shows that the Simply Supported elastic beam resting on elastic

foundation and traversed by moving force reaches a state of resonance whenever

αmf =
mπcc
L

,αmf =
mπcc
L
+ 2a0tc (52)

while equation (51) indicates that the same beam under the action of moving mass will expe-

rience resonance effect whenever

αmm =
mπcc
L

,αmm =
mπcc
L
+ 2a0tc (53)

where cc and tc are respectively the critical velocity and critical time at which resonance occurs.

From equation (48), we know that

αmm = αmf

⎧⎪⎪⎨⎪⎪⎩
1 − η

2

⎡⎢⎢⎢⎣
2 +
(2c2R(m,m) −R2(m,m,n))

α2
mf

⎤⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
(54)
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which implies

αmf =
mπcc
L

{1 − η
2
[2 + (2c

2R(m,m)−R2(m,m,n))
α2

mf

]}
(55)

It is therefore evident, that for the same natural frequency, the critical velocity for the

system consisting of a Simply Supported Elastic Beam resting on an elastic foundation and

traversed by concentrated forces moving with a non-uniform speed is greater than that of the

moving mass problem. Thus, for the same natural frequency of an elastic beam, resonance is

reached earlier in the moving mass system than in the moving force system.

For the resonance conditions for other classical boundary conditions, equation (34) clearly

shows that the uniform elastic beam resting on an elastic foundation and traversed by concen-

trated forces moving with variable velocities reaches a state of resonance whenever

γmf =
λmcc
L

and γmf =
λmcc
L
+ 2a0t

L
(56)

while equation (40) shows that the same beam under the action of a moving mass experiences

resonance effect whenever

γmm =
λmcc
L

and γmm =
λmcc
L
+ 2a0t

L
(57)

From equation (37)

γmm = γmf

⎧⎪⎪⎨⎪⎪⎩
1 − η

∗

2

⎡⎢⎢⎢⎣
(Hb(m,m)) −

c2 (Hf(m,m) + aHi(m,m))
γ2mf

⎤⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
(58)

which implies

γmf =
λmcc
L

1 − η∗

2
[(Hb(m,m)) − c2(Hf (m,m)+aHi(m,m))

γ2
mf

]
(59)

Evidently, from equation (58) and (59), the same results and analysis obtained in the case

of a Simply Supported Bernoulli-Euler beam are obtained for all other examples of classical

boundary conditions.

6 NUMERICAL RESULTS AND DISCUSSION

We shall illustrate the analysis proposed in this paper by considering a homogenous beam of

modulus of elasticity E = 3.1 × 1010N/m2, the moment of inertia I =2.87698 × 10−3m4,

the beam span L = 150m and the mass per unit length of the beam µ=2758.291 Kg/m.

The values of foundation moduli are varied between 0N/m3 and 400000N/m3, the values of

axial force N is varied between 0 N and 2 ⋅ 0 × 108N.
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Figure 1 displays the transverse displacement response of a clamped-clamped uniform

Rayleigh beam under the action of concentrated forces moving at variable velocity for various

values of axial force N and for fixed values of foundation modulus K=40000 and Rotatory

inertia correction factor Ro=50. The figure shows that as N increases, the dynamic deflec-

tion of the uniform beam decreases. Similar results are obtained when the fixed-fixed beam

is subjected to a concentrated masses traveling at variable velocity as shown in figure 4. For

various traveling time t, the deflection profile of the beam for various values of foundation mod-

ulus K and for fixed values of axial force N=200000 and Rotatory inertia correction factor

Ro=50 are shown in figure 2. It is observed that higher values of foundation modulus reduce

the deflection profile of the vibrating beam. The same behaviour characterizes the deflection

profile of the clamped-clamped beam under the action of concentrated masses moving at vari-

able velocity for various values of foundation modulus K as shown in figure 5. Also, figures

3 and 6 display the response amplitudes of the clamped-clamped uniform Rayleigh beam re-

spectively to concentrated forces and masses traveling at variable velocity for various values

of rotatory inertia Ro and for fixed values of axial force N=200000 and foundation modulus

K=40000. These figures clearly show that as the values of rotatory inertia correction factor

increases, the response amplitudes of the clamped-clamped uniform beam under the action of

both concentrated forces and masses traveling at variable velocity decrease. Figure 7 depicts

the comparison of the transverse displacement response of moving force and moving mass cases

of a clamped-clamped uniform Rayleigh bean traversed by a moving load traveling at variable

velocity for fixed values of N=200000, K=400000 and Ro=50.

