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Power Secant Method applied to natural frequency extraction
of Timoshenko beam structures

Abstract

This work deals with an improved plane frame formula-

tion whose exact dynamic stiffness matrix (DSM) presents,

uniquely, null determinant for the natural frequencies. In

comparison with the classical DSM, the formulation herein

presented has some major advantages: local mode shapes

are preserved in the formulation so that, for any positive

frequency, the DSM will never be ill-conditioned; in the ab-

sence of poles, it is possible to employ the secant method

in order to have a more computationally efficient eigenvalue

extraction procedure.

Applying the procedure to the more general case of Timo-

shenko beams, we introduce a new technique, named “power

deflation”, that makes the secant method suitable for the

transcendental nonlinear eigenvalue problems based on the

improved DSM.

In order to avoid overflow occurrences that can hinder the se-

cant method iterations, limiting frequencies are formulated,

with scaling also applied to the eigenvalue problem.

Comparisons with results available in the literature demon-

strate the strength of the proposed method. Computational

efficiency is compared with solutions obtained both by FEM

and by the Wittrick-Williams algorithm.

Keywords

exact modal analysis, dynamic stiffness matrix, secant

method, power deflation.

C.A.N. Dias∗

Group of Solid Mechanics and Structural Im-

pact, Department of Mechatronics and Me-

chanical System Engineering, University of São

Paulo, São Paulo – 05508-900 – Brazil

Received 23 Mar 2010;
In revised form 21 Jun 2010

∗ Author email: candias@usp.br

1 INTRODUCTION

Using an improved DSM, exact mode shape and natural frequency calculation of Euler-

Bernoulli skeleton structures is discussed at length by Dias and Alves [4]. According to the

Euler-Bernoulli theory, the beam transverse vibrations are only due to bending deflection.

Hence, shear deflection is not taken into account, which restricts the work in [4] to the slender

members and low order modes.

For short beams, the Euler-Bernoulli beam theory is no longer appropriate, and knowledge

gained from the Timoshenko beam theory should be used [5, 7–9, 12]. This theory considers
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concomitantly the bending and shear deflections as well as the mass and the rotatory inertia

per unit length.

Timoshenko beam theory will not be developed in detail here. For the purposes of the

present work, we will use the theoretical results presented in Ref. [5]. A complete basic text

on the theory and some of its applications can be found in Ref. [8]. Additionally, greater

elucidation about the theory can be gathered from [7] and [9].

We stress that in the vibration analysis, the concept of slenderness is associated with the

distance between null bending moments. Hence, even for slender beams, when the modal

order increases, the shear deflection and the rotatory inertia will have an increasing influence

on the natural frequencies. We may conclude, therefore, that using the Timoshenko theory is

always more suitable when there are short members in the model and/or there is an interest in

calculating modes of a higher order. Nevertheless, as shown, the price paid for using this theory

reflects the mathematical complexity, which is greater than for the simpler Euler-Bernoulli

theory.

Additionally, as the very title of Ref. [5] suggests, it can be interesting to compute the

effect of axial load in flexural vibrations. When a beam suffers transverse displacement, its

cross-sections suffer translations and rotations in such a manner that the axial loads perform

work. If such work is added to the total amount of the elastic energy, the natural frequencies

are affected. Therefore, tensile axial loads increase the natural frequencies, while, inversely,

compression axial loads decrease the natural frequencies. In this last case, depending on the

magnitude of the load, the “dynamic buckling” phenomenon can occur, which is characterized

by the total nullification of the bending rigidity of the beam.

The fundamentals of the dynamic problem herein investigated are given in sections 2 and

3, which lead to the DSM formulation given in section 4. Section 5 investigates the numerical

approach necessary for the implementation of the secant method [1]. In section 6, this method

is modified to accommodate special characteristics of the non-linear transcendental eigenvalue

problem explored here.

In this context, two particular numerical aspects are discussed: overflow occurrences and

deflation of the DSM determinant.

Because the secant method is an iterative process, its implementation is limited by the

computer numerical structure such that overflow occurrences should be predicted and circum-

vented; without such planning, this process will certainly fail. Therefore, for the calculation

of the hyperbolic function arguments as well as for the DSM determinant calculation, the

numerical techniques described in section 5.3 should be considered.

For linear eigenvalue problems, whose similarity has been established by the finite elements

method [1], the dynamic stiffness matrix determinant is a polynomial of equal or lesser order

than the number of degrees of freedom. In this case, polynomial deflation [1, 13] works perfectly

as an auxiliary technique of the secant method, allowing for iterative calculation of a certain

eigenvalue, in a recursive process, if the lower order eigenvalues are known.

For the present DSM case, nevertheless, its determinant exhibits a non-polynomial form

so that the polynomial deflation cannot be successfully utilized. Thus, we introduce in the
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section 6 the technique called “power deflation”: in the calculation of the nth-order eigenvalue,

the determinant is deflated by a product of monomial powers; each one of these containing an

eigenvalue whose order is lower than n.

2 MEMBER EQUILIBRIUM EQUATIONS

For an elementary volume of length dx (Fig. 1), the equilibrium of lateral forces can be written

as:

FC(x, t) =m∂2v(x, t)/∂t2 (1)

where FC(x, t) is the shear force due to bending, m = ρA is the uniform distribution mass and

v(x, t) is the transverse displacement.

Analogously, the equilibrium of the elementary volume moments gives:

FC(x, t) = ∂MF (x, t)/∂x + P∂v(x, t)/∂x − j∂2θ(x, t)/∂t2 (2)

where MF (x, t) is the bending moment, j = ρI is the uniformly distributed rotatory inertia,

θ(x, t) is the angle of rotation of the cross-section, and P is a static axial load.

The static axial load is supposedly time-invariant, constant throughout the length and

positive under tensile condition.

On the other hand, the shearing condition of the elementary volume can be written as:

θ(x, t) = [1 + P /(GAS)]∂v(x, t)/∂x − FC(x, t)/(GAS) (3)

where G = E/[2(1+υ)] is the shear modulus and AS is the shear area that is given as a fraction

of the total area of the cross-section (A). The shear area characterizes the stiffness in relation

to the deflection due to shear, so that if AS =∞ there is no such deflection.

Thus, eliminating FC(x, t) and MF (x, t) from these equations, it results in the following

differential equation, applicable for both transverse displacement and rotation [5]:

m∂2(●)/∂t2 − P∂2(●)/∂x2 −EI[1 + P /(GAS)]∂4(●)/∂x4+
+mj/(GAS)∂4(●)/∂t4 − {j[1 + P /(GAS)] −mEI/(GAS)}∂4(●)/∂x2∂t2 = 0

(4)

where the dot denotes v(x, t) or θ(x, t). Noted in this equation is the existence of crossed

terms that are involved in the relations between the beam parameters: EI = flexural rigidity,

GAS = shear rigidity, m = mass per unit length, j = rotatory inertia and P = static axial load.

