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Abstract 
Experiments and modeling aimed at assessing the mechanical 
response of latex balloons in the inflation test are presented. To 
this end, the hyperelastic Yeoh material model is firstly character-
ized via tensile test and, then, used to numerically simulate via 
finite elements the stress-strain evolution during the inflation test. 
The numerical pressure-displacement curves are validated with 
those obtained experimentally. Moreover, this analysis is extended 
to a biomedical problem of an eyeball under glaucoma conditions. 
 
Keywords 
Inflation test of latex balloons, numerical simulation, experimental 
verification/validation. 
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1 INTRODUCTION 

Hyperelastic materials are widely used in engineering applications from seismic absorber devices 
(Chiba and Furukawa, 2010) to aortic valve prosthesis or stents (Saab, 1999). Therefore, much ef-
fort has gone into describing the behavior of materials like silicone, latex, rubber (Treloar, 1974; 
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Arruda and Boyce, 1993; Meunier et al., 2008), or biological tissues (García–Herrera et al., 2011 and 
2012); Eilaghi et al., 1984) with the aim of quantifying their ability to undergo very large defor-
mations that can be recovered when the specimen is downloaded without loss of its original abilities 
(Ogden, 1984). 

Several analytical models have been proposed in the literature to describe the deformation ener-
gy function ܹ (e.g., see Ogden, 1984). Ogden, Mooney-Rivlin, Yeoh, Neo-Hookean, or Demiray are 
the most extensively used models to describe hyperelastic materials. A relevant aspect for dealing 
with practical applications is to determine the related material constants that realistically describe a 
specific material's behavior (Ogden et al., 2004). Moreover, to be able to evaluate real situations, 
numerical modeling is a standard analytical tool. Nowadays, numerical developments to properly 
deal with very large deformation and the appropriate mechanical characterization of the materials 
are crucial to get trustworthy predictions. To this end, the simulations also need to be contrasted 
with experiments. In addition, to analyze the pressurization of hyperelastic membranes, dynamic 
models have emerged especiallyin applications with rapid loading in thermoforming processes (Ver-
ron et al., 2001). 

Tensile, compression, shear or inflation tests (Treloar, 1974) are reported in the literature to 
characterize mechanically the material's behavior, trying to have the best description with a limited 
number of constants taken from a unique experimental test (Arruda and Boyce, 1993). As an ex-
ample, silicone behavior is obtained from tensile, compression, shear and inflation test in Meunier et 
al. (2008) using image correlation techniques while Skouras et al (2012) reports on a characteriza-
tion using the Hart–Smith model via the inflation test. Rubber-like materials are analyzed by Gon-
záles et al. (2009) by fitting the Mooney–Rivlin model with experimental biaxial tests. Uniaxial and 
biaxial traction tests are presented by Sasso et al. (2008) to characterize polymers including a finite 
element (FEM) analysis. The Ogden model is applied in Canseco et al. (2011) to describe the be-
havior during compression under the ASTM D 3574 standard of a commercial material named 
Poron. Mechanical characterization of arteries has been reported by García–Herrera et al. (2011 and 
2012), where tensile tests and inflation tests are described. The descending human aorta is studied 
by García–Herrera et al. (2011) using the Holzapfel model, while the Demiray model is used to 
characterize the behavior of a patient-specific human aortic arch in García et al. (2012). 

The present work reports the experimental data obtained from tensile and inflation tests of la-
tex balloons. The mechanical characterization of latex is performed using the tensile test by adjust-
ing the experimental curves with the Yeoh model. Although other models have been used, the best 
fit was obtained using that model. The inflation test is afterwards taken as a benchmark to assess 
the performance of the modeling via two different approaches: analytical and numerical. The nu-
merical simulation is performed using a finite element technique able to deal with large defor-
mations that was previously reported and extensively used to analyze other engineering applications 
(see Celentano et al., 2001, 2009 and 2012). The main objective of this work is threefold: to experi-
mentally characterize the material, to validate the proposed modeling strategy by comparing the 
results with the experiments and, finally, to extend this analysis to a biomedical problem. The for-
mer objective is based on the assumption that the inflation test mimics the pressurization of human 
eyes. To this end, the study of an eyeball subjected to internal pressure like that reached under 
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glaucoma conditions is presented. The obtained results are compared with those reported in the 
literature. 

