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Abstract 
In this paper, a micromechanical extension of the finite-volume 
direct averaging micromechanics theory (FVDAM) is presented for 
evaluation of the homogenized relaxation moduli of linear viscoelas-
tic unidirectional fiber reinforced composites with periodic micro-
structures. Such materials are assumed as composed of repeating 
unit cell with arbitrary internal architectural arrangements of fibers 
coated by thin flexible interphases. These interphases are replaced 
by equivalent imperfect interface elements with imposed continuity 
in tractions and discontinuity in displacements. Indeed, the pro-
posed computational procedure allows an easy and efficient treat-
ment of the displacement discontinuity condition across the inter-
faces. The viscoelastic behavior of the constituent phases is mod-
eled using the generalized Maxwell model. The formulation is par-
ticularly derived for the range of small strains, operating directly in 
the time domain using a numerical incremental time-stepping pro-
cedure based on the concept of internal stress variables. The per-
formance of the proposed approach is demonstrated through ho-
mogenization of viscoelastic fiber reinforced composites and period-
ic multilayer materials with flat and wavy architectures. 
 
Keywords 
Homogenization, Viscoelasticity, Imperfect Interface, Finite-Volume 
Theory. 
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1 INTRODUCTION 

The number and variety of engineering applications of fiber reinforced composite materials have 
greatly increased in recent decades. To assure the continuity of this rapid widespread use, it is es-
sential to have a more complete understanding about the composite material behaviors at different 
scales. Among the available tools for contributing to this better understanding, the micromechanical 
theories occupy an important place. Micromechanical modeling provides crucial information on the 
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relationships between the macroscopic structural behavior of composite materials and the local 
properties of the constituent phases and their microstructural arrangement. Then, it contributes to 
the development of new engineered composite materials with desired effective or homogenized prop-
erties, identifying the more appropriate constituent phases and microstructural details, based on a 
multiscale theoretical framework (Cavalcante et al., 2012). Furthermore, for the level of structural 
components, the micromechanics theory contributes by providing the essential material homoge-
nized properties required by the conventional procedures of macroscopic structural analysis. 

A review of the literature shows a large number of analytical and numerical micromechanical 
models proposed for estimating the homogenized mechanical behavior of composites with random 
and periodic microstructures (Nemat-Nasser and Mori, 1999, Zaoui, 2002, Cavalcante et al., 2012). 
However, most of these models are applicable to linear elastic two-phase composites. Homogeniza-
tion models for nonlinear multiphase composites are less developed and currently have been a sub-
ject of significant research (Doghri and Tinel, 2005, Khatam and Pindera, 2009, Cavalcante et al., 
2011).  

The first contributions to the homogenization of viscoelastic composites were given by Hashin 
(1965, 1970a,b) and Christensen (1969). They used the well-known composite spheres assemblage 
model (Hashin, 1962), developed for linear elastic materials, together with the correspondence prin-
ciple between linear elastic and viscoelastic behaviors to predict the effective moduli of two-phase 
linear viscoelastic composites. For these viscoelastic composites exhibiting random microstructures, 
many proposed homogenization approaches consist of extensions of the analytical classical mean-
field models based on the Eshelby ellipsoidal inclusion theory (Eshelby, 1957), making use of that 
correspondence principle (Laws and Mc Laughlin, 1978, Wang and Weng, 1992, Brinson and Lin, 
1998, Friebel et al., 2006). On the other hand, for the case of periodic microstructures, the homoge-
nization viscoelastic problem is, in general, solved by using the concept of repeating unit cell with 
periodic boundary conditions (Luciano and Barbero, 1995, Cavalcante and Marques, 2014). The 
analytical homogenization models for this last class of composites are restricted to repeating unit 
cell with particular geometrical shape and very simple internal architectural arrangements. Then, 
for more elaborated microstructure the use of numerical procedures is needed for accurate predic-
tions of the effective viscoelastic moduli. In these latter modeling studies, the finite-element method 
is, typically, the more employed numerical technique. 

An attractive alternative to the finite-element method in the solution of periodic repeating unit 
cell (RUC) problems is the parametric finite-volume theory developedby Cavalcante et al. (2007) 
having as basis the original version constructed by Bansal and Pindera (2003). In that parametric 
version, the heterogeneous material microstructure is discretized using quadrilateral subvolumes 
which are mapped into corresponding reference square subvolumes. This mapping has been incorpo-
rated into the standard finite-volume direct averaging micromechanics (FVDAM) model and ap-
plied successfully to solve several thermal and mechanical homogenization problems (Gattu et al., 
2008, Katham and Pindera, 2009, Cavalcante et al., 2011, Cavalcante and Marques, 2014, Escarpini 
Filho and Marques, 2014). To improve some local interfacial conformability shortcomings between 
adjacent subvolumes exhibited by the structural version of the parametric finite-volume theory, 
Cavalcante and Pindera (2012) constructed a higher order formulation on rectangular subdomains 
named generalized finite-volume theory. Subsequently, this formulation was incorporated into the 
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FVDAM framework and applied to linear elastic periodic materials undergoing finite deformations 
(Cavalcante and Pindera, 2014a). The results show that the different orders of the FVDAM theory 
are very capable of reproducing the homogenized response with good accuracy (Cavalcante and 
Pindera, 2014b). This issue can also be seen in Cavalcante and Marques (2014) for the viscoelastic 
macroscopic response in infinitesimal deformation domain. Then, the higher computational cost 
required by the generalized FVDAM justifies the use of the lower order FVDAM version for the 
evaluation of the homogenized response.  

In this paper a novel micromechanical extension of the FVDAM theory is presented for evalua-
tion of the homogenized relaxation moduli of linear viscoelastic unidirectional fiber reinforced com-
posites with periodic microstructures including the concept of imperfect interfaces. Such materials 
are assumed as composed of repeating unit cell with arbitrary internal architectural arrangements of 
fibers coated by thin flexible interphases. These interphases are replaced by equivalent imperfect 
interfaces with imposed continuity in tractions and discontinuity in displacements (Hashin, 1990, 
Hashin, 1991, Matzenmiller and Gerlach, 2004, Benveniste, 2006). The strategy consist of determin-
ing the effective response of a true three-phase (matrix, interphase and fiber) composite material 
solving a homogenization problem for a two-phase (matrix and fiber) equivalent composite. To ad-
dress this issue a new imperfect interface element has been derived and incorporated into the 
FVDAM framework. It is worth mentioning that, for the first time, an imperfect interface element 
has been formulated with basis on the finite-volume theory for mechanical analysis of composite 
material. So, the present formulation corresponds to the first version of the FVDAM theory employ-
ing the concept of imperfect interfaces for homogenization of fiber reinforced periodic viscoelastic 
composites with thin interphases located between the matrix and the fibers. 

