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Abstract

This paper presents an approach for anisotropic thin-plate bending problems
using the boundary element formulation when the source points are located on the boundary
and resulting hypersingularities are analytically treated. When the integration is carried out
with the source and field points belonging to the same element the radius between them
goes to zero, leading to the singular integration. The anisotropic fundamental solution for
the plate bending has a singularity of r−2 order. Thus, under these conditions, hypersingu-
larities treatment can not be avoided. The used boundary element formulation includes two
boundary integral equations where regular, weak singular, strong singular and hypersingular
integrals are found. This work provides a procedure for the treatment of strong and hyper-
singular integrals. All terms of the analytical integrations are given for constant elements.
Numerical examples for laminate composite materials under transversely uniform distributed
load are presented. The accuracy of the proposed approach is assured by comparison with
analytical and finite element results available in the literature.
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1 Introduction

The boundary element method have been widely applied to various engineering problems, among
others to plate bending problems. The development of boundary element formulation applied
to the analysis of bending problems in anisotropic plates is motivated by the increasing use of
composite materials, due to their excellent mechanical properties. In most cases, these materi-
als present anisotropic behaviour resulting complexity in mathematical treatment of composite
structures.

The analytical solutions for problems that involves anisotropic materials are restricted to a
small number of problems of simple domains. In the case of usual structures, the domain analysis
becomes more dificult. However, its handling is possible through numerical or experimental
methods.
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Nomenclature
di, ei real and imaginary part of complex roots of characteristic equation
Dij plate flexural rigidities

E1, E2 Modulus of elasticity in tension and compression
G12 Modulus of elasticity in shear

Mn,M∗
n bending moment perpendicular no n direction and its fundamental solution

n, nx, ny outward unit normal vector on field point and its components
n0, n0x , n0y outward unit normal vector on source point and its components

P field point
q transverse load intensity
Q source point

r, θ polar coordinates
R curvature radius at a smooth point of the boundary Γ

Rci , wci reaction forces and deflections at ith plate corner
Vn, V ∗

n Kirchhoff’s equivalent shear force and its fundamental solution
w, w∗ out-of-plane deflection of a plate and its fundamental solution

x, y rectangular coordinates of field point
x0, y0 rectangular coordinates of source point

Γ boundary of solid
µ1, µ2 complex roots of characteristic equation

ν1 Poisson’s ratio
δ Dirac delta function

Due to hardware and software evolution, numerical methods have been used for solve a
wider range of problems. Among the methods that have been outstanding in the treatment of
structural problems there are the finite element and the boundary element methods.

In the last ten years, the boundary element method has been successfully applied to the
analysis of a large number of anisotropic material problems. Plane elasticity problems were
analised by Sollero and Aliabadi [24], Deb [8] and Albuquerque et al. [1, 2, 4, 5]; out-of-plane
elasticity problems were shown by Zhang [29,30] and tri-dimensional problems were analised by
Kögl and Gaul [13–15].

Studies of plate bending problems using the boundary element method have been carried
out by many researchers. Bending problems of isotropic plates, for statics as well as dynamics,
have been widely studied [6, 9, 11, 12, 19, 20, 23, 25, 27]. On the other hand, it can be noted that
the number of references in which boundary element method is applied to anisotropic structures
is significantly smaller than those treating isotropic ones. Boundary element formulation has
been applied to plate bending anisotropic problems using Kirchhoff’s theory. Shi and Bezine [22]
presented a boundary element analysis of plate bending problems, based on Kirchhoff’s plate
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bending assumptions, using fundamental solutions proposed by Wu and Altiero [28]. Similar
procedure was used by Rajamohan and Raamachandran [21] who presented a formulation for
anisotropic plate bending in which the singularities were avoided by placing source points outside
the domain. An analysis of the fundamental solution for anisotropic thin plates was presented
by Portilho de Paiva et. al. [7] who compared it with isotropic fundamental solution using quasi-
isotropic material properties. An analysis of symmetric laminate composites under bending using
the boundary element method was presented by Albuquerque et. al. [3] who carried out analysis
of symmetric cross-ply and angle-ply laminate composites under several boundary conditions.

This paper presents detailed procedures for the treatment of singularities inherent to bound-
ary element formulation for anisotropic plate bending. Similar procedure was developed by
Rashed et. al. [10] for isotropic thick plates. In order to be self-contained, all terms of the
analytical integration for constant element are presented here. Numerical examples for laminate
composite materials under transversely uniform distributed load are presented. The accuracy
of the proposed approach is assured by comparison with analytical and finite element results
available in the literature.

2 Theory of anisotropic thin plate bending

In this work, a plate is understood as a structural element defined by two parallel plane surfaces
(Figure 1). The distance between these two surfaces defines the thickness of the plate, which is
small when compared with other plate dimensions. In the theory of anisotropic plate bending,
loads are always transversely applied in the surface of the plate.

Depending on its material properties, a plate can be considered either
anisotropic, with different properties in different directions, or isotropic, with same properties
in all directions. In this work the Kirchhoff theory will be applied to anisotropic thin plates.