Additionally, using the same elementary volume of length dx (Fig. 1), the dynamic equi-

librium of axial forces, from which P is excluded because it is constant, can be written as:

FN(x, t) =m∂2u(x, t)/∂t2 (5)

where FN(x, t) is the normal force and u(x, t) is the axial displacement.
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Figure 1 Timoshenko beam member at local coordinates: (a) internal & end displacements; (b) internal &
end forces.

3 MEMBER EQUILIBRIUM SOLUTION

In free vibration, the displacements are synchronous and harmonic and can be written as:

u(x, t) = φu(x)sin(ωt) Axial Translations

v(x, t) = φv(x)sin(ωt) Lateral Translations

θ(x, t) = φθ(x)sin(ωt) In Plane Rotation

(6)

stressing that, for the present theory, the rotation θ(x, t) cannot be directly obtained from the

derivative of v(x, t), as it could in the Euler-Bernoulli theory.

Substitution of expressions (6) for displacements in the equations from the previous section,

after some algebraic transformations, leads to:

φu(x) = ĀSA(x) + B̄CA(x)
φv(x) = C̄ST (x) + D̄CT (x) + ĒSH(x) + F̄CH(x) (7)

φθ(x) = θT [C̄CT (x) − D̄ST (x)] + θH[ĒCH(x) + F̄SH(x)]

where Ā, B̄, C̄, D̄, Ē and F̄ are integration constants to be determined by using appropriate

boundary conditions, θT and θH are parameters to be given forward and:

SA(x) = sin(βAx) CA(x) = cos(βAx)
ST (x) = sin(βTx) CT (x) = cos(βTx)
SH(x) = sinh(βHx) CH(x) = cosh(βHx)

(8)

Analogously, in free vibration, the internal forces can be written as:
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FN(x, t) = φN(x)sin(ω t) Normal Forces

FC(x, t) = φC(x)sin(ω t) Shear Forces

MF (x, t) = φF (x)sin(ω t) Bending Moments

(9)

with

φN(x) = FA[ĀCA(x) − B̄SA(x)]
φC(x) = −FT [C̄CT (x) − D̄ST (x)] + FH[ĒCH(x) + F̄SH(x)] (10)

φF (x) = −MT [C̄ST (x) + D̄CT (x)] +MH[ĒSH(x) + F̄CH(x)]

where the parameters FA, FT , FH ,MT andMH are given forward.

For convenience, we define the following non-dimensional parameters:

Ω2(ω) = ω2/γ2 Frequency (11)

r2 = I/(AL2) Rotatory Inertia (12)

s2 = EI/(GASL
2) Shear Deflection (13)

p2 = −PL2/EI Axial Load (14)

ξ2 = 1 − s2p2 (15)

η2 = r2ξ2 + s2 (16)

where, in Eq. (11) we have:

γ[rad/s] =
√
EI/mL4 (17)

Thus, we finally write:

θT (ω) = [ξ2α2
T (ω) − s2Ω2(ω)]/[αT (ω)L]

θH(ω) = [ξ2α2
H(ω) + s2Ω2(ω)]/[αH(ω)L]

FA(ω) = EAβA(ω)
FT (ω) = EIθT (ω)β2

T (ω) − PβT (ω) − jω2θT (ω) (18)

FH(ω) = EIθH(ω)β2
H(ω) + PβH(ω) + jω2θH(ω)

MT (ω) = EIβT (ω)θT (ω)
MH(ω) = EIβH(ω)θH(ω)

where

βA(ω) = αA(ω)/L
βT (ω) = αT (ω)/L (19)

βH(ω) = αH(ω)/L
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with the non-dimensional parameters α defined by:

αA(ω) = ω
√
mL2/EA = (γ/

√
EA/mL2)Ω(ω) (20)

αT (ω) = [∆̃(ω) + ∆̄(ω)]1/2/(2ξ2)1/2 (21)

αH(ω) = [∆̃(ω) − ∆̄(ω)]1/2/(2ξ2)1/2 (22)

being

∆̃(ω) = [∆̄2(ω) + δ2(ω)]1/2 (23)

∆̄(ω) = p2 + η2Ω2(ω) (24)

δ2(ω) = 4ξ2[1 − r2s2Ω2(ω)]Ω2(ω) (25)

4 ASSESSMENT OF THE EXACT DYNAMIC STIFFNESS MATRIX (DSM)

4.1 Element local dynamic stiffness matrix

Employing the convention for the end displacement and the end forces shown in Fig. 1, as well

as the origin there indicated for the local reference system, and defining for J = A,T orH :

S−J = SJ(x = −L/2); S+J = SJ(x = +L/2)
C−J = CJ(x = −L/2); C+J = CJ(x = +L/2)

(26)

the dynamic stiffness matrix of an axially loaded Timoshenko member is given by:

KD(ω) = φφφP (ω)φφφ−1Q (ω) (27)

where the matrices φφφQ and φφφP are, respectively:

End displacements versus integration constants relationship

φφφQ(ω) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+S−A +C−A 0 0 0 0

+S+A +C+A 0 0 0 0

0 0 +S−T +C−T +S−H +C−H
0 0 +S+T +C+T +S+H +C+H
0 0 +θTC−T −θTS−T +θHC−H +θHS−H
0 0 +θTC+T −θTS+T +θHC+H +θHS+H

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)
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End forces versus integration constants relationship

φφφP (ω) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+FAC
−
A −FAS

−
A 0 0 0 0

+FAC
+
A −FAS

+
A 0 0 0 0

0 0 −FTC
−
T +FTS

−
T +FHC

−
H +FHS

−
H

0 0 −FTC
+
T +FTS

+
T +FHC

+
H +FHS

+
H

0 0 −MTS
−
T −MTC

−
T +MHS

−
H +MHC

−
H

0 0 −MTS
+
T −MTC

+
T +MHS

+
H +MHC

+
H

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)

In the expressions (28) and (29), the parameters θT , θH , FA, FT , FH , MT and MH depend

on the frequency ω and are defined by Eqs. (18).

By the usual FEM procedures, the matrix of expression (27), after applied to each member

of the model, is useful to assemble the classical global DSM [5]. However, for frequencies that

coincide with the natural frequencies of the members in the clamped-clamped condition, the

classical DSM has poles, not roots.

This can be easily seen by observing that the matrix ϕQ(ω) has no inverse when ω is

one of the natural frequencies of the member in the clamped-clamped condition so that, as

consequence, the DSM determinant grows to infinity.