Indeed, the proposed computational procedure allows an easy and efficient treatment of the dis-
placement discontinuity condition across the interfaces. This can be justified by the fact that in the 
FVDAM theory the displacement compatibility conditions are imposed in terms of subvolume sur-
face-averaged interfacial values, differently from the classical finite element method that employs 
compatibility of nodal displacements of adjacent elements. The viscoelastic behavior of the constitu-
ent phases (matrix, fibers and interphases) is modeled using the generalized Maxwell model 
(Marques and Creus, 2012). The formulation is particularly derived for the range of small strains, 
operating directly in the time domain using a numerical incremental time-stepping procedure based 
on the concept of internal stress variables (Simo and Hughes, 1998, Tran et al., 2011). All the ho-
mogenized components of the relaxation tensor are numerically evaluated at different time steps 
and their discrete values stored along the analysis for generation of the corresponding relaxation 
curves through the use of appropriate interpolation functions.Although the presented formulation 
has been derived for small displacements, it can be readily extended to the case of large rotations 
with small strains, as briefly explained in Subsection 3.8. 

The paper is organized as follows. The local three dimensional viscoelastic formulation used for 
the individual phases are presented in Section 2. All the numerical procedures used by the homoge-
nization viscoelastic model are described in Section 3. The basic ideas of the FVDAM are briefly 
presented, followed by the detailed description of the formulation proposed for viscoelastic homoge-
nization. The methodology used to model the imperfect interface element is also derived in Section 
3. Finally, numerical examples of viscoelastic homogenization are presented in Section 4. These ex-
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amples include viscoelastic fiber reinforced composites and multilayer materials with flat and wavy 
architectures. Comparisons with analytical solutions show the good performance of the homogeniza-
tion approach. 
 
NOMENCLATURE 

 strain concentration tensor component ܣ
 relaxation function ܥ
D viscoelastic interface function 
 Young's modulus ܧ
 shear modulus ܩ
 auxiliary time-dependent function ܪ
 bulk moduli of the viscoelastic model ܭ
N number of branches of the viscoelastic model 
  length of the subvolume face ܮ
ܷ coefficient of the polynomial approximation  
 
 matrix dependent on the phase properties and time interval ࡯
  matrix of subvolume face unit normal vectors ࡰ
 vector of surface-averaged viscoelastic strain contributions ࡳ
۶ time-dependent function 
 ෠ inverse of the volume-averaged Jacobianࡶ
 stiffness matrix ࡷ
  vector of subvolume face unit normal vectors ࡺ
  vector of polynomial approximation coefficients ࢁ
 ෡ᇱ global surface-averaged fluctuation displacement vectorࢁ
 
݄ interphase thickness 
݊ unit vector component    
 internal stress variables ݍ
 time, traction component ݐ
 displacement component ݑ
 ᇱ fluctuating displacement componentݑ
v volume fraction 
 Cartesian global coordinate ݔ
 Cartesian local coordinate ݕ
 
 deviatoric strain tensor ܍
 deviatoric internal stress variables ܙ
 deviatoric stress tensor ܛ
 surface-averaged traction vector ܜ̂
 ෝᇱ surface-averaged fluctuation displacement vectorܝ
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Ω unit cell volume 
∆۱  matrix of differences in the material stiffness matrices 
 time interval ݐ∆
γ viscoelastic relative parameter 
ε strain component 
εො surface-averaged strain  
εത macroscopic strain  
η viscosity constant, parametric coordinate 
μ shear moduli of the viscoelastic model 
ν Poisson ratio 
ξ parametric coordinate     
σ stress component 
σෝ surface-averaged stress  
τ relaxation time 
 
ԧ fourth-order elastic constitutive tensor 
ॸ, ℙ,Թ fourth-order tensors 
 
Subscripts and superscripts 
 interphase, interface ܫ
݂ subvolume face number, fiber 
o hydrostatic quantity 
	݌ subvolume	vertex	number	
	ݍ subvolume	number	
 time ݐ
 bulk ܭ
 global ܩ
μ shear 
∞ elastic branch of the viscoelastic material model 
݅݊ in-plane 
 out-of-plane ݐݑ݋
൅ side adjacent to the matrix 
െ side adjacent to the fiber 
∗ effective quantity 
 
2 LOCAL LINEAR VISCOELASTIC FORMULATION 

The composite materials considered in this paper are composed in general of linear viscoelastic iso-
tropic phases consisting of a matrix embedding unidirectional long fibers coated with thin inter-
phases. The fibers and interphases have a periodic spatial arrangement inside the matrix so that the 
composite material can be assumed as constructed by replicated fundamental building blocks, called 
repeating unit cells (RUCs), as shown in Fig. 1. It is assumed that the viscoelastic behavior of the 
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constituent materials is governed by a generalized Maxwell model with an arbitrary number ݊	of 
branches. 

In the three-dimensional isotropic material viscoelastic analysis, the stress and strain states are 
usually decomposed into their hydrostatic and deviatoric parts.  The constitutive relation for the 
hydrostatic state can be written as 
 

ሻݐ௢ሺߪ ൌ ௢ሺ0ሻߝሻݐ௄ሺܥ ൅ න ݐ௄ሺܥ െ ሻݏ
ሻݏ௢ሺߝ݀

ݏ݀
ݏ݀

௧

଴
 (1)

 

where ߪ௢ and ߝ௢ are the hydrostatic stress and strain, respectively, and ܥ௄ሺݐሻ denotes the bulk 
relaxation function. For the deviatoric state, the relation between the deviatoric stress ሺܛሻ and 
strain ሺ܍ሻ tensors is given by 
 

ሻݐሺܛ ൌ ሺ0ሻ܍ሻݐఓሺܥ ൅ න ݐఓሺܥ െ ሻݏ
ሻݏሺ܍݀

ݏ݀
ݏ݀

௧

଴
 (2)

 

being ܥఓሺݐሻ the shear relaxation function. 

 

 

Figure 1: Periodic composite material and repeated unit cell (RUC). 