The rest of the work is organized as follows: the governing equations are presented in Section 2; 
the mechanical characterization is described in Section 3; Section 4 reports the inflation of a balloon 
test including the experimental procedure, measurements and modeling results; Section 5 presents 
the analysis of an eyeball under glaucoma conditions. Finally, the concluding remarks are summa-
rized. 
 
2 FUNDAMENTAL EQUATIONS 

2.1 Governing Equations 

In a general context of the mechanics of a continuous medium, the governing equations that model 
the situation are the continuity and equilibrium equations expressed as: 
 

ρ	ܬ ൌ ρ଴ (1)
 

׏ ∙ ો ൌ 0 (2)
 

where ρ଴ is the density of the material in the initial configuration, ρis the density in the spatial 
configuration, and ܬ ൌ det ۴ is the volume relation between the deformed and the initial configura-

tion where ۴ ൌ பܠ

ப܆
 is the deformation gradient tensor (x and X being the spatial and material coor-

dinates, respectively) and ܝ is the displacement vector. The Cauchy stress tensor ો can be ex-
pressed by means of a specific deformation energy function ܹ as (Holzapfel, 2000): 
 

ો ൌ 	2۴
∂ܹ
∂۱

۴୘ (3)
 

where ۱ ൌ ۴୘۴ is the right Cauchy–Green tensor. In this work, material incompressibility is as-
sumed (i.e., J=1). 
 
2.2 Constitutive Equations 

Hyperelastic isotropic materials are characterized by the deformation energy density function ex-
pressed as a function of C, e.g., Ogden (1984) and Gonzáles et al. (2009), or the invariants of the 
deformation tensor, e.g., Neo-Hooke in Holzapfel (2000); Mooney–Rivlin or Yeoh models in Rackl 
(2015) and Demiray in Holzapfel (2000).The Yeoh model is given by: 
 

ܹ ൌ ଵܫଵ଴ሺܥ െ 3ሻ ൅ ଵܫଶ଴ሺܥ െ 3ሻଶ ൅ ଵܫଷ଴ሺܥ െ 3ሻଷ (4)
 

where I1 is the trace of C, and C10, C20 and C30 are constants of the material to be determined by 
some fitting method. 
 
Principal Cauchy stress determination for uniaxial tensile samples 
The expression of the principal Cauchy stress σ୧ as a function of the constants of the models and 
the principal stretchings λ୧ is:  
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σ௜ ൌ ௜ߣ
߲ܹ
௜ߣ߲

		 ሺ݅ ൌ 1, 2, 3ሻ (5)
 

The incompressibility and isotropic behavior for the case of simple uniaxial traction is given by 
the following relation: 
 

ଶߣ ൌ ଷߣ ൌ
1

ඥߣଵ
 (6)

 

where sub-indexes 1, 2 and 3 respectively refers to stretchings along the axial, width and thickness 
directions of the sample. 

The principal Cauchy stress computed from Equation (5) including the incompressibility con-
straint (6) is written as: 
 

ଵߪ ൌ 2 ൬ߣଵଶ െ
1
ଵߣ
൰
߲ܹ
ଵܫ߲

 (7)
 

Substituting Equation (4) into (7), the analytical expression for the uniaxial Cauchy stress can 
be determined: 
 

σଵ ൌ 2 ൬ߣଵ
ଶ െ

1
ଵߣ
൰ ቈܥଵ଴ ൅ ଶ଴ܥ2 ൬ߣଵ

ଶ ൅
2
ଵߣ
െ 3൰ ൅ ଷ଴ܥ3 ቆߣଵ

ସ െ ଵߣ6
ଶ ൅ ଵߣ4 ൅ 9 െ

12
ଵߣ

൅
4

ଵߣ
ଶቇ቉ (8)

 
Internal pressure determination for thin-walled hollow spheres 
The stress in a thin-walled hollow sphere (i.e., ܶ ൏ ೃ

భబ
, where ܶ is the wall thickness and ܴ is the 

radius, both in the initial configuration) subjected to a constant inner pressure ݌௜ can be determined 
considering the unique relationship between circumferential ߣఏ and longitudinal ߣ௭ stretching, i.e., 
ఏߣ ൌ  :௭, and the material's incompressibility. Thusߣ
 

ఏߪ ൌ ఏߣ
߲ܹ
ఏߣ߲

 (9)
 

௜݌ ൌ
ఏߪ2ܶ
ఏߣܴ

ଷ  (10)
 

The analytical expression for the internal pressure considering the deformation energy given by 
Equation (4) is:  
 