For this reason, the classical DSM is not suitable in an iterative method that needs deter-

minant values to estimate the natural frequencies. To overcome this difficulty, in the following

section it is shown how the matrices ϕP (ω) and ϕQ(ω) can be used in order to assemble an

improved version of the global DSM that has no poles [4]. Then, the improved DSM can be

used to extract eigenvalues by the secant method [1], as it will be presented in section 6.

4.2 Improved global dynamic stiffness matrix

By applying the standard FEM procedures, the process by which the matrices φφφP (ω) and

φφφQ(ω) are employed for the in-plane model assembly, in the light of the Timoshenko theory,

follows the same steps that are described in Ref. [4] for the Euler-Bernoulli theory. For the

sake of brevity, the details will not be presented here. The terms are:

M Total number of members of the model;

N Total number of nodal degrees of freedom;

Qo Vector of the amplitudes of the nodal displacements;

Θ Vector that contains the constants of integration of all the members;

Ω̂ Matrix that unites the nodal concentrated masses and springs;

ψQ Matrix that determines the connection between the members of the model;

ΦP Matrix that unites the matrices φφφP (ω) of all the members;

ΦQ Matrix that unites the matrices φφφQ(ω) of all the members.

The eigenvalue problem, which is established through the exact improved dynamic stiffness

matrix Ψ(ω), results in the following form [4]:
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⎡⎢⎢⎢⎢⎢⎢⎣

ΦQ(ω)
6M−by−6M

−ψQ
6M−by−N

ψT
QΦP (ω)

N−by−6M
Ω̂(ω)

N−by−N

⎤⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=Ψ(ω)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Θ
6M−by−1
Qo
Nx1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(6M+N)−by−1

= 0
(6M+N)−by−1

(30)

being necessary to search for ω such that:

det{ Ψ(ω)
(6M+N)−by−(6M+N)

} = 0 (31)

For this eigenvalue problem, which does not show poles in the natural frequencies [4], it is

possible to obtain the roots of Eq. (31) and then return to Eq. (30) to obtain the corresponding

vectors Θ and Qo. The first of these vectors contains the integration constants, which in the

latter instance determine the amplitudes of the internal displacements, and the second vector

determines the amplitudes of the nodal displacements.

In these terms, for the calculation of each natural mode shape, the solution of Eq. (30) is

based in a method that linearizes the eigenvalue problem in the vicinity of the corresponding

natural frequency, as described in Ref. [4]. For the sake of brevity, this method will not be

reproduced here.

In Ref. [4], a simple method of determinant tracing was presented to solve Eq. (31).

Although robust, it is not computationally efficient because the method requires successive

evaluations of the determinant, at frequency intervals not greater than the tolerance specified

for the natural frequencies calculations. Thus, the objective is to implement the secant method

with the use of power deflation, which is computationally much more efficient. Having in

mind this implementation, in the following section some particular issues about the present

eigenvalue problem are discussed.

Based on transcendental member stiffness matrices, Ref. [9] defines a new dynamic stiffness

matrix, called K∞, which also eliminates the poles from the eigenvalue problem. However,

this method requires further developments in order to include rigid off-set and end release in

its formulation as well as has no direct capability to determine the local mode shapes for which

Qo = 0 and Θ ≠ 0.

5 PARTICULAR ISSUES

As we have shown, derivation of the Timoshenko theory is much more laborious than the

Euler-Bernoulli theory; consequently, new physical and mathematical questions arise, which

we will discuss in the following sections.

5.1 Limiting compression axial load

By imposing that the denominator in expressions (21) and (22), for the parameters αT and

αH , respectively, should be real and finite, we may write:
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ξ2 = 1 − s2p2 > 0 (32)

which limits the axial load to:

∣P ∣ < GAS (33)

Thus, the lower the shear rigidity, GAS , the lower the axial load that can be applied.

In practical terms, for actual materials such a limit is sufficiently high to make feasible the

calculation for any realistic structure.

On the other hand, even for infinite shear rigidity, the compressive axial load can be

physically limited by the buckling phenomenon. As an illustrative example, we may consider

the case of a simply supported beam with no shear deflection (AS = ∞ ⇒ s = 0). For this

situation of a Rayleigh beam, the equations in section 3 are applied in the appendix A and

give for the natural frequencies:

fi[Hz] = iπ
√
i2 + P /PCR

√
EI/mL4/

√
1 + r2(iπ)2/2 (34)

where, in accordance with the Euler buckling load : PCR = π2EI/L2 .

Hence, if the load is compressive (P < 0) and has magnitude greater or equal to the

buckling load, null or complex natural frequencies will occur; a fact that characterizes the

physical impossibility of dynamic equilibrium.

5.2 Transition frequency

The parameter αT , present in the arguments of the trigonometric functions, will always result

in a real number because the conditions ∂2 < 0 and ∆̄ < 0 cannot occur concomitantly.

On the other hand, the parameter αH , in the arguments of the hyperbolic functions, can

result in a real number or a purely imaginary number, without thereby implying any impossi-

bility, either mathematical or physical.

In these terms, a particular frequency value exists for which the transition of αH occurs

from a real number to an imaginary number. Thus, the use of expression (25) and the condition

(32) imposes that:

δ2(ω) = 4ξ2[1 − r2s2Ω2(ω)]Ω2(ω) = 0 (35)

to obtain, from Eq. (11), the following expression for the transition frequency:

fT [Hz] = 1

2π rs

√
EI

mL4
=
√

GAAS

mI
/2π (36)

The arguments of the hyperbolic functions are purely imaginary numbers for frequencies

greater than the transition frequency, a fact that indicates that such functions convert to the

trigonometric functions. From a computer calculation point of view, this is a favorable condi-

tion because the trigonometric functions, by being limited, do not present overflow problems.
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As noted in Eq. (36), if the shear deflection is neglected (s = 0) there is no transition and

overflow can occur because the hyperbolic function arguments are always real numbers. The

same fact occurs when the rotatory inertia is neglected (r = 0). On the other hand, it can be

noted that the transition frequency does not depend on the member length and therefore it is

not affected by mesh refinement.

5.3 Treatment of overflow conditions

For computer calculation, there is always an upper limit for the largest number that can be

stored in the RAM (Rmax). If during some step of an iterative calculation such a limit is

surpassed, this calculation is certainly compromised due to overflow.

The equations in sections 3 and 4 have parameters that increase with the frequency ω such

that this may lead to overflow error, particularly because hyperbolic functions are used.