 

 

Figure 2: Generalized Maxwell model. 
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For the generalized Maxwell model with ܰ ൅ 1 branches (Fig. 2), the bulk and shear relaxation 
functions are defined by 
 

C୏ሺݐሻ ൌ ஶܭ3 ൅ ෍3ܭ௜

ே

௜ୀଵ

expሺെ t τ௜
௄⁄ ሻ 

Cஜሺݐሻ ൌ ஶߤ2 ൅ ෍2ߤ௜

ே

௜ୀଵ

exp൫െ t τ௜
ஜ⁄ ൯ 

(3)

 

where ܭஶ and ߤஶ denote the bulk and shear moduli of the elastic element while ܭ௜ and ߤ௜ represent 
the bulk and shear moduli of the viscoelastic elements that compose the rheological model. ߬௜

௄ and 
߬௜
ఓ are the relaxation times related to the hydrostatic and deviatoric viscoelastic behaviors, respec-

tively. 
Introducing (3) in (1) and (2), the following expressions are obtained (Marques and Creus, 

2012): 
 

ሻݐ௢ሺߪ ൌ ஶ௢ߪ ሺݐሻ ൅෍γ௜
௄

ே

௜ୀଵ

ሺെ݌ݔ݁ ݐ τ௜
௄⁄ ሻσஶ୭ ሺ0ሻ ൅ ෍ݍ௜

௄

ே

௜ୀଵ

ሺݐሻ (4)

 

ሻݐሺܛ ൌ ሻݐஶሺܛ ൅෍γ௜
ఓ

ே

௜ୀଵ

൫െ݌ݔ݁ ݐ τ௜
ఓ⁄ ൯ܛஶሺ0ሻ ൅ ෍ܙ௜

ఓ
ே

௜ୀଵ

ሺݐሻ (5)

 

where ݍ௜
௄ሺݐሻ and ࢗ௜

ఓሺݐሻ denote internal stress variables given by  
 

௜ݍ
௄ሺݐሻ ൌ න ௜ߛ

௄݁݌ݔ ቆെ
ݐ െ ݏ
τ௜
௄ ቇ

ஶ௢ߪ݀ ሺݏሻ

ݏ݀
ݏ݀

௧

଴
 (6)

 

௜ܙ
ఓሺݐሻ ൌ න ௜ߛ

ఓ݁݌ݔ ቆെ
ݐ െ ݏ

τ௜
ఓ ቇ

ሻݏஶሺܛ݀

ݏ݀
ݏ݀

௧

଴
 (7)

 

being ߪஶ௢ ሺݐሻ ൌ ሻݐஶሺܛ ,ሻݐ௢ሺߝ∞ܭ3 ൌ ௜ߛ,ሻݐሺ܍ஶߤ2
௄ ൌ ௜ܭ ⁄ ௜ߛ ஶ andܭ

ఓ ൌ ௜ߤ ⁄ -ஶ. These internal stress varߤ
iables are employed strategically in the incremental time-stepping procedure for the numerical solu-
tion of the viscoelastic problem as illustrated below. 

At time ݐ ൅   equations (6) and (7) can be written in the forms ,ݐ∆
 

௜ݍ
௄ሺݐ ൅ ሻݐ∆ ൌ ௜ݍ

௄ሺݐሻ݁݌ݔ ቆെ
ݐ∆
τ௜
௄ቇ ൅ ௜ߛ

௄݁݌ݔ ቆെ
ݐ∆
τ௜
௄ቇන ݌ݔ݁ ൬െ

ݐ െ ݏ
߬௜

൰
݀σஶ௢ ሺݏሻ

ݏ݀
ݏ݀

௧ା∆௧

௧
 (8)

 

௜ࢗ
ఓሺݐ ൅ ሻݐ∆ ൌ ௜ࢗ

ఓሺݐሻ݁݌ݔ ቆെ
ݐ∆

τ௜
ఓቇ ൅ ௜ߛ

ఓ݁݌ݔ ቆെ
ݐ∆

τ௜
ఓቇන ݌ݔ݁ ൬െ

ݐ െ ݏ
߬௜

൰
ሻݏஶሺܛ݀

ݏ݀
ݏ݀

௧ା∆௧

௧
 (9)

 

Using the following approximations for sufficiently small time step ∆ݐ, 
 

݀σஶ୭ ሺݏሻ

ݏ݀
≅
∆σஶ୭

ݐ∆
ൌ
σஶ୭ ሺݐ ൅ ሻݐ∆ െ σஶ୭ ሺݐሻ

ݐ∆
				e						

ሻݏஶሺܛ݀

ݏ݀
≅
ஶܛ∆
ݐ∆

ൌ
ݐஶሺܛ ൅ ሻݐ∆ െ ሻݐஶሺܛ

ݐ∆
, 

 

equations (8) and (9) provide the recursive relations 
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௜ݍ
௄ሺݐ ൅ ∆tሻ ൌ ௜ݍ

௄ሺݐሻexpሺെ∆t ߬௜⁄ ሻ ൅ ௜ߛ
௄τ௜

௄ 1 െ ሺെ∆t݌ݔ݁ ߬௜⁄ ሻ

ݐ∆
∆σஶ୭  (10)

 

௜ࢗ
ఓሺݐ ൅ ∆tሻ ൌ ௜ࢗ

ఓሺݐሻexpሺെ∆t ߬௜⁄ ሻ ൅ ௜ߛ
ఓτ௜

ఓ 1 െ ൫െ∆t݌ݔ݁ τ௜
ఓ⁄ ൯

ݐ∆
ஶ (11)ܛ∆

 

Then, through equations  (4) and (5), the stresses at time ݐ ൅  are given byݐ∆
 

ݐ௢ሺߪ ൅ ሻݐ∆ ൌ ஶ௢ߪ ሺݐ ൅ ሻݐ∆ ൅෍ߛ௜
௄

ே

௜ୀଵ

݌ݔ݁ ቆെ
ݐ ൅ ∆t
τ௜
௄ ቇߪஶ௢ ሺ0ሻ ൅ ෍ݍ௜

௄

ே

௜ୀଵ

ሺݐ ൅ ሻ (12)ݐ∆

 

ݐሺܛ ൅ ሻݐ∆ ൌ ݐஶሺܛ ൅ ሻݐ∆ ൅෍ߛ௜
ఓ

ே

௜ୀଵ

݌ݔ݁ ቆെ
ݐ ൅ ∆t

τ௜
ఓ ቇ ஶሺ0ሻܛ ൅ ෍ࢗ௜

ఓ
ே

௜ୀଵ

ሺݐ ൅ ሻ (13)ݐ∆

 

which, using (10) and (11), can be written in the compact forms 
 

ݐ௢ሺߪ ൅ ሻݐ∆ ൌ ሻݐ௄ሺܪ ൅ ௄σஶ୭ܯ ሺݐ ൅ ሻ (14)ݐ∆
 

ݐሺܛ ൅ ሻݐ∆ ൌ ۶ఓሺݐሻ ൅ ݐஶሺܛఓܯ ൅ ሻ (15)ݐ∆
 

where 
 

ሻݐ௄ሺܪ ൌ෍ݍ௜
௄ሺݐሻexpቆെ

ݐ∆
߬௜
௄ቇ

ே

௜ୀଵ

൅ ܰ௄σஶ୭ ሺ0ሻ ൅ ሺ1 െܯ௄ሻσஶ୭ ሺݐሻ (16)