௜݌ ൌ
4ܶ
ఏߣܴ

ଷ ቆߣఏ
ଶ െ

1
ఏߣ
ସቇ ൝ܥଵ଴ ൅ ଶ଴ܥ2 ቆ2ߣఏ

ଶ ൅
1
ఏߣ
ସ െ 3ቇ ൅ ଷ଴ܥ3 ቆ2ߣఏ

ଶ ൅
1
ఏߣ
ସ െ 3ቇ

ଶ

ൡ (11)

 
3 MECHANICAL CHARACTERIZATION 

3.1 Tensile Test 

The simple tensile test allows setting a uniform stress state in order to be able to determine the 
mechanical behavior of the material. The effectiveness of this approach has already been verified by 
other authors in the field of nonbiological, see Canseco et al. (2011), as well as for biological hypere-
lastic materials, as in García–Herrera et al. (2011).  
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The samples tested in the present work, obtained as shown in Figure 1 from two different prin-
cipal directions of the sample, have the following dimensions: length 6.3 mm and width 2.29 mm.  
The thickness in the balloon was found to be variable. In this work, a thickness profile was meas-
ured with a micrometer. The average values obtained along the balloon length around 10 mm apart 
starting from the pole were 0.184  0.005, 0.143  0.011, 0.132  0.008 and 0.115  0.009 mm. 
 

 

Figure 1: Uniaxial tensile test: circumferential and longitudinal specimens. 

 
The tensile tests were carried out on a universal testing machine Instron 3342 equipped with a 

500 N loading cell at a controlled cross-head displacement speed of 5 mm/min and a constant test-
ing temperature of 25 ºC; see Figure 2. 
 

 

Figure 2: Tensile test layout. 

 
The curves obtained for the longitudinal and circumferential samples are presented in Figures 3 

a) and b), respectively, where the horizontal axis describes the axial stretch λ and the vertical axis 
indicates the axial Cauchy stress σ (samples were tested for each direction). These plots are com-
puted from the instantaneous axial load P – displacement ݑ (measured between clamps) curves 
registered during the tensile tests. The Cauchy stress is σ=P/A, A being the instantaneous trans-
versal area of the specimen analytically obtained under the material incompressibility assumptionas 
A=Ω0⁄Lf,  where Ω0=L0A0 is the initial volume of the specimen, with L0 and A0 respectively being 
the initial length and initial transversal area, and the instantaneous specimen length is calculated as 
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Lf =L0+u. Considering that λ=Lf/L0, the stress-stretch relationship is σ=P/A0λ. The results pre-
sented in Figure 3 show that in some samples the curve has discontinuous stretching zones (approx-
imately at ߣ ൌ8.0) because during the test some samples undergo partial breakage. In spite of the 
above, it is seen that for both directions of the tested samples all the tests present the same nonlin-
ear behavioral trend which is characteristic of hyperelastic materials. 
 
3.2 Determination of Material Parameters 

The difference between the curves depicted in Figures 3 a) and 3 b) for the longitudinal and circum-
ferential samples is less than 10%, thereby the response of the tested material could be considered 
as isotropic, i.e., the mechanical behavior does not depend on the orientation of the material. The 
material constants are obtained by fitting by least squares the average value of the experimental 
curves reported in Figures 3 with the analytical stress defined by Equation (8). The expression used 
is: 
 

௘௫௣൯ߣ൫ܩ ൌ
1
2
෍ቂ൫σ௘௫௣൯௜ െ ൫σሺߣ௘௫௣ሻ൯௜ቃ

ଶ
ൌ
1
2
෍൫ ௜݃ሺߣ௘௫௣ሻ൯

ଶ
௡

௜ୀଵ

௡

௜ୀଵ

 (12)

 

where σ௘௫௣ and ߣ௘௫௣ are the experimental axial stress and elongation values, respectively, and n is 
the number of experimental measurements. From Equation (12), we get the material constants by 
minimizing ܩ. Table 1 summarizes the resulting parameters. 
 

 

a) b) 

Figure 3: Uniaxial tensile test results for a) longitudinal and b) circumferential specimens. 

 
 

Yeoh model 
  ଷ଴ (MPa)ܥ ଶ଴ (MPa)ܥ ଵ଴ (MPa)ܥ

0.185164 -0.002785 0.000038  

Table 1: Material parameters obtained by curve fitting from experimental data. 
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To verify the behavior of the model with the obtained constants, the analytical and measured 
uniaxial stresses are compared in Figure 4 where it is seen that the Yeoh model presents a satisfac-
tory fit with the experimental behavior for the studied material. 
 