Figure 1: Definition of thin plate.

According to Timoshenko and Woinowsky-Krieger [26] the thin plate bending theory is based
on the following assumptions:

1. The middle plane of the plate does not undergo deformations;
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2. Straight sections, which are normal to middle surface when the plate is in the undeformed
state, remain straight and normal to the deformed middle surface, after loading;

3. The normal stress perpendicular to the middle plane can be disregarded.

Consider a plate following these assumptions. The lateral midsurface deflection w satisfies
the differential equation (Lekhnitskii [17]):

D11
∂4w

∂x4
+ 4D16

∂4w

∂x3∂y
+ 2(D12 + D66)

∂4w

∂x2∂y2
+ 4D26

∂4w

∂x∂y3
+ D22

∂4w

∂y4
= q

(1)

where Dij are the flexural rigidities of the anisotropic plate, q is the transverse load intensity.
General solution to w in Equation (1) depends on µk, the roots of characteristic equation

given by:

D22µ
4 + 4D26µ

3 + 2(D12 + 2D66)µ2 + 4D16µ + D11 = 0. (2)

Roots of this equation are always complex for homogeneous materials. The complex roots
µk = dk + eki, where k = 1, 2 and does not imply summation, are known as deflection complex
parameters. In general, these roots are different complex numbers.

3 Boundary integral equation

Using Rayleigh-Green identity, an integral equation for an anisotropic thin plate under transver-
sal load q(p) is obtained. In this equation one has the boundary integral equation given in terms
of four basic boundary values, namely, deflection w, normal slope ∂w/∂n, bending moment Mn

and Kirchhoff’s equivalent shear force Vn. Two of these four values should be the unknowns of
the problem and other two are determined by boundary conditions.

As shown by Shi and Bezine [22] the first boundary integral equation over the boundary Γ
is:

cw(Q)+
∫

Γ
V ∗

n (Q,P )w(P )dΓ(P )−
∫

Γ
M∗

n(Q,P )
∂w

∂n
(P )dΓ(P ) +

Nc∑

i=1

R∗
ci

(Q,P )wci(P ) =

∫

Γ
w∗(Q,P )Vn(P )dΓ(P )−

∫

Γ

∂w∗

∂n
(Q,P )Mn(P )dΓ(P ) +

Nc∑

i=1

w∗ci
(Q,P )Rci(P ) (3)
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where the constant c is introduced in order to consider that the Dirac delta function can be
applied in the domain, in the boundary, or outside the domain. In the particular case, when
the point is taken in a smooth part of boundary, c = 1/2. Besides, Nc is the number of corner
points on the boundary. Q is the point where the load is applied, so-called source point, and P

is the point where the deflection is observed, so-called field point. Stars indicate the known state
fundamental solution. Rci and wci are reaction forces and deflections at the ith plate corner. In
Equation (3) the body forces are neglected.

In plate bending problems there are always two unknowns to be determined at any boundary
point. Thus, the problem solution requires a second boundary integral equation in order to have
an equal number of equations and unknown variables. This second equation is obtained by
differentiating the displacement w(Q) in relation to a Cartesian coordinate system fixed in the
source point, i.e., the point where the Dirac delta of the fundamental state is applied, in the
direction of the outward unit normal vector n0 on source point. It is given by:

c
∂w

∂n0
(Q)

∫

Γ

∂V ∗
n

∂n0
(Q,P )w(P )dΓ(P )−

∫

Γ

∂M∗
n

∂n0
(Q,P )

∂w

∂n
(P )dΓ(P ) +

Nc∑

i=1

∂R∗
ci

∂n0
(Q,P )wci(P ) =

∫

Γ

∂w∗

∂n0
(Q,P )Vn(P )dΓ(P )−

∫

Γ

∂2w∗

∂n0∂n
(Q,P )Mn(P )dΓ(P ) +

Nc∑

i=1

∂w∗ci

∂n0
(Q,P )Rci(P ). (4)

The detailed development of Equations (3) and (4) can be seen in [6,12,22]. It is important
to say that it is possible to use only Equation (3) in a boundary element formulation by using
the boundary nodes as source points and an equal number of points external to the domain of
the problem.

4 Anisotropic fundamental solution

The fundamental solutions are the solutions of the differential Equation (1) with the non-
homogeneous term equal to a concentrated force given by a Dirac delta function δ(Q, P ), i.e.,

∆∆w∗(Q,P ) = δ(Q,P ) (5)

where ∆∆(.) is the differential operator given by:

∆∆(.) =
D11

D22

∂4(.)
∂x4

+ 4
D16

D22

∂4(.)
∂3∂y

+
2(D12 + 2D66)

D22

∂4(.)
∂x2∂y2

+ 4
D26

D22

∂4(.)
∂x∂y3

+
∂4(.)
∂y4

. (6)
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As presented by Shi and Bezine [22], the deflection fundamental solution for anisotropic plate
bending is:

w∗(r, θ) =
1
8π
{C1R1(r, θ) + C2R2(r, θ) + C3 [S1(r, θ)− S2(r, θ)]} (7)

where r is the distance between the source point P (x0, y0) and field point Q(x, y),