values of rotatory inertia Ro and for fixed values of axial force N=200000 and foundation

modulus K=40000.  
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Figure 1 Transverse displacement of a clamped-clamped uniform Rayleigh beam under the actions of concen-
trated forces traveling at variable velocity for various values of axial force N and for fixed values of
foundation modulus K=40000 and rotatory inertia Ro=50.
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Figure 2 Deflection profile of a clamped-clamped uniform Rayleigh beam under the actions of concentrated
forces traveling at variable velocity for various values of foundation modulus K and for fixed values
of axial force N=200000 and rotatory inertia Ro=50.
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Figure 3 Response amplitude of a clamped-clamped uniform Rayleigh beam under the actions of concentrated
forces traveling at variable velocity for various values of rotatory inertia Ro and for fixed values of
foundation modulus K=40000 and axial force N=200000.

For other boundary conditions, namely the simply-supported and cantilever beams we

obtain results similar to that of the clamped-clamped end conditions presented in this work.

It is further established the results obtained in this study is in perfect agreement with existing

results [5, 12, 14, 15].
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Figure 4 Transverse displacement of a clamped-clamped uniform Rayleigh beam under the actions of concen-
trated masses traveling at variable velocity for various values of axial force N and for fixed values of
foundation modulus K=40000 and rotatory inertia Ro=50.
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Figure 5 Deflection profile of a clamped-clamped uniform Rayleigh beam under the actions of concentrated
masses traveling at variable velocity for various values of foundation modulus K and for fixed values
of axial force N=200000 and rotatory inertia Ro=50.
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Figure 6 Response Amplitude of a clamped-clamped uniform Rayleigh beam under the actions of concentrated
masses traveling at variable velocity for various values of rotatory inertia Ro and for fixed values of
foundation modulus K=40000 and axial force N=200000.
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Figure 7 Comparison of the displacement response of moving force and moving mass cases of a uniform
clamped-clamped Rayleigh bean for fixed values of N=200000, K=400000 and Ro=50.
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7 CONCLUDING REMARKS

The problem of the flexural vibrations of a prestressed uniform Rayleigh beam resting on

elastic foundation and traversed by concentrated masses traveling at variable velocity has been

investigated. Closed form solutions of the governing fourth order partial differential equations

with variable and singular coefficients of uniform Rayleigh beam moving mass problems are

presented. For this uniform beam problem, the solution techniques is based on generalized

finite integral transformation, the expansion of the Dirac delta function in series form, a

modification of Struble’s asymptotic method and the application of Fresnel sine and cosine

integrals.

In this work, illustrative examples involving simply supported end conditions, clamped end

conditions and one end clamped, one end free conditions are presented. Analytical solutions

obtained are analyzed and resonance conditions for the various beam problems are established.

Results show that

1. for all illustrative examples, resonance is reached earlier in a system traversed by moving

mass than in that under the action of a moving force.

2. as the axial force N increases, the amplitudes of uniform Rayleigh beam under the action

moving load moving at non-uniform velocity decrease.

3. when the axial force N is fixed, the displacements of a uniform Rayleigh beam resting on

elastic foundation and traversed by masses traveling with variable velocity decrease as

the value of foundation modulli K increases for all variants of the boundary conditions.

4. higher values of axial force N and foundation modulli K are required for a more notice-

able effect in the case of other boundary condition than those of simply supported end

conditions for both the moving force and moving mass problems.

5. for fixed axial force and foundation modulus, the response amplitude for the moving

mass problem is greater than that of the moving force problem for all illustrative end

conditions considered.

6. it has been established that for all the illustrative examples considered, the moving force

solution is not an upper bound for the accurate solution of the moving mass cases in

prestressed uniform. Rayleigh beam under accelerating loads. Hence, the non-reliability

of moving force solution as a safe approximation to the moving mass problem is confirmed.

7. in all the illustrative examples considered, for the same natural frequency, the critical

velocity for moving mass problem is smaller than that of the moving force problem.

Hence, resonance is reached earlier in moving mass problem.

Finally, this work has proposed valuable methods of analytical solution for this category

of problems for all variants of classical boundary conditions.