 

Figure 4: Experimental data fit with the Yeoh model (R2=0.896). 

 
4 INFLATION TEST 

4.1 Experimental Design 

The pressurization test is performed by injecting air into a latex balloon. The test circuit is illus-
trated in Figure 5. The objective of this test is to determine the state of the deformations present in 
the balloon wall during its inflation. The injected mass is at a temperature of 25 ± 0.3 °C controlled 
with a Proportional Integral and Derivative (PID) device. The pressure is measured by the UNIK 
5000 commercial sensor (by Gemeasurement), whose range of operation is from 0 to 0.5 bar with an 
error of ± 0.2%. The pressure data are captured with a USB acquisition 1608FS card (by MC 
Measurement Computing). 

The procedure for running the test is: first, the tank (1) is pressurized with compressed air at 
0.3 bar (inlet pipe, IP), the mass flow of air to be injected into the balloon is adjusted by means of 
the graduated valve (2), the air is injected into the balloon located in the test chamber (3) by open-
ing a control valve (4) in the outlet pipe (OP), and the pressure inside the balloon is recorded by 
the pressure sensor (5) installed in the same outlet pipe. 

The experiments are registered using two IDS Imaging Development System digital video cam-
eras UI-1545LE-M-GL (using a 75 mm Pentax lens) at their maximum resolution of 1280x1024 
pixels and video recorder velocity of 10 fps. Two cameras perpendicular to one another were used to 
check that the 3D effects were negligible in this test. Later, the video is processed to obtain the 
balloon profile evolution in terms of the applied pressure. To this end, a code based on the library 
OpenCV (Bradski, 2000) was developed to fit an ellipse to the contour measured. 
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Figure 5: Pressurized test setup: (1) tank, (2) graduated valve, (3) test chamber,  

(4) control valve, (5) pressure sensor, inletpipe(IP) and outlet pipe (OP). 

 
4.2 Experimental Results 

Figure 6 shows a sequence of pictures as the balloon is inflated which allows us to obtain the evolu-
tion of its profile. The dot indicates the center of the ellipse fitted with which the displacement 
evolutions at the polar and equatorial zones were measured. These displacements were measured 
with respect to the reference configuration adopted here as that with an inner pressure of 8.3 mbar 
(see Figure 6) in order to prevent geometric instabilities caused by the self weight of the balloon 
(the major and minor semi axis in this configuration are a=15.66 mm and b=6.95 mm). As the 
inflation process proceeds, the balloon tends to a spherical shape. 
 

 

Figure 6: Balloon inflation sequence during the pressurization test. 
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The pressurization test gives curves of the inner pressure ݌௜ versus the displacements at the po-
lar dpole and equatorial dequa zones plotted in Figure 7, where 8 samples were tested (the bars denote 
the standard deviation). As already commented, these curves are measured with respect to the 
adopted reference configuration. The experimental curves exhibit a behavior similar to that report-
ed by Verron et al. (2001) and Verron and Marckmann (2003), where it is seen that after reaching a 
maximum pressure, it decreases as the displacements continue increasing. It should be noted that 
non-uniform strains are developed in the balloon during both the load and unload stages. For in-
stance, for the maximum pressure average value of 70 mbar, the polar and equatorial displacements 
are 4.27 and 3.66 mm, respectively. The unstable character of the problem is reflected in the very 
different time intervals associated with the load and unload stages respectively observed in the ex-
periments as 130 s and 2 s. 
 

 

Figure 7: Inflation pressure – displacement curves in the pressurization test. 

 
On the other hand, the experiments have shown that during the inflation of the balloon the ma-

terial is concentrated in its polar zone, see Figure 8. Voorhies (2003) reported that such a zone pre-
sents the lower risk to develop high stress when the internal pressure increases. 
 