θ = arctan
y − yo

x− xo
, (8)

C1 =
(d1 − d2)2 − (e2

1 − e2
2)

GHe1
, (9)

C2 =
(d1 − d2)2 + (e2

1 − e2
2)

GHe2
, (10)

C3 =
4(d1 − d2)

GH
, (11)

G = (d1 − d2)2 + (e1 + e2)2, (12)

H = (d1 − d2)2 + (e1 − e2)2, (13)

Ri(r, θ) = r2
[
(cos θ + di sin θ)2 − e2

i sin2 θ
]
×

{
log

[
r2

a2

(
(cos θ + di sin θ)2 + e2

i sin2 θ
)]
− 3

}
−

4r2ei sin θ (cos θ + di sin θ) arctan
ei sin θ

cos θ + di sin θ
(14)

and

Si(r, θ) = r2ei sin θ (cos θ + di sin θ)×{
log

[
r2

a2

(
(cos θ + di sin θ)2 + e2

i sin2 θ
)]
− 3

}
+

r2
[
(cos θ + di sin θ)2 − e2

i sin2 θ
]
arctan

ei sin θ

cos θ + di sin θ
. (15)
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The index i of functions Ri(r, θ) and Si(r, θ) given by Equations (14) and (15) does not imply
summation and the coefficient a is an arbitrary constant. In this work it is assumed that a = 1.

Other fundamental solutions are given by:

M∗
n = −

(
f1

∂2w∗

∂x2
+ f2

∂2w∗

∂x∂y
+ f3

∂2w∗

∂y2

)
, (16)

R∗
ci

= −
(

g1
∂2w∗

∂x2
+ g2

∂2w∗

∂x∂y
+ g3

∂2w∗

∂y2

)
(17)

and

V ∗
n = −

(
h1

∂3w∗

∂x3
+ h2

∂3w∗

∂x2∂y
+ h3

∂3w∗

∂x∂y2
+ h4

∂3w∗

∂y3

)
−

1
R

(
h5

∂2w∗

∂x2
+ h6

∂2w∗

∂x∂y
+ h7

∂2w∗

∂y2

)
(18)

where R is the curvature radius at a smooth point of the boundary. Other constants of the
fundamental solutions are presented in Appendix A.

The derivatives of deflection fundamental solution can be expressed by linear combination
of derivatives of functions Ri and Si. For example:

∂2w

∂y2
=

1
8π

[
C1

∂2R1

∂y2
+ C2

∂2R2

∂y2
+ C3

(
∂2S1

∂y2
− ∂2S2

∂y2

)]
. (19)

All other derivative terms are obtained in a similar way. The derivatives of Ri and Si are
presented in Appendix B.

As it can be seen in equations presented in Appendix B, derivatives of Ri and Si present
weak (log r), strong (r−1), and hyper (r−2) singularities that will need special attention during
their integration in boundary element kernels.

5 Matrix equation

In order to compute the unknown boundary variables, the boundary Γ is discretized in n straight
elements Ni (i = 1, 2, ..., n) with a node Ki defined in the middle point of each segment. In this
work the boundary variables w, ∂w/∂n, Mn, and Vn are supposed to be constant along each
element Ni, with their values being those taken by variables at the node Ki.

Equations (3) and (4) can be written in the discretized matrix form placing the source point
in a node d as:
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1
2





w(d)

∂w(d)

∂n0





+
Ne∑

i=1

([
H

(i,d)
11 H

(i,d)
12

H
(i,d)
21 H

(i,d)
22

]{
w(i,d)

∂w(i,d)

∂n

})
+

Nc∑

i=1

({
K

(i,d)
1

K
(i,d)
2

}
w(i,d)

c

)
=

Ne∑

i=1

([
G

(i,d)
11 G

(i,d)
12

G
(i,d)
21 G

(i,d)
22

]{
V

(i,d)
n

M
(i,d)
n

})
+

Nc∑

i=1

({
F

(i,d)
1

F
(i,d)
2

}
R(i,d)

c

)
(20)

where Ne stands for the number of element, Nc stands for the number of corners. Terms of
matrices and vectors are given by:

H
(i,d)
11 =

∫

Γi

V ∗
n dΓ, H

(i,d)
12 = −

∫

Γi

M∗
ndΓ, (21)

H
(i,d)
21 =

∫

Γi

∂V ∗
n

∂n0
dΓ, H

(i,d)
22 = −

∫

Γi

∂M∗
n

∂n0
dΓ, (22)

G
(i,d)
11 =

∫

Γi

w∗dΓ, G
(i,d)
12 = −

∫

Γi

∂w∗

∂n
dΓ, (23)

G
(i,d)
21 =

∫

Γi

∂w∗

∂n0
dΓ, G

(i,d)
22 = −

∫

Γi

∂2M∗
n

∂n0∂n
dΓ, (24)

K
(i,d)
1 = R∗

ci
, K2 =

∂R∗
ci

∂n0
, (25)