 

۶ఓሺݐሻ ൌ෍ቈܙ௜
ఓሺݐሻexpቆെ

ݐ∆

τ௜
ఓቇ቉

ே

௜ୀଵ

൅ ܰఓܛஶሺ0ሻ ൅ ሺ1 െܯఓሻܛஶሺݐሻ (17)

 

௄ܯ ൌ 1 ൅෍ߛ௜
௄߬௜

௄
1 െ ݌ݔ݁ ൬െ

∆୲

ఛ೔
಼൰

ݐ∆
,

ே

௜ୀଵ

ఓܯ ൌ 1 ൅෍ߛ௜
ఓ߬௜

ఓ
1 െ ݌ݔ݁ ൬െ

∆୲

ఛ೔
ഋ൰

ݐ∆

ே

௜ୀଵ

 (18)

 

ܰ௄ ൌ෍ߛ௜
௄݁݌ݔ ቆെ

ݐ ൅ ݐ∆
߬௜
௄ ቇ,					 ܰఓ ൌ෍ߛ௜

ఓ݁݌ݔ ቆെ
ݐ ൅ ݐ∆

߬௜
ఓ ቇ

ே

௜ୀଵ

ே

௜ୀଵ

 (19)

 

The total stress tensors at time ݐ ൅  is given by ݐ∆
 

ોሺݐ ൅ ሻݐ∆ ൌ σ୭ሺݐ ൅ .ሻݐ∆ ૚ ൅ ݐሺܛ ൅ ሻ (20)ݐ∆
 

being 1 the second order unit tensor. By substituting the equations (14) and (15) into Eq. (20), the 
following relation is obtained: 
 

ોሺݐ ൅ ሻݐ∆ ൌ ۶ሺݐሻ ൅ॸ ∶ ોஶሺݐ ൅ ሻ (21)ݐ∆
 

where 
 

۶ሺݐሻ ൌ෍ቈݍ௜
௄ሺݐሻexpቆെ

ݐ∆
߬௜
௄ቇ૚ ൅ ௜ܙ

ఓሺݐሻexpቆെ
ݐ∆

τ௜
ఓቇ቉

ே

௜ୀଵ

൅ ℙ ∶ ોஶሺݐሻ ൅ Թ ∶ ોஶሺ0ሻ (22)

 

In (21) and (22), ॸ, ℙ and Թ are fourth-order tensors defined by 
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ॸ ൌ ௄ॵଵܯ ൅ ఓॵଶ, ℙܯ ൌ ሺ1 െܯ௄ሻॵଵ ൅ ሺ1 െܯఓሻॵଶ,  Թ ൌ ܰ௄ॵଵ ൅ ܰఓॵଶ (23)
 

with 
 

ॵଵ ൌ
1
3
૚⨂૚, ॵଶ ൌ ॴ െ

1
3
૚⨂૚ (24)

 

being ॴ the fourth-order identity tensor. Equation (21) also can be written in the form 
 

ોሺݐ ൅ ሻݐ∆ ൌ ۶ሺݐሻ ൅ ԧஶ ∶ ઽሺݐ ൅ ሻ (25)ݐ∆
 

where ԧஶ ൌ ௄ॵଵܯஶܭ3 ൅  .ఓॵଶܯஶߤ2
 
3 NUMERICAL FORMULATION FOR THE VISCOELASTIC HOMOGENIZATION 

Using the parametric FVDAM theory, the unit cell domain is discretized into quadrilateral sub-
volumes whose locations inside the unit cell are specified by their vertices referred to a fixed coordi-
nate system (Cavalcante et al., 2007). Here, it is assumed that the periodic multiphase composite 
material is continuously reinforced along the y1 axis so that the homogenization procedures require 
only the unit cell discretization in the y2-y3 plane. As shown in subsection 3.5, interface elements 
are used when the interphases are replaced by imperfect interfaces. 
 
3.1 Subvolume Mapping and Displacement Field Representation 

By the parametric FVDAM, the solution to the unit cell problem is generated by mapping a refer-
ence subvolume in the ߟ െ plane bounded by െ1 ߦ ൑ ߟ ൑ 1 and െ1 ൑ ߦ ൑ 1 onto a quadrilateral 
subvolume resident in the actual microstructure (Fig. 3) using the following coordinate transfor-
mations: 
 

,ߟ௜ሺݕ ሻߦ ൌ ෍ ௣ܰ

ସ

௣ୀଵ

ሺߟ, ௜ݕሻߦ
ሺ௣ሻ, ሺ݅ ൌ 2,3ሻ (26)

 

where ݕ௜
ሺ௣ሻdenote the vertex coordinates of the subvolume and ௣ܰሺߟ, -ሻ are the interpolation funcߦ

tion given by (Cavalcante et al., 2007) 
 

 

Figure 3: Mapping of the reference square subvolume onto a quadrilateral subvolume  

of the actual microstructure (after Cavalcante et al., 2007). 



R.S. Escarpini Filho and S.P.C. Marques / A Model for Homogenization of Linear Viscoelastic Periodic Composite Materials…     2715 

Latin American Journal of Solids and Structures 13 (2016) 2706-2735 

ଵܰሺߟ, ሻߦ ൌ
1
4
ሺ1 െ ሻሺ1ߟ െ ,ሻߦ ଶܰሺߟ, ሻߦ ൌ

1
4
ሺ1 ൅ ሻሺ1ߟ െ  ሻߦ

ଷܰሺߟ, ሻߦ ൌ
1
4
ሺ1 ൅ ሻሺ1ߟ ൅ ,ሻߦ ସܰሺߟ, ሻߦ ൌ

1
4
ሺ1 െ ሻሺ1ߟ ൅  ሻߦ

(27)

 

For homogenization of a composite material with periodic microstructure, the displacement field 
at time t in a subvolume can be represented by the two-scale expansion involving macroscopic and 
fluctuating components (Gattu et al., 2008) 
 

ሻݐ௜ሺݑ ൌ ௝ݔ௜̅௝ߝ ൅ ௜ݑ
ᇱሺݐሻ (28)

 

where ߝ௜̅௝ denote the macroscopic strain components, ݔ௝ are the point global coordinates and ݑ௜
ᇱ 

stand for the microstructure-induced fluctuating displacement components. Notice that in a relaxa-
tion test the macroscopic strains ߝ௜̅௝ are constant with respect to time. Using the standard version of 

the parametric FVDAM, the fluctuating components for each subvolume are approximated by pol-
ynomial expansions in the form 
 

௜ݑ
ᇱሺݐሻ ൌ ௜ܷሺ଴଴ሻ

௧ ൅ ߟ ௜ܷሺଵ଴ሻ
௧ ൅ ߦ ௜ܷሺ଴ଵሻ

௧ ൅
1
2
ሺ3ߟଶ െ 1ሻ ௜ܷሺଶ଴ሻ

௧ ൅
1
2
ሺ3ߦଶ െ 1ሻ ௜ܷሺ଴ଶሻ

௧  (29)
 

being ݅ ൌ 1,2,3 and ௜ܷሺ௠௡	ሻ
௧  denoting the unknown coefficients. 