 

Figure 8: Material concentration zone in the pressurization test at 50 mbar. 
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4.3 Modeling the Experiments 

As mentioned above, a reference configuration with a small pressure level was chosen to analyze the 
whole inflation process (see Figure 6). To this end, the estimations of both the initial stress and 
strain fields together with the thickness profile associated with this configuration must be per-
formed. These estimations are computed in two steps. First, the approach to obtaining a compatible 
initial stress and strain fields is iteratively tackled by solving the equilibrium equations in the refer-
ence configuration (with an internal pressure of 8.3 mbar as indicated in Figure 6) together with the 
characterized Yeoh model presented above using the finite element method until the condition of a 
nearly zero displacement field for the whole balloon is fulfilled (García-Herrera and Celentano, 
2013). Second, from this simulation, the thickness profile in the reference configuration is computed 
by completely removing the pressure to check that the thickness distribution at the end of the de-
flating process corresponds to the measured values reported in Section 3.1. The resulting thickness 
values applying this procedure obtained along the balloon length around 10 mm apart starting from 
the pole are: 0.183, 0.136, 0.125 and 0.114 mm. As expected, note that these values are slightly 
smaller than those listed in Section 3.1. 

The study of the inflation process was carried out via two different approaches, analytical and 
numerical, separately described below. 

The analytical results were obtained from the thin-walled hollow sphere case (using Equation 
(11)) considering a simplified geometry given by an average reference radius of 11.31 mm (assumed 
as R=(a+b)/2 with a and b being, as mentioned above, the major and minor axis of the reference 
configuration) and a uniform thickness of  0.140 mm (obtained as the average of the thickness pro-
files in the reference configuration). The analytical curve shown in Figure 7 qualitatively reproduces 
the material response during both the load and unload stages. The results in the load stage closely 
approach the measurements. However, from the maximum pressure onwards, the pressure values 
are clearly and progressively underestimated. 

The numerical analysis is performed in order to more properly take into account the real geom-
etry of the balloon (i.e., ellipsoidal shape with a variable thickness distribution). In the present 
study, an axisymmetric uniform mesh composed of 12048 four-node elements is considered for the 
reference configuration (with a height of 45.6 mm), where the thickness is discretized with 8 ele-
ments. The element size was determined by a standard mesh convergence analysis (not shown) per-
formed until accurate results with a reduced computation time are obtained. The displacements are 
fully constrained at the bottom of the balloon while the horizontal displacement is restricted at the 
top to reproduce symmetry conditions. Figure 9 illustrates the numerical strategy adopted in the 
present simulation to impose the boundary conditions. First, as shown in Figure 9a, an internal 
pressure is incrementally imposed on the inner wall of the balloon up to a maximum value of 70 
mbar according to the experimental records (note that the air hydrostatic pressure is negligible in 
this case). Then, in order to circumvent the instability appearing at the instant of maximum pres-
sure that in turn causes numerical convergence problems due to the loss of convexity of the energy 
function W, the displacement field measured in the experiments is imposed on the curved domain 
while the straight part of the balloon is loaded with a decreasing pressure according to the experi-
mental values registered. Note that the imposed non-uniform displacement profile (which, as ob-
served in the experiments, has both radial and axial components) is variable along the inflation 
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process. Figures 9b to 9d schematically represent the different displacement boundary conditions 
during the unload stage. Using this procedure, the numerical internal pressure – displacement 
curves considering the characterized Yeoh model are depicted in Figure 7. The simulation satisfac-
torily matches the experiments during the load stage both in pressure and polar and equatorial 
displacements. In particular, the maximum pressure value is adequately captured. For displace-
ments larger than those corresponding to the maximum pressure, the pressure, obtained as the 
normal component of the stress tensor at the inner surface of the balloon, exhibits a decreasing 
trend that agrees with that of the measurements. The predicted slopes of the unload stage are, 
however, steeper than those of the experimental curves. The excessive deformation that takes place 
afterwards (particularly in the equatorial zone as shown below) is presumably the cause that hin-
ders the achievement of a converged numerical solution for larger levels of imposed displacement. 
Although the present numerical analysis is not able to describe the full inflating sequence, it allows, 
in contrast to the analytical approach, the prediction of non-uniform stress and thickness profiles 
during the deformation process. These results are shown below. 
 

 

Figure 9: Boundary conditions for the FEM simulation. 

 
The computed circumferential stress in terms of equatorial displacement and inflation pressure 

are respectively plotted in Figures 10a and 10b. The non-uniform stress distribution along the de-
formation process can clearly be seen. The maximum stresses reached are lower in zones near the 
top and bottom of the specimen. The equatorial zone (zone 3) presents the greatest circumferential 
stress for a given equatorial displacement. The stress localization in this zone is apparent when 
comparing its final stress level at dequa=5 mm (around 1100 kPa) with that corresponding to the 
thin-walled hollow sphere case, i.e., 784 kPa computed using Equations (10) and (11). Note that 
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although the pressure decreases at the end of the test, the stresses always increase thus denoting the 
geometrical character of the instability. 
 

a)  

b) 

Figure 10: a) Circumferential stress – equatorial displacement and b) circumferential stress – inflation  

pressure computed curves in different zones of the balloon. 