F
(i,d)
1 = w∗ci

, F2 =
∂w∗ci

∂n0
. (26)

In matrix equation (20) we have two equations and 2Ne +Nc unknowns. In order to obtain a
solvable linear system, the source point is placed successively in every boundary node, resulting
2Ne equations. Other Nc equations are obtained by writing Equation (3) to every corner node.
So one obtains the matrix equation given by:

[
H K
H′ K′

]{
w
wc

}
=

[
G F
G′ F′

]{
V
Vc

}
(27)

where w contains the deflection and rotation to every boundary node, V contains shear
forces and twisting moments to every boundary node, wc contains deflection to every corner
and Vc contains the corner reactions to every corner. Terms H, K, G, and F, are matrices
which contain the respective terms of Equation (20) written to every boundary node. Terms
H′, K′, G′, and F′ are matrices which contain the respective first line terms of Equation (20)
written to each corner.

Applying boundary conditions, equation (27) can be rearranged as
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Ax = b (28)

which can be solved by standard procedure for linear systems.

6 Treatment of hypersingularities

Equations (3) and (4) present integrals of fundamental solutions where,
according to Equation (7) one can see that w∗, the fundamental solution of deflection, and
its derivatives ∂w∗/∂n and ∂w∗/∂n0 are regular functions i.e., they do not show singularities.
Thus they can be carried out analytically or using Gauss quadrature. According to Equations
(7) and (16) one can see that integrals that comprise ∂2w∗/∂n∂n0 and M∗

n are improper inte-
grals, i.e., these functions are weak singular. Their integrals can be carried out analytically or
using Gauss logarithmic.

On the other hand, integrals of V ∗
n , given in Equation (18), and ∂M∗

n/∂n0, that is the
derivative of M∗

n, given in Equation (16), include a jump term and these functions present
strong singularities, so their integrals must be computed in the Cauchy principal-value sense.
Let one analyses the V ∗

n fundamental solution given by Equation (18). Since constant elements
have straight geometry, the second part of Equation (18) vanishes because R tends to infinite.
Thus V ∗

n is comprised only of third derivatives of w∗. So,

V ∗
n = −

(
h1

∂3w∗

∂x3
+ h2

∂3w∗

∂x2∂y
+ h3

∂3w∗

∂x∂y2
+ h4

∂3w∗

∂y3

)
, (29)

and according to Equation (19) one has:

∂3w∗

∂x3
=

1
8π

[
C1

∂3R1

∂x3
+ C2

∂3R2

∂x3
+ C3

(
∂3S1

∂x3
− ∂3S2

∂x3

)]
, (30)

∂3w∗

∂x2∂y
=

1
8π

[
C1

∂3R1

∂x2∂y
+ C2

∂3R2

∂x2∂y
+ C3

(
∂3S1

∂x2∂y
− ∂3S2

∂x2∂y

)]
, (31)

∂3w∗

∂x∂y2
=

1
8π

[
C1

∂3R1

∂x∂y2
+ C2

∂3R2

∂x∂y2
+ C3

(
∂3S1

∂x∂y2
− ∂3S2

∂x∂y2

)]
, (32)

∂3w∗

∂y3
=

1
8π

[
C1

∂3R1

∂y3
+ C2

∂3R2

∂y3
+ C3

(
∂3S1

∂y3
− ∂3S2

∂y3

)]
. (33)
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It can be see in Equations (B.6) to (B.9) and from Equations (B.20) to (B.23) that third
derivatives of Ri and Si reduce to

∂3Ri

∂x3
=

1
r

a1i, (34)

∂3Ri

∂x2∂y
=

1
r

a2i, (35)

∂3Ri

∂x∂y2
=

1
r

a3i, (36)

∂3Ri

∂y3
=

1
r

a4i, (37)

∂3Si

∂x3
=

1
r

b1i, (38)

∂3Si

∂x2∂y
=

1
r

b2i, (39)

∂3Si

∂x∂y2
=

1
r

b3i, (40)

∂3Si

∂y3
=

1
r

b4i. (41)

where aji and bji are given functions of θ. As θ is constant when straight elements are used,
aji and bji are constants. The aji constants are given by:

a1i =
4 (cos θ + di sin θ)

(cos θ + di sin θ)2 + e2
i sin2 θ

, (42)

a2i =
4

[
di (cos θ + di sin θ) + e2

i sin θ
]

(cos θ + di sin θ)2 + e2
i sin2 θ

, (43)
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Hypersingularities in boundary element anisotropic plate problems 59

a3i =
4

[(
d2

i − e2
i

)
cos θ +

(
d2

i + e2
i

)
di sin θ

]

(cos θ + di sin θ)2 + e2
i sin2 θ

, (44)

a4i =
4

[
di

(
d2

i − 3e2
i

)
cos θ +

(
d4

i − e4
i

)
sin θ

]