Hence, to overcome overflow occurrences, appendix B is dedicated to the establishment

of five possible limiting values (ΩlimJ for J = 1,2,3,4,5) for the non-dimensional frequency

Ω defined by Eq. (11). Accordingly, each member of the model will have its own limiting

frequency given by:

flim[Hz] = (1/2π)min{ΩlimJ}
√

EI

mL4
(37)

For a framed structure, the overall limiting frequency is the smallest value given by Eq.

(37) applied for all the members. If this overall frequency is less than the maximum desired

frequency, the only remaining alternative is to promote mesh refinement. As inferred from the

example in Fig. 2, the shorter the elements the greater the overall limiting frequency.

On the other hand, the more refined the mesh the greater the possibility of overflow oc-

currence in the calculation of the DSM determinant because the matrix order will be greater.

Fortunately, as shown afterwards, scaling operation in the DSM can be employed to avoid such

an occurrence.

In order to obtain a more elucidative visual effect, the example in Fig. 2 uses an intention-

ally low Rmax value. In Fig. 2a, it can be observed how each of the non-dimensional limiting

frequencies ΩlimJ varies with the mesh refinement. By applying Eq. (37), Fig. 2b shows the

behavior of the overall limiting frequency flim. Finally, Fig. 2c shows how mesh refinement

increases the modal order of the greatest natural frequency that can be calculated.

Table 1 explores how the increase in the order of Rmax, up to a compatible value with

the real computer capacity, affects the modal order of the greatest natural frequency that

can be calculated. In general, it is assumed that only unrealistic data should cause relevant

computational limitation by overflow error. For example, from the situation in the last line in

Table 1, if an unrealistic axial load P = +10100 ton is applied, the maximal calculable mode

falls to an order of 4.
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Figure 2 Overflow limits for a simply supported beam: (a) non-dimensional limiting frequencies ΩlimJ ; (b)

overall limiting frequency flim [Hz]; (c) maximum modal order Rmax = 1015; E = 2000 ton/cm2;
υ = 0.3; ρ = 8x10−9 ton.s2/cm4; P = +15.0 ton; L = 100 cm; A = 10.0 cm2; AS = (5/6)A.

Table 1 Maximum obtainable modal order for the example of Fig.2.

Computer

Limit

Rmax

Maximum Modal Order Limiting Frequency [Hz]

Mesh with

one

element

Mesh with

100

elements

Mesh with

one

element

Mesh with

100

elements

1015 7 59 3.0752x106 3.0752x108

1020 26 250 5.4684x107 5.4684x109

1050 140,656 1,406,567
1.7293

x1015
1.7293

x1017

10200 7.9057x1023 7.9057x1024 5.4684x1052 5.4684x1054
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Dynamic stiffness scaling

We consider the dynamic stiffness matrix, which is defined in Eq. (30), now affected by a real

and positive scaling constant αG:

Ψ̃(ω) = αGΨ(ω) (38)

so that the calculation of the DSM determinant can be written as:

det[Ψ̃(ω)] = α6M+N
G det[Ψ(ω)] (39)

where M and N are positive integers, which represent, respectively, the number of elements of

the model and the total number of nodal degrees of freedom.

Thus, we note from Eq. (39) that the scaling constant αG can be used to change the

magnitude of the determinant result without, in essence, affecting the eigenvalue problem.

With no changes in the mode shapes and natural frequency results, a scaling constant αG

lower than the unit can avoid the overflow occurrence.

To predict a suitable value of αG, we apply a process of trial and error, in the following

terms:

1. The overflow condition is tested for a value less than Rmax, through the appropriate

adoption of the safety coefficient SF > 1: Vmax = 10[log(Rmax)/SF ].

2. In the calculation of the first natural frequency, while the determinant is greater than

Vmax, the αG value is diminished and the iterative process is restarted.

3. Once a natural frequency is obtained, the maximum current determinant value (Dmax),

if greater than Vmax, is used to diminish the current scaling constant by using: αG =
αG[Dmax/V max]1/(6M+N).

For some methods other than the secant method, like bisection, scaling of the dynamic

stiffness determinant could be conveniently performed during calculation by maintaining its

magnitude within an allowable range and storing an additional integer exponent, so avoiding

the need of predicting a suitable value for αG.

6 POWER SECANT METHOD

The objective here is to elaborate a method that serves as an alternative to the tracing method

of Ref. [4], leading to a search for the natural frequencies that are computationally more

efficient.

We begin with the discussion of the simple secant method; afterwards, we address the

question of polynomial deflation, and, finally, we deal with power deflation.

In principle, the simple secant method lends itself to the extraction of only one root of a

function. If the function has only one root, the method is directly applied, and it does not
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need deflation. If, on the other hand, the function has more than one root, the method can

still work under the following conditions:

• If the starting points are chosen below the first root, convergence to this root will occur;

• If the starting points are sufficiently close to a given root, convergence to this root will

occur.

In the case of functions with several roots, we can apply the deflation technique to extract

them in ascending order [1, 13]. Thus, by removing the first root by deflation, if the starting

points are chosen from below the second root, convergence to this second root will occur. In

succession: being known the (n-1 ) lower roots, if by deflation these roots are removed, when

choosing starting points from below the nth root, convergence to this root will occur.

6.1 Simple Secant Method

Observing the secant method in its simplest form in Fig. 3, we can develop through recursive

application of the equation that represents the intersection of the secant line with the λ axis:

λk+2 = λk+1 − fk+1(λk+1 − λk)/(fk+1 − fk) (40)

Beginning with k = 1, so that it is necessary to arbitrate two starting points λ1 and λ2, the

iterations are interrupted when a tolerance test is met, as prescribed by:

∣λk+2 − λk+1∣ ≤ 10−dλk+2 (41)

where d is the number of significant digits that are desired for the approximation to the sought

root. If during the iterations fk = fk+1occurs, the method fails in an unrecoverable way. In

general, the method should not be directly applied in case the function has null derivative

points, as when more than one root exists. In this context, the deflation technique becomes

relevant.

6.2 Polynomial deflation

Lets suppose that the function f(λ), from which we desire to extract the roots, is a polynomial

of order N, with N real and distinct roots. Thus, the function is known in an explicit form

from its coefficients an:

f(λ) =
N

∑
n=0

anλ
n (42)

or the function can be imagined in the implicit factorized form, described by monomial products

involving its roots λ̄n:

f(λ) = (λ − λ̄1)(λ − λ̄2)..........(λ − λ̄N) =
N

∏
n=1
(λ − λ̄n) (43)
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As shown before, the simple secant method can be applied for calculation of the first root

if the starting points that are lower than this root. Once the first root λ̄1 is obtained, a new

function is found by using the following deflation:

F2(λ) = f(λ)/(λ − λ̄1) (44)

Now, the first root of the deflated polynomial F2(λ)is in the position of the second root

of the original polynomial f(λ). Thus, the secant method can be now applied on the deflated

polynomial. If the starting points are chosen below this first root, the method converges to

the second root.