 
Figure 11 shows the thickness ratio - internal pressure curves computed in different balloon 

zones. As expected, the thickness decreases continuously. The thickness reduction is practically 
linear before the maximum pressure is reached. The section near the balloon pole (zone 5) is thicker 
than the others, showing the concentration of mass in that zone. After the maximum pressure is 
reached, the thickness in the pole remains practically constant, with a nearly uniform value at the 
end of the test. This result agrees with the qualitative observation presented in Figure 8. In addi-
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tion, the equatorial zone (zone 3) exhibits the larger thickness reduction. This fact is consistent with 
the stress localization commented above. Note that the final thickness ratio in this zone (0.38) is 
clearly lower than that corresponding to the thin-walled hollow sphere case, i.e., 0.48. 
 

 

Figure 11: Thickness ratio – inflation pressure computed curve in different zones of the balloon. 

 
5 APPLICATION TO A BIOMECHANICAL ANALYSIS OF HUMAN EYE TISSUES 

Once the model and the analytical methodology proposed for the inflation test study had been de-
veloped and verified experimentally, the problem of the eyeball subjected to inner pressure was 
analyzed. Due to the harmful effect of the high intraocular pressure that occurs in the disease called 
glaucoma (Ruiz – Ederra et al., 2005; Norman et al., 2010), different experimental (e.g., Schultz et 
al., 2008; Elsheikh et al., 2010; Elsheikh et al., 2008) as well as numerical (e.g., Belleza et al., 2000; 
Lari et al., 2012; Asejczyk et al., 2011) studies have been proposed to determine the mechanical 
characteristics of the sclera (Eilaghi et al., 2010; Elsheikh et al., 2010; Schultz et al., 2008) and the 
cornea (e.g., Elsheikh et al., 2008) and, in addition, to establish the state of the stress on the walls 
of the eyeballs subjected to an internal pressure (Belleza et al., 2000). 

In the present work, the constants of the Yeoh model are determined from the experimental re-
sults of the simple stress tests reported by Elsheikh et al. (2010) for the sclera and byElsheikh et al. 
(2008) for the cornea, both of them on healthy human tissues. The corresponding curves fitted by 
least squares to the Yeoh model are presented in Figures 12 and 13. The mechanical characteriza-
tion of the material is used in the numerical simulation considering the eyeball geometry reported 
by Stitzel et al. (2002), which is reproduced in Figure 14. The model is 2D with radial symmetry 
with respect to the vertical axis, and the uniform finite element grid is composed of 1895 four-node 
elements. The contour conditions correspond to fixed in the base of the ball (sclera, gray color), free 
vertical displacement at its cusp (cornea, blue color), and an imposed internal pressure of up to 200 
mmHg. The parameters of the materials for the Yeoh model used are given in Table 2. 
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Figure 12: Experimental results of data fitting with the Yeoh model for the human sclera. 

 
 

 

Figure 13: Experimental results of data fitting with the Yeoh model for the human cornea. 

 
 

Model Parameters 

 ଷ଴ܥ ଶ଴ܥ ଵ଴ܥ 

Yeoh Sclera 0.1217 0.0058 0.0476 

Yeoh Cornea 0.0084 0.0149 0.0112 

Table 2: Material parameters obtained by curve fitting of experimental data. 
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Figure 14: 2D geometry of the human eye for FEM simulation (the boxed numbers  

indicates the zones of interest in this study). 

 
Figure 15 shows the plot of the computed pressure - strain curve, with the strain ವ೑షವబ

ವబ
, where 

D଴ and D୤ are the initial and instantaneous diameters of the eyeball at the sclera near the optic 
nerve zone, respectively. As a qualitative confirmation of the predictions, the experimental data 
reported by Lari et al.(2012) during the inflation test of pig eyes is also plotted. 
 