(cos θ + di sin θ)2 + e2
i sin2 θ

, (45)

and bji constants are given by:

b1i = − 2ei sin θ

(cos θ + di sin θ)2 + e2
i sin2 θ

, (46)

b2i =
2ei cos θ

(cos θ + di sin θ)2 + e2
i sin2 θ

, (47)

b3i =
2ei

[
2di (cos θ + di sin θ)− (

d2
i − e2

i

)
sin θ

)

(cos θ + di sin θ)2 + e2
i sin2 θ

, (48)

b4i =
2ei

[(
3d2

i − e2
i

)
cos θ + 2di

(
d2

i + e2
i

)
sin θ

]

(cos θ + di sin θ)2 + e2
i sin2 θ

. (49)

Substituting Equations (34) and (38) into Equation (30) results:

∂3w∗

∂x3
=

1
8π

[
C1

1
r
a11 + C2

1
r
a12 + C3

(
1
r
b11 − 1

r
b12

)]
(50)

or

∂3w∗

∂x3
=

1
r
m1. (51)

Similarly, it can be seen that:

∂3w∗

∂x2∂y
=

1
r
m2, (52)

∂3w∗

∂x∂y2
=

1
r
m3, (53)
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∂3w∗

∂y3
=

1
r
m4. (54)

where mn are constants given by

mn =
1
8π

[C1an1 + C2an2 + C3 (bn1 − bn2)] . (55)

The substitution of Equations (51) to (54) into Equation (29) results

V ∗
n = −

(
h1

1
r
m1 + h2

1
r
m2 + h3

1
r
m3 + h4

1
r
m4

)
(56)

or

V ∗
n =

1
r

M (57)

where M is a constant given by

M = − (h1m1 + h2m2 + h3m3 + h4m4) . (58)

From this it can be seen that H
(i,d)
11 of Equation (21) can be interpreted in the Cauchy

principal-value sense. It is given by:

∫

Γi

V ∗
n dΓ = M −

∫ L

−L

1
r

dr = 0 (59)

where L is the half of the element length.
Following the same procedure, ∂M∗

n/∂n0 can be obtained. From

∂M∗
n

∂n0
=

∂M∗
n

∂x
n0x +

∂M∗
n

∂y
n0y (60)

and from Equation (16), ∂M∗
n/∂x and ∂M∗

n/∂y are obtained:

∂M∗
n

∂x
= −

(
f1

∂3w∗

∂x3
+ f2

∂3w∗

∂x2∂y
+ f3

∂3w∗

∂x∂y2

)
, (61)
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∂M∗
n

∂y
= −

(
f1

∂3w∗

∂x2∂y
+ f2

∂3w∗

∂x∂y2
+ f3

∂3w∗

∂y3

)
. (62)

Then, substituting Equations (51) to (54) into (61) and (62) and after into (60), it can be
rewritten as:

∂M∗
n

∂n0
= −

(
f1

1
r
b1 + f2

1
r
b2 + f3

1
r
b3

)
n0x −

(
f1

1
r
b2 + f2

1
r
b3 + f3

1
r
b4

)
n0y (63)

or

∂M∗
n

∂n0
=

1
r

N, (64)

where

N = − (f1b1 + f2b2 + f3b3) n0x − (f1b2 + f2b3 + f3b4)n0y . (65)

Thus, H
(i,d)
22 of Equation (22) can be interpreted in the Cauchy principal-value sense. It

results:

∫

Γi

∂M∗
n

∂n0
dΓ = N −

∫ L

−L

1
r

dr = 0. (66)

Finally, from the fourth derivatives of Ri and Si shown in the Appendix B it can be seen
that the integral of ∂V ∗

n /∂n0 of H
(i,d)
21 of Equation (22) shows an hypersingularity that must be

interpreted in the Hadamard principal-value sense. From

∂V ∗
n

∂n0
= −

(
∂V ∗

n

∂x
n0x +

∂V ∗
n

∂y
n0y

)
(67)

and from Equation (29) one has

∂V ∗
n

∂x
= −

(
h1

∂4w∗

∂x4
+ h2

∂4w∗

∂x3∂y
+ h3

∂4w∗

∂x2∂y2
+ h4

∂4w∗

∂x∂y3

)
, (68)

∂V ∗
n

∂y
= −

(
h1

∂4w∗

∂x3∂y
+ h2

∂4w∗

∂x2∂y2
+ h3

∂4w∗

∂x∂y3
+ h4

∂4w∗

∂y4

)
. (69)
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Integrating H
(i,d)
21 of Equation (22) in the Hadamard principal-value sense results:

∫

Γi

∂V ∗
n

∂n0
dΓ = T =

∫ L

−L

1
r2

dr = −T
2
L

. (70)

Where T is a function of θ.
Since all singularities are properly treated, integrals (59), (66) and (70) can be substituted

into matrix equation (27) and the problem can be solved following the traditional BEM proce-
dure.

7 Numerical results

In this section, the formulation developed in this work will be applied to the analysis of bending
problem in anisotropic plates.