Such a deflation procedure can be generalized for the progressive calculation of all the

roots.

Fn(λ) = f(λ)/[(λ − λ̄1)(λ − λ̄2)....(λ − λ̄n−1)] = f(λ)/
n−1
∏
j=1
(λ − λ̄j) (45)

where Fn(λ) is the deflated form of the original polynomial that makes the secant method to

converge to the n-order root, being necessary that all the lower (n-1 ) roots have already been

calculated.

For the purpose of the eigenvalue extraction of a linear problem, and for the conditions

that have been established here, the secant method with polynomial deflation can be applied

with success even for the case of repeated natural frequencies [13].

6.3 Power deflation

We have seen in the previous section that the secant method with polynomial deflation works

perfectly well for the cases in which the function is a polynomial with real roots. In this

context, for linear and non-transcendental eigenvalue problems, similar to the problems that
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arise from FEM models, the secant method can be employed without reservations. Being K

the stiffness matrix and M the mass matrix of a FEM model with N degrees of freedom:

f(λ) = det[ K
®

NxN

−λ M
N̄xN

] (46)

is a polynomial of order N with a maximum of N real and non negative roots [1]. The fact

that the polynomial in Eq. (46) is not known in an explicit form, like in Eq. (42), does

not hinder the application of the secant method because it is still possible to make numerical

evaluations of f(λ). Especially for case of Eq. (46), such numerical evaluations are more

efficiently conducted through the Gauss factorization [1]:

K − λM = L(λ)D(λ)LT (λ) (47)

where L(λ) is a lower triangular matrix and D(λ) is a diagonal matrix. Once performing

factorization, the determinant is simply calculated from the products of the diagonal terms of

the matrix D(λ):

f(λ) = det(K − λM) =
N

∏
i=1
dii(λ) (48)

On the other hand, for the improved dynamic stiffness matrix Ψ in Eq. (30), the function

f(λ) = det{Ψ(λ)} is not a polynomial, although it has non-negative real roots. Thus, the

polynomial deflation has little or no possibility of working.

In these terms, alternatively we use the following modified version of Eq. (45), which

characterizes what we call power deflation:

Fn(λ) = f(λ)/
⎡⎢⎢⎢⎣
λNo

n−1
∏
j=1
(λ − λ̄j)Nj

⎤⎥⎥⎥⎦
(49)

where each Nj power should be determined in a manner that, given two starting points λ1n
and λ2n, the following condition is met:

[
Fj(λ1n)
λ1n − λ̄j

]
Nj

= ζ [
Fj(λ2n)
λ2n − λ̄j

]
Nj

with ζ > 1 (50)

For calculation of the first eigenvalue (n = 1 ⇒ j = 0), we have F0(λ) = f(λ) and λ̄o = 0.
Consequently, before starting the iterations for each root, it is guaranteed that the first secant

line favorably intersects the λ axis at a point located ahead the starting points. Then, from

Eq. (50), we can obtain the following general expression for calculating the Nj powers that

are applied in Eq. (49):

Nj = {log[(Fj(λ1n)/Fj(λ2n)] − log ζ} /{log [
λ1n − λ̄j
λ2n − λ̄j

]} (51)
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If this expression results in Nj < 1, Nj = 1 is adopted because the corresponding deflation

is not needed.

For the iterations of the first mode (n = 1 ⇒ j = 0), we calculate N0 using Eq. (51) and

apply Eq. (49) in order to obtain F1 to use in the secant method. For the iterations of the

second mode (n = 2 ⇒ j = 1), using F1 , we calculate N1 by Eq. (51) and apply Eq. (49)

in order to obtain F2 to use in the secant method; and thus, the other following modes are

progressively calculated.

To illustrate the operation of the secant method with power deflation, or here simply called

“the power secant method”, we present in Fig. 4 the results for a simple clamped-clamped

Euler-Bernoulli beam. In this case, we used ζ = 2 and appropriate starting points in order that

convergence occurs for up to ten iterations. In the figure, we can visualize how the deflated

functions converge for the eigenvalues of the problem, which are localized at the peaks of the

function − log{∣f(λ)∣}.
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Figure 4 Application example of the power secant method (ζ = 2): calculation of the first three roots of the

frequency equation f(λ) = cos(λ). cosh(λ) − 1, for a clamped-clamped single Euler-Bernoulli beam.
The marks on the curves show the performed iterations.

Obviously, the success of the method, in terms of the number of iterations that are needed

to achieve convergence, strongly depends on the starting points and on the appropriate choice

of the parameter ζ.

Depending on the problem, the parameter ζ can be previously admitted as a constant or

varied, by trial and error, until the iterative process demonstrates appropriate convergence.

In this last case, in the beginning of the iterations for each root, ζ should be re-estimated

whenever necessary.

In Table 2, the method is applied to the ten possible distinct cases of boundary conditions

for a simple Euler-Bernoulli beam, for which a total of six different frequency equations exist.
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Without the benefit of prior knowledge of the roots, the solution for each one of these equations

uses arbitrary starting points as well as automatically determined value for the parameter ζ.

We note in Table 2 that, under this more general situation useful for computer program-

ming, there is a reasonable increase in the number of iterations. We also observe that the final

results precisely coincide with the known solutions of the problems [2].

In spite of the number of iterations, the power secant method is always faster than the

bisection method. For comparison, lets take the example of the clamped-clamped beam in

Table 2. The power secant method performed 168 evaluations of the frequency equation while

a bisection method needs more than 1000 evaluations to reach the same accuracy.

Table 2 Power secant method applied to single Euler-Bernoulli beams.