Latin American Journal of Solids and Structures 7(2010) 285 – 306



306 S.T. Oni et al / Flexural motions under accelerating loads of prestressed beams with general boundary conditions

Acknowledgements The corresponding author gratefully acknowledge the financial support of

the African Mathematics Millennium Science Initiative (AMMSI) and the Federal University

of Technology, Akure, Nigeria.

References
[1] G. G. Adams. Critical speeds and the response of a tensioned beam on an elastic foundation to repetitive moving

loads. Int. J. Mech. Science, 37(7):773–781, 1995.

[2] A. Ariaei, S. Ziaei-Rad, and M. Ghayour. Vibration analysis of beams with open and breathing cracks subjected to
moving masses. Journal of sound and vibration, 326(3-5):709–724, 2009.

[3] L. Frybal. Vibrations of Solids and Structures under moving loads. Groningen, Noordhoff, 1972.

[4] L. Frybal. Non-stationary response of a beam to a moving random force. Journal of Sound and Vibration, 46:323–338,
1976.

[5] J. A. Gbadeyan and S. T. Oni. Dynamic behaviour of beams and rectangular plates under moving loads. Journal of
Sound and Vibration, 182(5):677–695, 1995.

[6] M. A. Hilal and H. S. Zibdeh. Vibration analysis of beams with general boundary conditions traversed by a moving
force. Journal of Sound and Vibration, 229(2):377–388, 2000.

[7] M.-H. Huang and D. P. Thambiratnam. Deflection response of plate on Winkler foundation to moving accelerated
loads. Engineering Structures, 23:1134–1141, 2001.

[8] J. Kenny. Steady state vibrations of a beam on an elastic foundation for a moving load. J. Appl. Mech., 76:359 –
364, 1954.

[9] H.P. Lee. Transverse vibration of a timoshenko beam acted on by an accelerating mass. Applied Acoustics,
47(4th):319–330, 1996.

[10] Y. H. Lin. Comments on vibration analysis of beams traversed by uniformly partially distributed moving masses.
Letters to the editor, Journal of sound and vibration, 199(4):697–700, 1997.

[11] M. Milormir et al. On the response of beams to an arbitrary number of concentrated moving masses. Journal of the
Franklin Institute, 287(2), 1969.

[12] M. Milormir, M. M. Stanisic, and J. C. Hardin. On the response of beams to an arbitrary number of concentrated
moving mases. Journal of the Frankling Institute, 287(2), 1969.

[13] G. Muscolino and A. Palmeri. Response of beams resting on viscoelastically damped foundation to moving oscillators.
International Journal of solid and Srtuctures, 44:1317–1336, 2007.

[14] S. T. Oni and B. Omolofe. Dynamical analysis of a prestressed elastic beam with general boundary conditions under
loads moving with varying velocities. FUTAJEET, 4(1):55–74, 2005.

[15] S. Sadiku and H. H. E. Leipholz. On the dynamics of elastic systems with moving concentrated masses. Ing. Archiv.,
57:223–242, 1981.

[16] M. R. Shadnam, M. Mofid, and J. E. Akin. On the dynamic response of rectangular plate with moving mass.
Thin-walled structures, 39:797–806, 2001.

[17] M. M. Stanisic, J. A. Euler, and S. T. Montgomeny. On a theory concerning the dynamical behaviour of structures
carrying moving masses. Ing. Archiv, 43:295–305, 1974.

[18] S. Timoshenko, D. H. Young, and W. Weaver. Vibration Problems in Engineering. John Willey, New York, 4 edition.

[19] R.-T Wang and T.-H Chou. Non-linear vibration of Timoshenko beam due to a moving force and the weight of beam.
Journal of Sound and Vibration, 218:117–131, 1998.

[20] Y. M. Wang. The dynamical analysis of a finite inextensible beam with an attached accelerating mass. International
Journal of solid structures, 35(9-19):831–854, 1998.

[21] R. Willis et al. Preliminary essay to the Appendix B: Experiments for determining the effects produced by causing
weights to travel over bars with different velocities. In G. Grey et al., editors, Report of the commissions appointed
to inquire into the application of iron to railway structures, London, 1849. W. cloves and sons. Reprinted in; Barlow
P: Treatise on the strength of timber, cast iron and malleable iron. London, 1951.

Latin American Journal of Solids and Structures 7(2010) 285 – 306