 

Figure 15: Pressure - strain curve near the optic nerve. 
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The stress-strain computed curves are shown in Figure 16a together with the results reported 
by Lari et al. (2012) for comparison in Figure 16b. Similar trends can be appreciated where in Fig-
ure 16a it is seen that the sclera presents a lower degree of deformation (λ஘ ൌ 1.34) with respect to 
the cornea (λ஘ ൌ 1.9) under the same stress load, so it is inferred that the sclera shows a more rigid 
behavior than the cornea. 
 

a) 

b) 

Figure 16: a) Stress - stretch curve for human sclera and cornea (average values from the present computation)  

and b) stress - strain curve for pig sclera and cornea taken from Lari et al. (2012). 

 
The circumferential stress-stretch and the circumferential stress-pressure curves for the sclera at 

zones 1,2,3,4 and 5 are plotted in Figures 17a and 17b, respectively. Similar results are plotted in 
Figures 18a and 18b for the cornea. From Figure 17, different stress distributions can be seen in 
different zones of the sclera. This is attributable to the different initial wall thickness, which in-
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creases from 0.52 mm (in zone 1) to 1.6 mm (near the optic nerve). The maximum stress value is 
obtained at the equatorial zone, reaching approximately 0.66 MPa. Figure 18 reports that the 
stresses in different zones in the cornea (see Figure 14) are very similar to one another because no 
thickness changes take place.  
 

a) 

b) 

Figure 17: a) Stress - circumferential stretchand b) stress – pressurecomputed curves in different zones of the sclera. 

 
The thickness evolution for the cornea is presented in Figure 19, showing similar trends between 

different zones varying from the initial value of 0.52 mm to 0.23 mm. From these results the equa-
torial zone has a high risk of rupture, as it was also seen in the experimental work reported by 
Voorhies(2003), where from the pressurization test results, 80% of eye rupture has occurred in the 
equatorial plane. 
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Finally, Figure 20 depicts the thickness evolution with pressure. The thickness decreases con-
tinuously, with the rate of reduction greater at the beginning, and this was also reported by 
Elsheikh et al. (2010). At high pressure levels the thickness decreases slowly, reaching a constant 
value of 0.52 mm near the optic nerve (zone 5 in Figure 14). This value is closer to that reported by 
Bisplinghoff et al. (2009) for a pressurization test of human sclera up to rupture, registering a final 
thickness of 0.58 + 0.13 mm. 
 

a) 

b) 

Figure 18: a) Stress - circumferential stretch and b) stress – pressure  

computed curves in different zones of the cornea. 
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Figure 19: Thickness – pressure curves in different zones of the cornea. 

 

 

Figure 20: Thickness – pressure curves in different zones of the sclera. 

 
6 CONCLUSIONS 

An experimental and numerical study of a latex balloon pressurization test is presented. To this 
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0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,0 30,0 60,0 90,0 120,0 150,0

Th
ic

kn
es

s, 
m

m

Pressure, mmHg

Zone 1

Zone 2

Zone 3

0,300

0,350

0,400

0,450

0,500

0,550

0,600

0,650

0,700

0,0 30,0 60,0 90,0 120,0 150,0

Th
ic

kn
es

s, 
m

m

Pressure, mmHg 

Zone 1
Zone 2
Zone 3
Zone 4
Zone 5



2676     Claudio Bustos et al. / Numerical Simulation and Experimental Validation of the Inflation Test of Latex Balloons 

Latin American Journal of Solids and Structures 13 (2016) 2657-2678 

analytical solution considering a simplified geometry was found to reasonably describe the pressure 
– displacement curves. On the other hand, the real geometry of the balloon (i.e., ellipsoidal shape 
with a variable thickness distribution) was taken into account by means of a finite element model 
proposed to analyze this problem. Although the present numerical analysis has shown a limited 
performance due to the instability that occurs at the instant of maximum pressure that in turn 
precludes the analysis of the full inflation sequence, it satisfactorily predicted, in contrast to the 
analytical approach, the following relevant aspects of the problem: the wall stresses are not uniform, 
the geometry does not evolve spherically, the equatorial zone presents higher deformations, and the 
polar zone exhibits material concentration during the pressurization process. 

This experiment served as a reference for analyzing the pressurization test in human eyes. The 
developed methodology was applied to predict the mechanical behavior of a human eyeball subject-
ed to internal pressure, mimicking glaucoma diseases. The study of the eyeball was performed using 
properties and geometry taken from the literature. The best fit of the material behavior was ob-
tained using the Yeoh model in both materials analyzed. The results obtained in the present work 
for such a test agree well with the experimental data reported in the references, confirming that 
agreater stress is developed in the equatorial region where sclera rupture occurs. 
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