 
3.2 Surface-Averaged Strain-Displacement Relations 

Considering the displacement field given in (29), the infinitesimal strain components for a sub-
volume are calculated by 
 

ሻݐ௜௝ሺߝ ൌ ௜̅௝ߝ ൅
1
2
ቈ
௜ݑ߲

ᇱሺݐሻ

௝ݕ߲
൅
௝ݑ߲

ᇱሺݐሻ

௜ݕ߲
቉ (30)

 

Introducing (29) into (30) and making the transformation of the Cartesian coordinates (ݕଶ,  ଷሻtoݕ
the parametric coordinates (ߟ, -for the sub ݐ ሻ, the in-plane surface-averaged strain vectors at timeߦ
volume faces (Fig. 3) can be found by (for more details, see Cavalcante et al., 2007; Gattu et al. 
2008) 
 

቎
ሻݐଶ̂ଶሺߝ
ሻݐଷ̂ଷሺߝ
ሻݐଶ̂ଷሺߝ2

቏

ሺଶ,ସሻ

ൌ ൥
ଶ̅ଶߝ
ଷ̅ଷߝ
ଶ̅ଷߝ2

൩ ൅ ۳ത ቈ
۸መ ૙
૙ ۸መ

቉ ൤
ଵ,ଶۯ ૙
૙ ଵ,ଶۯ

൨  ୧୬ሺtሻ܃

቎
ሻݐଶ̂ଶሺߝ
ሻݐଷ̂ଷሺߝ
ሻݐଶ̂ଷሺߝ2

቏

ሺଵ,ଷሻ

ൌ ൥
ଶ̅ଶߝ
ଷ̅ଷߝ
ଶ̅ଷߝ2

൩ ൅ ۳ത ቈ
۸መ ૙
૙ ۸መ

቉ ൤
ଷ,ସۯ ૙
૙ ଷ,ସۯ

൨  ୧୬ሺtሻ܃

(31)

 

where ܃୧୬ሺtሻ ൌ ൣUଶሺଵ଴ሻ
୲ Uଶሺ଴ଵሻ

୲ Uଶሺଶ଴ሻ
୲ 	Uଶሺ଴ଶሻ

୲ Uଷሺଵ଴ሻ
୲ Uଷሺ଴ଵሻ

୲ Uଷሺଶ଴ሻ
୲ 	Uଷሺ଴ଶሻ

୲ ൧
୘
, ۸መ is the inverse of the volume-

averaged Jacobian and 
 

۳ത ൌ ൥
1 0 0 0
0 0 0 1
0 1 1 0

൩, ଵ,ଶۯ ൌ ቂ1 0 േ3 0
0 1 0 0

ቃ, ଷ,ସۯ ൌ ቂ1 0 0 0
0 1 0 േ3

ቃ (32)

 

Similarly, the out-of-plane surface-averaged strain vectors can be obtained by 
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൤
ሻݐଵ̂ଶሺߝ2
ሻݐଵ̂ଷሺߝ2

൨
ሺଶ,ସሻ

ൌ ൤
ଵ̅ଶߝ2
ଵ̅ଷߝ2

൨ ൅ ۸መۯଵ,ଶ܃୭୳୲ሺtሻ 

൤
ሻݐଵ̂ଶሺߝ2
ሻݐଵ̂ଷሺߝ2

൨
ሺଵ,ଷሻ

ൌ ൤
ଵ̅ଶߝ2
ଵ̅ଷߝ2

൨ ൅ ۸መۯଷ,ସ܃୭୳୲ሺtሻ 
(33)

 

being ܃୭୳୲ሺtሻ ൌ ൣUଵሺଵ଴ሻ
୲ Uଵሺ଴ଵሻ

୲ Uଵሺଶ଴ሻ
୲ Uଵሺ଴ଶሻ

୲ ൧
୘
. 

 
3.3 Surface-Averaged Tractions 

Using the Cauchy relations for a subvolume at time ݐ, the tractions ݐ௜ are related to the stress com-
ponents ߪ௝௜ by 
 

ሻݐ௜ሺݐ ൌ ሻݐ௝௜ሺߪ ௝݊ (34)
 

where ௝݊ indicate the components of the outward unit normal vector to the subvolume faces (Fig. 

3). Through equation (34) the in-plane surface-averaged tractions on each face ݂ of a subvolume 
can be written in function of the corresponding in-plane surface-averaged stress components ߪො௝௜ by 
 

௜௡ܜ̂
ሺ௙ሻ ൌ ൤

ଶݐ̂
ଷݐ̂
൨
ሺ௙ሻ

ൌ ൤
݊ଶ 0 ݊ଷ
0 ݊ଷ ݊ଶ

൨
ሺ௙ሻ

൥
ොଶଶߪ
ොଷଷߪ
ොଶଷߪ

൩

ሺ௙ሻ

 (35)

 

Similarly, the out-of-plane surface-averaged tractions are given by 
 

௢௨௧ܜ̂
ሺ௙ሻ ൌ ሾ̂ݐଵሿሺ௙ሻ ൌ ሾ݊ଶ ݊ଷሿሺ௙ሻ ൤

ොଵଶߪ
ොଵଷߪ

൨
ሺ௙ሻ

 (36)
 

From equations (35) and (36), the in-plane and out-of-plane surface-averaged tractions on the 
four faces of a subvolume, ̂ܜ௜௡ and ̂ܜ௢௨௧, respectively, can be written in the general form 
 

ܜ̂ ൌ ൦

ሺଵሻܜ̂

ሺଶሻܜ̂

ሺଷሻܜ̂

ሺସሻܜ̂

൪ ൌ ۲ ൦

ોෝሺଵሻ

ોෝሺଶሻ

ોෝሺଷሻ

ોෝሺସሻ

൪ (37)

 

where 
 

ોෝ௜௡
ሺ௙ሻ ൌ ൥

ොଶଶߪ
ොଷଷߪ
ොଶଷߪ

൩

ሺ௙ሻ

,				 ોෝ௢௨௧
ሺ௙ሻ ൌ ൤

ොଵଶߪ
ොଵଷߪ

൨
ሺ௙ሻ

 (38)

 

and the matrices ۲௜௡ and ۲௢௨௧ are given in Appendix A. 
From Eq. (25), the in-plane and out-of-plane surface-averaged stress components at time ݐ ൅  ݐ∆

can be written, respectively, as follows: 
 