7.1 Orthotropic simply-supported square plate

Consider a square plate of side length a = 1 and thickness h = 0.01. The material is orthotropic
and its material properties are: E1 = 206.8 · 109, E2 = 13.8 · 109, G12 = 0.6055 · 109 and
ν1 = 0.3. All values are given in SI units. This problem was analyzed by Wu and Altiero
[28] under uniformly distributed load using influence load function and by Shi and Bezine [22]
under concentrated and uniformly distributed load using boundary element method and domain
integration to treat the distributed load. Rajamohan and Raamachandran [21] analyzed the same
problem under concentrated and uniformly distributed load using charge simulation method,
which is a boundary element method without singular integrals and the domain integrals were
treated by particular integrals. In this work, the square plate is considered simply supported
on its four edges under uniformly distributed load q = 1 Pa applied along its domain (Figure
2). For this case the results obtained by BEM will be compared with the solution obtained by
Timoshenko and Woinowski-Krieger [26] which solve this problem using a series solution given
by:

w =
16qo

π6

M∑

m=1,3,...

N∑

n=1,3,...

sin mπx
a sin nπy

b

mn
(

m4

a4 D11 + 2m2n2

a2b2
H + n4

b4
D22

) , (71)

where

H = D12 + 2D66. (72)

In order to assess convergence, the problem is solved using different meshes and the results
for deflections at point A and at point B are compared with series solutions using N = 19
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Figure 2: Square plate with simply-supported edges under uniformly distributed load.

and M = 19. This series solution for point A is wse. = 8.1258 · 10−7 and for point B is
wse. = 4.5211 · 10−7. Table 1 shows deflections computed by the present BEM technique using
different meshes and their respective errors compared to Timoshenko and Woinowski-Krieger [26]
series solutions.

Deflections and errors
Number of w [m] Error [%] w [m] Error [%]
Elements at point A at point A at point B at point B

8 9.2185 10−7 13.45 5.3973 10−7 19.38
16 8.0420 10−7 1.03 4.5821 10−7 1.35
24 8.0441 10−7 1.01 4.4647 10−7 1.25
32 8.0630 10−7 0.77 4.4716 10−7 1.09
40 8.0778 10−7 0.59 4.5211 10−7 0.88

Table 1: Accuracy of deflection obtained by BEM for the orthotropic square plate with simply
supported edges under uniformly distributed loads.

As it can be seen in Table 1, results are very poor when 8 elements (2 elements per side)
are used. However, they converge quickly to the series solutions if the number of the element is
increased. When 40 boundary elements are used (Figure 3), deflections in both points present
errors below 1 % if compared with series solutions. The deformed plate is shown in Figure 4.

In order to assess the accuracy of the method with the principal axes of orthotropy not
coinciding with coordinate axes, the plate was rotated 30o around its center as shown in Figure
5. The deflection computed to a point in the center of the plate is equal to w = 8.0645 · 10−7.
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Figure 3: Boundary element mesh (40 constant boundary elements).

The error in this case is 0.75% if compared with the series solution. This shows how accurate the
formulation is even for orthotropic materials with principal axes not coinciding with coordinate
axes.

7.2 Cross-ply laminate graphite/epoxy composite square plate with simply supported edges

The second problem that has been analyzed is a nine-layer ply simply supported laminate
[0◦/90◦/0◦/90◦/0◦/90◦/0◦/90◦/0◦] of side length a = 1 under a uniformly distributed load q =
6.9 ·103. The properties of each layer of a high modulus graphite-epoxy composite material used
in this analysis are: E11 = 2.07 · 109, E22 = 5.17 · 109, G12 = 3.10 · 109, and ν12 = 0.25. All
values are given in SI units. The total thickness of the laminate h is taken as 0.0254mm. And
the total thickness of the 0◦ and 90◦ laminate are the same.

This problem was analysed by Rajamohan and Raamachandran [21] using charge simulation
method and by Lakshminarayana and Murthy [16] using finite element method. The center
point deflection for such plate are compared in Table 2 with the finite element solution and
with an analytical solution, which is derived by treating the plate as an equivalent single layer
orthotropic plate. A mesh of 22 boundary elements per side (Figure 6) was used in order to obtain
the same accuracy of the finite element results published in the literature (Lakshminarayana and
Murthy [16]). The analytical solution for deflection in the center of the plate, presented by Noor
and Mathers [18], is given by:

wan.E22h
3

qa4
× 103 = 4.4718 (73)

As shown in Table 2, the same accuracy obtained by FEM was obtained by BEM. While
in this work it was used 88 constant boundary elements to discretize the entire plate, Laksh-
minarayana and Murthy [16] used symmetry considerations and 72 cubic triangular elements
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Figure 4: Deflections in a simply supported orthotropic plate (in meters).

Numerical Deflections and errors
Methods wE22h

3/(qa4)× 103 Errors [%]
BEM 4.4507 0.47
FEM 4.4508 0.47

Table 2: Accuracy of deflection obtained by BEM (88 constant boundary elements) and FEM
(72 third order triangular element - discretization of one quarter of the plate) for the cross-ply
laminate graphite/epoxy composite square plate with simply supported edges under uniformly
distributed loads

to discretize one quarter of the plate. Of course, if the entire plate was discretized by FEM,
it would be necessary larger number of elements to obtain the same accuracy. Furthermore, if
we consider the number of nodes or degrees of freedom, the boundary element method has less
nodes per element. On the other hand, the matrices in FEM are sparse and symmetric while in
BEM are fully populated and non-symmetric.