BCa Frequency
Equation

Mode Iter.s
Number

Power Deflation Starting Pointsb Rootc

j ζ Nj−1 λ1 λ2 λ̄j

P-P
S-S

sin(λ)
1 43 16 3.00000 0.0001 0.0002 3.14159
2 48 16 2.99993 3.14164 3.14169 6.28319
3 50 16 2.99989 6.28324 6.28329 9.42478

S-P cos(λ)
1 39 8 2.00000 0.0001 0.0002 1.57080
2 48 16 2.99991 1.57085 1.57090 4.71239
3 50 16 2.99991 4.71244 4.71249 7.85398

C-C
F-F

1 − cos(λ). cosh(λ)
1 74 32 8,33296 0.0002 0.0003 4.73004
2 47 16 2.99994 4.73009 4.73014 7.85320
3 47 16 2.99992 7.85325 7.85330 10.9956

F-S
C-S

tan(λ) + tanh(λ)
1 44 16 3.00000 0.0001 0.0002 2.36502
2 54 16 2.99983 2.36507 2.36512 5.49780
3 57 16 2.99981 5.49785 5.49790 8.63938

F-P
C-P

tan(λ) − tanh(λ)
1 47 32 5.00000 0.0001 0.0002 3.92660
2 47 16 2.99998 3,92665 3.92670 7.06858
3 55 16 2.99995 7.06863 7.06868 10.2102

C-F 1 + cos(λ). cosh(λ)
1 38 8 2.00000 0.0001 0.0002 1,87510
2 43 16 2.99997 1.87515 1.87520 4.69409
3 45 16 2.99996 4.69414 4.69419 7.85476

aBoundary condition convention: P=Pinned; C=Clamped; F=Free; S=Sliding.
bFor j >= 2 both starting points must be greater than the previous root

cRoots obtained with six digits of tolerance

7 COMPARISON EXAMPLES

The power secant method was implemented in the VIGENE program [3], which was developed

on the MATLAB platform. This program is a part of the VIANDI computational system that

is available for download at http://www.gmsie.usp.br .

Section 7.1 presents a very simple example, which has analytical solution. Subsequently,

sections 7.2 and 7.3 explore other simple examples, with results from the literature [7, 8, 12]

also compared with additional solutions by FEM where, by dividing the members into hundred

equal parts, the mesh was deemed appropriate for the comparisons.
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Finally, in order to explore the entire VIGENE capability, section 7.4 presents a more

complex model.

7.1 Simply supported Euler-Bernoulli beam under axial load

As shown in the appendix A, if shear deflection and rotatory inertia are disregarded, the

simply supported beam has exact analytical solution, which does not require application of

any iterative numerical processes. We can observe in Table 3 the perfect concordance between

this analytical solution and the numerical solution of the VIGENE program.

Table 3 Natural frequencies [Hz] for a simply supported Euler-Bernoulli beam under axial load: L = 10 cm;

E = 104 ton/cm2; ρ = 1 ton.s2/cm4; A = π2 cm2; I = 4 cm4

Axial

Load
P /PCR = 0.0 P /PCR = -0.5 P /PCR = +2.0

Mode Analyticala VIGENE Analyticala VIGENE Analyticala VIGENE

1 1.0000 1.0000 0.7071 0.7071 1.7321 1.7321

2 4.0000 4.0000 3.7417 3.7417 4.8990 4.8990

3 9.0000 9.0000 8.7464 8.7464 9.9499 9.9499

4 16.000 16.000 15.748 15.748 16.971 16.971

5 25.000 25.000 24.749 24.749 25.981 25.981
aAnalytical solution: fi[Hz] = i

√
i2 + P /PCR

7.2 Single Timoshenko beam for various boundary conditions

For comparison, from [7] and [12] we took the examples shown in Tables 4 and 5, respectively.

A good concordance can be observed between VIGENE and ANSYS programs.

Table 4 Natural frequencies [Hz] for the single Timoshenko beam of Majkut [7]: L = 1 m; E = 210 Gpa;

v = 0.2963; ρ = 7860 Kg/m3; A = 0.0016 m2; AS = (5/6)A I = 8.53333e − 7 m4.

Case Pinned-Pinned Clamped-Free

Mode
ANSYS VIGENE Majkut ANSYS VIGENE Majkut

A V M A V M

1 185.52 185.52 184.52 67.804a 66.462 67.498

2 719.96 719.96 706.14 412.47 404.54 422.35

3 1547.8 1547.7 1489.3 1105.7 1085.2a 1137.2a

4 2602.1 2601.8 2409.6 2048.1 2011.8 2071.6

5 3821.9a 3820.8a 3527,49a 3179.3 3125.3 3126.6

Error (V-A)/A (V-M)/M (M-A)/A (V-A)/A (V-M)/M (M-A)/A

%b -0.03 +8.32 -7.71 -1.98 -4.57 +2.85
aMode where maximum error occurs

bMaximum relative error in percentage
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Table 5 Natural frequencies [Hz] for the single Timoshenko beam of Wu-Chen [12]: L = 40 in; E = 3e7 psi;

v = 0.3;ρ = 0.283 lbm/in3; A = 13.856406 in2, AS = (5/6)A, I = 55.42562 in4.

Case Clamped-Pinned Pinned-Pinned Clamped-Clamped

Mode
ANSYS VIGENE WuChen ANSYS VIGENE WuChen ANSYS VIGENE WuChen

A V W A V W A V W
1 2.8381 2.8381 2.8385 19.276 19.276 19.277 38.585 38.584 38.596
2 80.096 80.092 80.189 68.722 68.720 68.781 90.808 90.802 90.943
3 144.50 144.48 145.03 134.48 134.47 134.91 153.81 153.78 154.46
4 215.25 215.18 217.01 207.73 207.67 209.30 222.24 222.16 224.18
5 289.27a 289.10a 293.52a 284.19a 284.02a 288.21a 294.09a 293.90a 298.55a

Error (V-A)/A (V-W)/W (W-A)/A (V-A)/A (V-W)/W (W-A)/A (V-A)/A (V-W)/W (W-A)/A

%b -0.06 -1.53 +1.47 -0.06 -1.45 +1.41 -0.06 -1.56 +1.52
aMode where maximum error occurs

bMaximum relative error in percentage

7.3 Building like frames comprising Timoshenko beam members

For the examples in Fig. 5 and 6 from [8], all the members have the same material and section

properties, as indicated in Tables 6 and 7, respectively. An excellent agreement for the results

of both examples can be observed, even when compared with FEM solutions by ANSYS.
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Figure 5 Three-column building [8].
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Figure 6 Two-storey building [8].
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Table 6 Natural frequencies [Hz] for the three-column building of Fig. 5: E = 78.0 Gpa; v = 0.33; ρ =
2500 Kg/m3; A = 0.04 m2; AS = 0.85A; I = 1.3333e − 4 m4.

Mode
ANSYS VIGENE J.Martins

A V J

1 7.8413a 7.8402 7.8419

2 20.456 20.456a 20.418a

3 25.930 25.930 25.933

4 53.717 53.718 53.726

5 56.590 56.591 56.603

Error (V-A)/A (V-J)/J (J-A)/A

%b -0.01 +0.19 -0.19
aMode where maximum error occurs

bMaximum relative error in percentage

Table 7 Natural frequencies [Hz] for the two-storey building of Fig. 6: E = 210.0 Gpa; v = 0.33; ρ =
7850 Kg/m3; A = 0.03 m2; AS = 0.85A.