቎
ݐොଶଶሺߪ ൅ ሻݐ∆
ݐොଷଷሺߪ ൅ ሻݐ∆
ݐොଶଷሺߪ ൅ ሻݐ∆

቏

ሺ௙ሻ

ൌ ቎
ሻݐ෡ଶଶሺܪ
ሻݐ෡ଷଷሺܪ
ሻݐ෡ଶଷሺܪ

቏

ሺ௙ሻ

൅ ۱୧୬
ஶ ൦

ଵ̅ଵߝ
ݐଶ̂ଶሺߝ ൅ ሻݐ∆
ݐଷ̂ଷሺߝ ൅ ሻݐ∆
ݐଶ̂ଷሺߝ2 ൅ ሻݐ∆

൪

ሺ௙ሻ

 (39)
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൤
ݐොଵଶሺߪ ൅ ሻݐ∆
ݐොଵଷሺߪ ൅ ሻݐ∆

൨
ሺ௙ሻ

ൌ ቈ
ሻݐ෡ଵଶሺܪ
ሻݐ෡ଵଷሺܪ

቉
ሺ௙ሻ

൅ ۱୭୳୲ஶ ൤
ݐଵ̂ଶሺߝ2 ൅ ሻݐ∆
ݐଵ̂ଷሺߝ2 ൅ ሻݐ∆

൨
ሺ௙ሻ

 

 

being 
 

۱୧୬
ஶ ൌ

ۏ
ێ
ێ
ێ
KஶM୩ۍ െ

2
3
μஶMஜ KஶM୩ ൅

4
3
μஶMஜ KஶM୩ െ

2
3
μஶMஜ 0

KஶM୩ െ
2
3
μஶMஜ KஶM୩ െ

2
3
μஶMஜ KஶM୩ ൅

4
3
μஶMஜ 0

0 0 0 μஶMஜے
ۑ
ۑ
ۑ
ې

 

۱୭୳୲ஶ ൌ ൤
μஶMஜ 0
0 μஶMஜ൨ 

(40)

 

Introducing (39) into (37), for the time ݐ ൅ ∆t, the following relations between the surface-
averaged tractions and strain components of a subvolume can be obtained: 
 

ݐሺܜ̂ ൅ ሻݐ∆ ൌ ۲۶෡ሺݐሻ ൅ ۲۱ઽොሺݐ ൅ ሻ (41)ݐ∆
 

where the matrices ۶෡௜௡, ۶෡௢௨௧, ۱௜௡ and ۱௢௨௧ are presented in Appendix A and 
 

ઽො ൌ ሾઽොሺଵሻ ઽොሺଶሻ ઽොሺଷሻ ઽොሺସሻሿ் (42)
 

with 
 

ઽො௜௡
ሺ௙ሻ ൌ ൦

ଵ̅ଵߝ
ଶ̂ଶߝ
ଷ̂ଷߝ
ଶ̂ଷߝ2

൪

ሺ௙ሻ

,					 ઽො௢௨௧
ሺ௙ሻ ൌ ൤

ଵ̂ଶߝ2
ଵ̂ଷߝ2

൨
ሺ௙ሻ

 (43)

 

Introducing (31) and (33) into (41), the following relations between the surface-averaged trac-
tions and unknown coefficients of the fluctuating displacement fields are obtained 
 

ݐሺܜ̂ ൅ ሻݐ∆ ൌ ۲۶෡ሺݐሻ ൅ ۱ஶઽതۼ ൅ ݐሺ܃ഥۯ ൅ ሻ (44)ݐ∆
 

where ઽത௜௡ ൌ ሾߝଵ̅ଵ ଶ̅ଶߝ ଷ̅ଷߝ ଶ̅ଷሿ୘ and ઽത௢௨௧ߝ2 ൌ ሾ2ߝଵ̅ଶ  ഥ௜௡ andۯ ,௢௨௧ۼ ,௜௡ۼ ଵ̅ଷሿ୘ and the matricesߝ2
 ഥ௢௨௧ can be seen in Appendix A. The matrices ۱ஶ for in-plane and out-of-plane cases are given inۯ
(40). 
 
3.4 Equilibrium Equations and Subvolume Stiffness Matrix 

The surface integral version of the equilibrium equations of a subvolume involving the surface-
averaged tractions at time t+∆t are given by 
 

෍̂ܜሺݐ ൅ ሻሺ௙ሻݐ∆
ସ

௙ୀଵ

௙ܮ ൌ ૙ (45)

 

where ̂ܜሺ௙ሻ and ܮ௙ indicate the vector of surface-averaged tractions and the length of the subvolume 
face ݂, respectively. Introducing (44) into (45) and using (29), the following general expression can 
be found for the zeroth order coefficients of the fluctuating displacement fields: 
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ݐ଴଴ሺ܃ ൅ ሻݐ∆ ൌ ઴ିଵൣ۲۶ۺ෡ሺݐሻ ൅ ૑ࢿത ൅ ીܝෝᇱሺݐ ൅ ሻ൧ (46)ݐ∆
 

where ܝෝᇱ ൌ ෝᇱሺସሻ൧࢛ෝᇱሺଷሻ࢛ෝᇱሺଶሻ࢛ෝᇱሺଵሻ࢛ൣ
୘
 and, for in-plane loading, ܃଴଴ሺt ൅ ∆tሻ ൌ ൣUଶሺ଴଴ሻ

୲ା∆୲ 				Uଷሺ଴଴ሻ
୲ା∆୲ ൧

୘
 and 

ෝᇱሺ௙ሻܝ ൌ ቂݑොଶ
ᇱሺ௙ሻݑොଷ

ᇱሺ௙ሻቃ
୘
, while for out-of-plane loading, ܃଴଴ሺt ൅ ∆tሻ ൌ ൣUଵሺ଴଴ሻ

୲ା∆୲ ൧ and ܝෝᇱሺ௙ሻ ൌ ቂݑොଵ
ᇱሺ௙ሻቃ. The 

matrices ઴, ૑,	ી and ۺ are presented in Appendix A. 
Using (46) and (29), the vector ܃ሺt ൅ ∆tሻ is determined in function of the vector of surface-

averaged fluctuating displacements ܝෝᇱ and, then, Eq. (44) can be rewritten in the form 
 

ݐሺܜ̂ ൅ ሻݐ∆ ൌ ઽത܁ ൅ ۴۶෡ሺݐሻ ൅ ݐෝᇱሺܝ۹ ൅ ሻ (47)ݐ∆
 

where ۹ ൌ -and ۴ for in-plane and out-of ܁ ,ഥ۰ഥ is the subvolume stiffness matrix. The matrices ۰ഥۯ
plane loadings are given in the Appendix A. 
 