From all above, comparison between BEM and FEM is not an easy task. Both of them are
well-established numerical methods and both of them have advantages and disadvantages. In
occasions, the decision to use one or other is due to the experience of the researcher in working
with one of the formulations.

8 Conclusions

This paper presented an approach for anisotropic thin-plate bending problems using the bound-
ary element formulation when the source points are located on the boundary. The treatment of
singularities inherent of formulation was introduced and all terms of the analytical integration
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Figure 5: Rotated boundary element mesh.

for constant elements were presented. Numerical examples for laminate composite materials un-
der transversely uniform distributed load was presented. The accuracy of the proposed approach
was assured by comparison with analytical and finite element results available in the literature.
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Appendix

A Constants of fundamental solutions

The constants of fundamental solutions are defined as:

f1 = D11n
2
x + 2D16nxny + D12n

2
y, (A.1)

f2 = 2(D16n
2
x + 2D66nxny + D26n

2
y), (A.2)

f3 = D12n
2
x + 2D26nxny + D22n

2
y, (A.3)
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g1 = (D12 −D11) cos α sin α + D16(cos2 α− sin2 α), (A.4)

g2 = 2(D26 −D16) cos α sin α + 2D66(cos2 α− sin2 α), (A.5)

g3 = (D22 −D12) cos α sin α + D26(cos2 α− sin2 α), (A.6)

h1 = D11nx(1 + n2
y) + 2D16n

3
y −D12nxn2

y, (A.7)

h2 = 4D16nx + D12ny(1 + n2
x) + 4D66n

3
y −D11n

2
xny − 2D26nxn2

y, (A.8)

h3 = 4D26ny + D12nx(1 + n2
y) + 4D66n

3
x −D22nxn2

y − 2D16n
2
xny, (A.9)

h4 = D22ny(1 + n2
x) + 2D26n

3
x −D12n

2
xny, (A.10)

h5 = (D12 −D11) cos 2α− 4D16 sin 2α, (A.11)

h6 = 2(D26 −D16) cos 2α− 4D66 sin 2α, (A.12)

h7 = (D22 −D12) cos 2α− 4D26 sin 2α. (A.13)

B Derivatives of Ri and Si

B.1 First derivatives of Ri

∂Ri

∂x
= 2r (cos θ + di sin θ)

{
log

[
r2

a2

(
(cos θ + di sin θ)2 + e2

i sin2 θ
)]
− 2

}
−

4rei sin θ arctan
ei sin θ

cos θ + di sin θ
, (B.1)

∂Ri

∂y
= 2r

[
di (cos θ + di sin θ)− e2

i sin θ
]×

{
log

[
r2

a2

(
(cos θ + di sin θ)2 + e2

i sin2 θ
)]
− 2

}
−

4rei (cos θ + 2di sin θ) arctan
ei sin θ

cos θ + di sin θ
. (B.2)

B.2 Second derivatives of Ri

∂2Ri

∂x2
= 2 log

{
r2

a2

[
(cos θ + di sin θ)2 + e2

i sin2 θ
]}

, (B.3)

∂2Ri

∂x∂y
= 2di log

{
r2

a2

[
(cos θ + di sin θ)2 + e2

i sin2 θ
]}

−

4ei arctan
ei sin θ

cos θ + di sin θ
, (B.4)
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∂2Ri

∂y2
= 2

(
d2

i − e2
i

)
log

{
r2

a2

[
(cos θ + di sin θ)2 + e2

i sin2 θ
]}

−

8diei arctan
ei sin θ

cos θ + di sin θ
. (B.5)

B.3 Third derivatives of Ri

∂3Ri

∂x3
=

4 (cos θ + di sin θ)

r
[
(cos θ + di sin θ)2 + e2

i sin2 θ
] , (B.6)

∂3Ri

∂x2∂y
=

4
[
di (cos θ + di sin θ) + e2

i sin θ
]

r
[
(cos θ + di sin θ)2 + e2

i sin2 θ
] , (B.7)

∂3Ri

∂x∂y2
=

4
[(

d2
i − e2

i

)
cos θ +

(
d2

i + e2
i

)
di sin θ

]

r
[
(cos θ + di sin θ)2 + e2

i sin2 θ
] , (B.8)

∂3Ri

∂y3
=

4
[
di

(
d2

i − 3e2
i

)
cos θ +

(
d4

i − e4
i

)
sin θ

]

r
[
(cos θ + di sin θ)2 + e2

i sin2 θ
] . (B.9)

B.4 Fourth derivatives of Ri

∂4Ri

∂x4
= −

4
[
(cos θ + di sin θ)2 − e2

i sin2 θ
]

r2
[
(cos θ + di sin θ)2 + e2

i sin2 θ
]2 , (B.10)