Mode
ANSYS VIGENE J.Martins

A V J

1 4.2385 4.2381 4.2385

2 13.924a 13.920a 13.924

3 30.472 30.472 30.472

4 42.078 42.082 42.078

5 47.531 47.527 47.531

Error (V-A)/A (V-J)/J (J-A)/A

%b -0.03 -0.03 0.00
aMode where maximum error occurs

bMaximum relative error in percentage

7.4 Robotic handler comprising Timoshenko beam members

In order to explore all the potential of the present work, Fig. 7 depicts an actual example of a

robotic handler where effects like rigid offset, end force release and skewed edge are employed.

Table 8 gives section and material properties for all the members while Table 9 shows the

obtained natural frequencies. The results of both VIGENE and ANSYS programs agree very

well but it must be pointed out that the ANSYS model needed more than 240 beam elements

to achieve the same accuracy obtained by the exact solution of the program VIGENE, which

uses only four elements.
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Figure 7 Robotic handler comprising Timoshenko beam members in a complex configuration: end force release,
rigid offset, skewed edge, concentrated mass M = 2 Kg, concentrated spring K = 200 ton/mm, static
load P = 5 ton that weakens the horizontal arm, different sections and different materials (see table
8): (1) Steel 4139, (2) Steel ASTM A-515, (3) Aluminum 2024-T6, (4) Titanium 6AI-4V.

Table 8 Section and material properties for the robotic handler of Fig. 7.

Section Properties Material Properties
Dimensions Total Shear Shear Bending Elastic Mass Poisson

Height Width Area Factor Area Inertia Modulus Density Ratio
h b A = hb k AS = kA I = bh3/12 E ρ10−9 υ

Member cm cm cm2 - cm2 cm4 ton/cm2 ton.s2/cm4 -
1 3.0 2.0 6.0 5/6 5.0 4.500 2111 7.983 0.300
2 3.0 1.0 3.0 2/3 2.0 2.250 2040 8.015 0.290
3 1.8 2.0 3.6 1/2 1.8 0.972 745.8 2.846 0.397
4 2.4 1.0 2.4 1/2 1.2 1.152 1161 4.471 0.350

Table 9 Natural frequencies [Hz] for the robotic handler of Fig. 7.

Mode
P = 0.0 ton P = 5.0 ton

VIGENE ANSYSa Error [%] VIGENE ANSYSa Error [%]
1 14.988 14.988 0.000 12.577 12.570 0.056
2 145.98 145.98 0.000 145.88 145.86 0.014
3 4695.2 4695.2 0.000 4673.6 4634.0 0.855
4 5484.3 5484.4 -0.002 5392.8 5386.6 0.115
5 10148. 10148. 0.000 10148. 10148. 0.000
a Mesh size = 1 mm; Element types: BEAM3 for members 3 & 4, BEAM44 for

members 1 & 2 and BEAM54 for the top of members 1 & 2; Consistent mass
matrix.
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8 CONCLUSIONS

This work consolidates the possibility of using an iterative process for extracting eigenvalues,

without the compulsory use of the Wittrick-Williams algorithm [6, 10, 11, 14]. Ref.[4] gives

more details of the reasons why such an algorithm has operational difficulties when dealing

with models that incorporate the special effects of end release and rigid offset.

For the examples here presented, the results in Table 10 show how an iterative determinant

search method, based on the improved DSM of section 4.2, can be more computationally

efficient. In terms of CPU time, the power secant method is always faster than a bracketing

method based on the Wittrick-Williams algorithm. Therefore, as a well-known fact [1], the

secant method is faster than any suitable determinant tracing, bracketing or bisection method.

Table 10 CPU (Intel Core2 E7400 2.8 GHz) Time [s] for the examples of section 7.

Tablea Caseb
Wittrick Power

ANSYS
Time

Williams Secant Ratios

WWc PSd FEMe WW/PS FEM/PS

4
Pinned- pinned beam 1.688 0.891 3.188 1.9 3.6

Clamped- free beam 1.968 0.906 2.844 2.2 3.2

5

Clamped-pinned beam 1.953 0.797 3.344 2.5 4.2

Pinned- pinned beam 1.750 0.812 5.406 2.2 6.7

Clamped- clamped beam 1.641 0.797 2.891 2.1 3.6

6 Three-column building 3.969 1.328 3.188 3.0 2.4

7 Two-storey building 5.157 1.641 3.219 3.1 2.0

9 Robotic handler 4.625 1.625 2.859 2.8 1.8
aPrevious table with natural frequency results;

bFor all the cases, the first 20 natural frequencies were calculated;
cBracketing method based on the Wittrick-Williams algorithm which uses the classical DSM;

dIterative secant method using the improved DSM;
eSubspace iteration method.

For CPU time comparison with FEM solutions, it must be considered that the FEMmodels,

in general, cannot give accurate results unless fine meshes are employed. In the example of

Fig 7, for instance, more than 240 beam elements were necessary in order to achieve a good

accuracy. Having this in mind, Table 10 shows that the power secant method can be faster

than the subspace iteration method [1] employed by the ANSYS program. When compared

with FEM, however, the main advantage of the power secant method based on the improved

DSM is the capability to find exact solutions that do not depend on the mesh refinement.

Finally, it must be emphasized that the Wittrick-Williams algorithm must use the classical

formulation for the DSM while the power secant method must use the improved formulation

as defined in section 4.2. As an additional advantage, the improved DSM preserves any local

mode shape for which the nodal displacement vector Qo is null. Any other method based on

the classical DSM cannot appropriately detect local modes since the classical DSM becomes ill-
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conditioned. Moreover, using an inverse vector iteration method based on the improved DSM,

it is possible to detect all the distinct mode shapes even when repeated natural frequencies

exist.
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APPENDIX A. SIMPLY SUPPORTED RAYLEIGH BEAM UNDER AXIAL LOAD

In the case of disregarding shear deflection (s = 0 ⇒ ξ = 1 ; η = r and fT = ∞), the problem

possesses an analytical solution that does not require the application of iterative numerical

processes. By applying the boundary conditions in the functions that regulate the transverse

displacements (7) and bending moments (10), respectively given by:

φv(x) = C̄ST (x) + D̄CT (x) + ĒSH(x) + F̄CH(x) (A.1)

φF (x) = −MT [C̄ST (x) + D̄CT (x)] +MH[ĒSH(x) + F̄CH(x)] (A.2)

we have :

a) Null transverse displacement at x = 0

φv(0) = C̄ST (0) + D̄CT (0) + ĒSH(0) + F̄CH(0) = D̄ + F̄ = 0 (A.3)

b) Null bending moment at x = 0

φF (0) = −MT [C̄ST (0) + D̄CT (0)] +MH[ĒSH(0) + F̄CH(0)] =
= −MT D̄ +MH F̄ = 0

(A.4)

such that from Eq.s (A.3) and (A.4) it results that: D̄ = F̄ = 0.
c) Null transverse displacement at x = L