3.5 Viscoelastic Imperfect Interface Element 

Figure 4 shows an arbitrarily curved linear viscoelastic isotropic thin interphase of constant thick-
ness h located between a fiber and the matrix of a composite material. The displacements and trac-
tions are assumed as continuous across the matrix/interphase and fiber/interphase interfaces, what 
is referred to as perfect interfaces. On the contrary, when these continuity conditions of tractions or 
displacements do not exist across an interface, it is named as imperfect interface. It can be found in 
the literature studies on the possible substitution of a thin interphase for an equivalent imperfect 
interface with appropriate discontinuities in tractions and displacements (Benveniste,2006, Hashin, 
2002). This strategy allows to analyze a three-phase material (matrix, fiber and interphase) using 
an equivalent two-phase material (matrix, fiber and interface), as shown in Fig. 4. 
 

 

Figure 4: (a) Interphase between fiber and matrix and b) equivalent imperfect interface. 

 
Here, a viscoelastic imperfect interface element is derived based on the idea of replacing the thin 

interphase by an imperfect interface, positioned at the location of the middle surface So (see Fig. 4), 
across the which are imposed continuity in tractions and appropriate displacement jumps related to 
their associated traction components. These interface conditions are demonstrated to be adequate 
when the interphase has stiffness much smaller than the other two composite phases (matrix and 
fiber).  
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For the case of linear viscoelastic interphase, the traction components can be written as follows 
(Hashin, 1991): 
 

ሻݐ௜ሺݐ ൌ ௜ሺ0ሻሿݑሻሾݐ௜ሺܦ ൅ න ݐ௜ሺܦ െ ሻݏ
߲
ݏ߲

௧

଴
ሾݑ௜ሺݏሻሿ݀ݏ ሺ݅ ൌ 1, 2,3ሻ (48)

 

being D୧ the viscoelastic interface functions and the directions 1, 2 and 3 are shown in Fig. 4, where 
1 and 2 are the tangential directions and 3 is the normal direction. The symbol [   ] is used to repre-
sent displacement jumps across the interface, so that 
 

ሾݑ௜ሺݐሻሿ ൌ ௜ݑ
ାሺݐሻ െ ௜ݑ

ିሺݐሻ (49)
 

where the signals ൅ and െ indicate the interface sides adjacent to the matrix and fiber, respectively.  
For a linear viscoelastic interphase obeying a generalized Maxwell model, the interface functions 

are given by 
 

ሻݐ୧ሺܦ ൌ ௜ஶܦ ൅	෍ܦ௜௝

ே

௝ୀଵ

exp൫െ t ߬௜௝⁄ ൯ (50)

 

being ܦ୧ஶ and ܦ୧୨ the elastic constants corresponding to the springs and ߬௜௝ are the relaxation times 

related to the direction ݅ and ݆‐th Maxwell branch of the model. Introducing (50) into (48), the 
following expression can be found: 
 

ሻݐ௜ሺݐ ൌ෍ݍ௜௝ሺݐሻ

ே

௝ୀଵ

൅ ௜௝ߛ௜ஶ෍ܦ

ே

௝ୀଵ

exp ቆെ
t
߬௜௝
ቇ ሾݑ௜ሺ0ሻሿ ൅ ሻሿ (51)ݐ௜ሺݑ௜ஶሾܦ

 

where ߛ௜௝ ൌ ௜௝ܦ ⁄௜ஶܦ  and ݍ௜௝ are internal variables defined by 
 

ሻݐ௜௝ሺݍ ൌ න ݌ݔ௜௝݁ܦ ቆെ
ݐ െ ݏ
߬௜௝

ቇ ቈ
ሻݏ௜ሺݑ߲

ݏ݀
቉ ݏ݀

௧

଴
 (52)

 

Considering small time step ∆ݐ and using an incremental procedure similar to that used to de-
rive (10), one can obtain from Eq. (52) the recursive expression for the internal variables 
 

ݐ௜௝ሺݍ ൅ ሻݐ∆ ൌ expቆെ
ݐ߂
߬௜௝
ቇ ሻݐ௜௝ሺݍ ൅

௜௝ߟ
ݐ߂

ቈ1 െ expቆെ
ݐ߂
߬௜௝
ቇ቉ ሺሾݑ௜ሺݐ ൅ Δݐሻሿ െ ሾݑ௜ሺݐሻሿሻ (53)

 

being ߟ௜௝ ൌ -݆ ௜௝߬௜௝ (no summation) the dashpot constant corresponding to the direction ݅ and theܦ
th Maxwell element of the viscoelastic model. Using the equations (51) and (53), the traction com-
ponents at time ݐ ൅  can be written in the form ݐ∆
 

ݐ௜ሺݐ ൅ ሻݐ∆ ൌ ሻݐ௜ሺܯ ൅ ܳ௜ሺݐሻሾݑ௜ሺ0ሻሿ ൅ ܴ௜ሾݑ௜ሺݐሻሿ ൅ ݐ௜ሺݑ௜ሾܭ ൅ Δݐሻሿ (54)
 

with 
 

ሻݐ௜ሺܯ ൌ෍expቆെ
Δt
߬௜௝
ቇ ሻݐ௜௝ሺݍ

ே

௝ୀଵ

,														 ܳ௜ሺݐሻ ൌ ௜௝expቆെߛ௜ஶ෍ܦ
ݐ ൅ Δݐ
߬௜௝

ቇ

ே

௝ୀଵ

 (55)
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ܴ௜ ൌ െ෍
௜௝ߟ
ݐ߂

ቈ1 െ expቆെ
Δݐ
߬௜௝
ቇ቉

ே

௝ୀଵ

, ௜ܭ ൌ ௜ஶܦ െ ܴ௜ 

 

As the parametric finite-volume formulation employs quadrilateral subvolumes for discretization 
of fiber and matrix, the interfaces are discretized into straight line segments as shown in Fig. 5. 
Using Eq. (54), the surface-averaged traction vector of the interface element at time ݐ ൅  can be ݐ∆
expressed as 
 

ݐሺ୍ܜ̂ ൅ ሻݐ∆ ൌ ۶୍ሺݐሻ ൅ ݐෝ୍ሺܝ۹୍ ൅ ሻ (56)ݐ∆
 

where ୍̂ܜ ൌ ሾ̂ݐଵ̂ݐଶ̂ݐଷሿ୘, ܝෝ୍ ൌ ሾuොଵ
ିuොଶ

ିuොଷ
ିuොଵ

ାuොଶ
ାuොଷ

ାሿ୘, ۹୍ is the interface element stiffness matrix and 
۶୍ሺtሻ ൌ ෝ୍ሺ0ሻܝሺtሻۿ ൅ۻሺtሻ ൅  .and ۹୍ are shown in the Appendix B ܀ ,ۻ ,ۺ ෝ୍ሺtሻ. The matricesܝ܀
Notice that ̂ݐ௜

ି ൌ ௜ݐ̂
ା. 