∂4Ri

∂x3∂y
= − 4

r2

{
di

(cos θ + di sin θ)2 + e2
i sin2 θ

+

2e2
i sin θ cos θ[

(cos θ + di sin θ)2 + e2
i sin2 θ

]2





, (B.11)

∂4Ri

∂x2∂y2
= − 4

r2





(
d2

i + e2
i

)
[
(cos θ + di sin θ)2 + e2

i sin2 θ
]−

2e2
i cos2 θ[

(cos θ + di sin θ)2 + e2
i sin2 θ

]2





, (B.12)
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∂4Ri

∂x∂y3
= − 4

r2





di

(
d2

i + e2
i

)
[
(cos θ + di sin θ)2 + e2

i sin2 θ
]−

2e2
i cos θ

(
2di cos θ +

(
d2

i + e2
i

)
sin θ

)
[
(cos θ + di sin θ)2 + e2

i sin2 θ
]2





, (B.13)

∂4Ri

∂y4
= − 4

r2

{ (
d4

i − e4
i

)

(cos θ + di sin θ)2 + e2
i sin2 θ

−

2e2
i cos θ

[(
3d2

i − e2
i

)
cos θ + 2di

(
d2

i + e2
i

)
sin θ

]
[
(cos θ + di sin θ)2 + e2

i sin2 θ
]2





. (B.14)

B.5 First derivatives of Si

∂Si

∂x
= rei sin θ

{
log

[
r2

a2

(
(cos θ + di sin θ)2 + e2

i sin2 θ
)]
− 2

}
+

2r (cos θ + di sin θ) arctan
ei sin θ

cos θ + di sin θ
, (B.15)

∂Si

∂y
= rei (cos θ + 2di sin θ)

{
log

[
r2

a2

(
(cos θ + di sin θ)2 + e2

i sin2 θ
)]
− 2

}
+

2r
[
di (cos θ + di sin θ)− e2

i sin θ
]
arctan

ei sin θ

cos θ + di sin θ
. (B.16)

B.6 Second derivatives of Si

∂2Si

∂x2
= 2arctan

ei sin θ

cos θ + di sin θ
, (B.17)

∂2Si

∂x∂y
= ei log

{
r2

a2

[
(cos θ + di sin θ)2 + e2

i sin2 θ
]}

+

2di arctan
ei sin θ

cos θ + di sin θ
, (B.18)

∂2Si

∂y2
= 2diei log

{
r2

a2

[
(cos θ + di sin θ)2 + e2

i sin2 θ
]}

+

2
(
d2

i − e2
i

)
arctan

ei sin θ

cos θ + di sin θ
. (B.19)
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B.7 Third derivatives of Si

∂3Si

∂x3
= − 2ei sin θ

r
[
(cos θ + di sin θ)2 + e2

i sin2 θ
] , (B.20)

∂3Si

∂x2∂y
=

2ei cos θ

r
[
(cos θ + di sin θ)2 + e2

i sin2 θ
] , (B.21)

∂3Si

∂x∂y2
=

2ei

[
2di (cos θ + di sin θ)− (

d2
i − e2

i

)
sin θ

)

r
[
(cos θ + di sin θ)2 + e2

i sin2 θ
] , (B.22)

∂3Si

∂y3
=

2ei

[(
3d2

i − e2
i

)
cos θ + 2di

(
d2

i + e2
i

)
sin θ

]

r
(
(cos θ + di sin θ)2 + e2

i sin2 θ
] . (B.23)

B.8 Fourth derivatives of Si

∂4Si

∂x4
=

4ei sin θ (cos θ + di sin θ)

r2
[
(cos θ + di sin θ)2 + e2

i sin2 θ
]2 , (B.24)

∂4Si

∂x3∂y
=

2ei

r2

{
1

(cos θ + di sin θ)2 + e2
i sin2 θ

−

2 cos θ (cos θ + di sin θ)[
(cos θ + di sin θ)2 + e2

i sin2 θ
]2





, (B.25)

∂4Si

∂x2∂y2
= −4ei cos θ

[
di (cos θ + di sin θ) + e2

i sin theta
]

r2
[
(cos θ + di sin θ)2 + e2

i sin2 θ
]2 , (B.26)

∂4Si

∂x∂y3
= −2ei

r2
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d2

i + e2
i

)

(cos θ + di sin θ)2 + e2
i sin2 θ

+

2
(
d2

i + e2
i

)
cos θ (cos θ + di sin θ)− 4e2

i cos2 θ
[
(cos θ + di sin θ)2 + e2

i sin2 θ
]2





, (B.27)
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∂4Si

∂y4
= −4ei

r2

{
di

(
d2

i + e2
i

)

(cos θ + di sin θ)2 + e2
i sin2 θ

+

cos θ
[
di

(
d2

i − 3e2
i

)
cos θ +

(
d4

i − e4
i

)
sin θ

]
[
(cos θ + di sin θ)2 + e2

i sin2 θ
]2





. (B.28)
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