φv(L) = C̄ST (L) + D̄CT (L) + ĒSH(L) + F̄CH(L) =
= C̄ST (L) + ĒSH(L) = 0

(A.5)

d) Null bending moment at x = L

φF (L) = −MT [C̄ST (L) + D̄CT (L)] +MH[ĒSH(L) + F̄CH(L)] =
= −MT C̄ST (L) +MHĒSH(L) = 0

(A.6)

As the transition frequency is infinity, we have SH(L) ≠ 0. Hence, Eq.s (A.5) and (A.6)

are simultaneously satisfied if Ē = 0 and ST (L) = 0, being C̄ ≠ 0 and arbitrary. Thus, the

non-trivial solutions are obtained from:

ST (L) = sin(βTL) = sin(αT ) = 0⇒ αT = iπ for i = 1,2,3, ...,∞ (A.7)

It can be observed that the result of Eq. (A.7) is independent of the parameters r, s and p,

respectively defined by Eqs. (12), (13) and (14), in a manner that it is also valid for any case of

simply supported Timoshenko beam. The difference for the simply supported Euler-Bernoulli

beam, with no axial loading, resides in the way by which the eigenvalues αT = iπ lead to the

natural frequencies. For an unloaded Euler-Bernoulli beam, with r = s = p = 0, the solution

simplifies to Ω = (iπ)2.
In order to use the known αT , however, the Rayleigh beam (p ≠ 0 and r ≠ 0) requires some

elaboration of the solution for the natural frequency. Then, from Eqs. (24) and (25), with
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ξ = 1 and η = r, it follows that δ2 = 4Ω2 and ∆̄ = p2 + r2Ω2. So that, using (21) and (23), after

the following deduction:

2α2
T = (∆̄2 + δ2)1/2 + ∆̄⇒ (2α2

T − ∆̄)2 = ∆̄2 + δ2 ⇒ 4α2
T (α2

T − ∆̄) = δ2 ⇒
4α2

T (α2
T − p2 − r2Ω2) = 4Ω2 ⇒ 4α2

T (α2
T − p2) = 4(1 + r2α2

T )Ω2

for the non-dimensional frequency we may write :

Ω = αT

√
α2
T − p2/

√
1 + r2α2

T
(A.8)

Thus, using αT = iπ in Eq. (A.8), as well as the expressions (11), (14) and (17), the natural

frequencies are given by:

ωi[rad/s] = (iπ)
√
(iπ)2 + PL2/EI

√
EI/mL4/

√
1 + r2(iπ)2 (A.9)

By converting Eq. (A.9) for frequencies in Hz and by using the Euler buckling load (PCR =
π2EI/L2 ), we can finally write:

fi[Hz] = iπ
√
i2 + P /PCR

√
EI/mL4/

√
1 + r2(iπ)2/2 (A.10)
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APPENDIX B. OVERFLOW LIMITING FREQUENCIES

B.1 Limiting frequency (Ωlim1) due to ∆̄

Observing Eq. (24), the condition:

∆̄(ω) = p2 + η2Ω2(ω) ≤ Rmax (B.1)

results in the following limit for the non-dimensional frequency:

Ω(ω) ≤ Ωlim1 =
√
Rmax − p2/η (B.2)

B.2 Limiting frequencies (Ωlim2 , Ωlim3 and Ωlim4) due to ∆̃

The expression (23) for ∆̃ can be viewed in the following form:

∆̃2 = ÃΩ4 + B̃Ω2 + p4 (B.3)

where

Ã = (r2ξ2 − s2)2 ≥ 0 (B.4)

B̃ = 4 + 2p2(r2ξ2 − s2) (B.5)

From this, three possible limits for the non-dimensional frequency can occur:

1. Ã.Ω4 ≤ Rmax ⇒ Ω(ω) ≤ Ωlim2 = (Rmax/Ã)1/4 (B.6)

2. ∣B̃∣Ω2 ≤ Rmax ⇒ Ω(ω) ≤ Ωlim3 = R1/2
max/
√
∣B̃∣ (B.7)

3.
ÃΩ4 + B̃Ω2 + p4 ≤ Rmax ⇒
⇒ Ω(ω) ≤ Ωlim4 = {(−B̃/2Ã) +

√
Rmax − p4/

√
Ã}1/2

(B.8)

B.3 Limiting frequency (Ωlim5) due to hyperbolic functions

If the current frequency is greater or equal to transition one (f ≥ fT ), overflow in the hyperbolic

functions will not occur because αH , according to Eq. (22), is purely imaginary number. In

contrast, (f < fT ⇒ δ2 > 0 ⇒ ∆̃ > ∆̄) αH is real and must be lower than the following

computational limit:

αlim = acosh(Rmax) = ln(2) + ln(Rmax) ≈ ln(Rmax) (B.9)

Thus, using Eqs. (22), (24), (B.4) and (B.5), from the condition αH ≤ αLim, we arrive at:

√
ÃΩ4 + B̃Ω2 + p4 − p2 − η2Ω2 ≤ 2ξ2α2

lim (B.10)

from where the following possible cases give a new limiting value for the non-dimensional

frequency (Ω(ω) ≤ Ωlim5):
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Case 1 If r2 > 0 and s2 = 0

1.1) If r2 ≥ 1/α2
lim so

Ωlim5 = Rmax (B.11)

1.2) If r2 < 1/α2
lim so

Ωlim5 = αlim

√
(α2

lim + p2)/(1 − r2α2
lim) (B.12)

Case 2 If r2 = 0 and s2 > 0

2.1) If s2 ≥ 1/α2
lim and p2 ≤ 1/4s2 or s2 ≤ 1/α2

lim and p2 ≥ 1/4s2 so

Ωlim5 = Rmax (B.13)

2.2) If s2 > 1/α2
lim and p2 > 1/4s2 or s2 < 1/α2

lim and p2 < 1/4s2 so

Ωlim5 = 2αlim

√
(ξ2α2

lim + p2)/(s2α2
lim − 1)/(4s2p2 − 1) (B.14)

Case 3 If r2 > 0 and s2 > 0 so

Ωlim5 = Rmax (B.15)

Case 4 If r2 = 0 and s2 = 0 so

Ωlim5 = αlim

√
α2
lim + p2 (B.16)

For expressions (B.11), (B.13) and (B.15), overflow does not occur because the hyperbolic

functions are such that the limiting value of the non-dimensional frequency results in a number

that is equal to the maximum number that can be stored.
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