Here, ݑො௜
ି and ݑො௜

ା indicate the surface-averaged displacement components on the two interface 
sides െ and ൅, respectively. It is worth noting that, in accordance with Eq. (28), ሾݑ௜ሺtሻሿ ൌ
ሾݑ௜

ᇱሺݐሻሿ ൌ ௜ݑ
ᇱାሺݐሻ െ ௜ݑ

ᇱିሺݐሻ for any time t. Then, the vector ܝෝ୍ appearing in Eq. (56) can be substitut-
ed by the corresponding surface-averaged fluctuation displacement vector ܝෝ୍

ᇱ.  
For the case of isotropic interphase with linear viscoelastic effect restricted to shear, the viscoe-

lastic interface functions can be expressed as 
 

Dଵሺݐሻ ൌ Dଶሺݐሻ ൌ
ሻݐூሺܩ
݄

,	 Dଷሺݐሻ ൌ
1
݄
൤୍ܭ ൅

4
3
ሻ൨ (57)ݐሺ୍ܩ

 

where ୍ܭ and ୍ܩሺtሻ are the elastic Bulk modulus and the relaxation shear function of the interphase 
material, respectively. 

 
 
 
 
 
 
 

Figure 5: Interface element. 

 
3.6 Assembly of the Global System of Equations 

The surface-averaged tractions on the local faces of each subvolume and interface elements of the 
unit cell are related to the corresponding surface-averaged fluctuating displacements through the 
local stiffness matrices, as shown in (47) and (56), respectively.  The local stiffness matrices are 
assembled into global systems of equations by applying surface-averaged interfacial fluctuating dis-
placements and tractions compatibility conditions, followed by the specified boundary conditions. 

This approach is based on an appropriate global face numbering system, in which each internal 
local face has a corresponding global face number, common to the adjacent subvolumes or sub-
volume and interface element, while the external faces of subvolumes along the opposite unit cell 
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boundaries are numbered taking into account the periodicity conditions. These external faces, with 
similar fluctuating displacement distributions imposed by the periodicity conditions, receive com-
mon face numbers. 

The procedure for assembling the global systems is similar to that used in the finite-element al-
gorithms. In these later, the degrees of freedom are associated with the element nodes, while in the 
present finite-volume formulation they are referred to the subvolume and interface element faces. 

Imposing compatibility conditions of tractions and surface-averaged fluctuating displacements 
on the common interfaces, as well as, the specified boundary conditions, the global systems of equa-
tions takes the following forms for the in-plane and out-of-plane, respectively: 
 

۹௜௡
ீ ෡௜௡܃

ᇱ ሺݐ ൅ ሻݐ∆ ൌ ∆۱௜௡ઽത௜௡ ൅ ۵௜௡ሺݐሻ۹௢௨௧
ீ ෡௢௨௧ᇱ܃ ሺݐ ൅ ሻݐ∆ ൌ ∆۱௢௨௧ࢿത௢௨௧ ൅ ۵௢௨௧ሺݐሻ (58)

 

where ܃෡ᇱ represents the unknown global surface-averaged fluctuation displacement vectors and ۹ீ 
stands for the global stiffness matrices.  The global ∆۱ matrices are comprised of the differences in 
the material stiffness matrices of adjacent subvolumes and ۵ contains known surface-averaged vis-
coelastic strain contributions. To eliminate the singularity of the systems (58), the four corner sub-
volume faces of the unit cell are constrained. The solutions of these systems enable the calculation 
of the fluctuating displacement coefficients and thus displacement, strain and stress fields in each 
subvolume for the time step. 
 
3.7 Homogenization Procedures 

Composite materials with linear viscoelastic phases exhibit effective linear viscoelastic behaviors 
(Hashin, 1965, 1970a). Then, the effective constitutive relation for these materials can be written in 
the form 
 

௜௝ߪ
∗ ሺݐሻ ൌ ௜௝௞௟ܥ

∗ ሺݐሻߝ௜௝
∗ ሺ0ሻ ൅ න ௜௝௞௟ܥ

∗ ሺݐ െ ሻݏ
௜௝ߝ݀

∗ ሺݏሻ

ݏ݀
ݏ݀

௧

଴
 (59)

 

where ߪ௜௝
∗  and ߝ௜௝

∗  are the effective unit cell stress and strain components, respectively, and ܥ௜௝௞௟
∗  

indicate the material homogenized relaxation functions. For the particular case of relaxation test, 
with imposed macroscopic constant strain components ߝ௞̅௟, the effective stresses are given by 
 

௜௝ߪ
∗ ሺݐሻ ൌ ௜௝௞௟ܥ

∗ ሺݐሻߝ௞̅௟  (60)
 

The subvolume-averaged strains ߝ௜̅௝
ሺ௤ሻof the ݍ-th subvolume in the discretized unit cell are relat-

ed to the macroscopic strains by the expression 
 

௜̅௝ߝ
ሺ௤ሻሺݐሻ ൌ ௜௝௞௟ܣ

ሺ௤ሻ ሺݐሻߝ௞̅௟ (61)
 

being ܣ௜௝௞௟
ሺ௤ሻ  the subvolume strain concentration tensor components. The subvolume-averaged strains 

and stresses of a subvolume ݍ with volume ߗ௤ are defined by the relations 
 

௜̅௝ߝ
ሺ௤ሻሺݐሻ ൌ

1
Ω௤

න ε௜௝
ஐ೜

ሺݐሻ݀Ω௤,									 ത௜௝ߪ
ሺ௤ሻሺݐሻ ൌ

1
Ω௤

න σ௜௝
ஐ೜

ሺݐሻ݀Ω௤ (62)

 

Using the definition of effective unit cell stress, the following expression can be readily derived: 
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௜௝ߪ
∗ ሺݐሻ ൌ ෍ݒሺ௤ሻߪത௜௝

ሺ௤ሻሺݐሻ

ே೜

௤ୀଵ

 (63)

 

where ௤ܰ is the total number of subvolumes in the discretized unit cell and ݒሺ௤ሻ the volume fraction 
of the subvolume ݍ, i.e., ݒሺ௤ሻ ൌ ௤ߗ Ω⁄ , being Ω the unit cell volume. 

Using the relations (25), (61) and (63), the effective stresses at time ݐ ൅  can be written in the ݐ߂
form 
 

௜௝ߪ
∗ ሺݐ ൅ ሻݐ∆ ൌ ෍ݒሺ௤ሻ ቂܪഥ௜௝

ሺ௤ሻሺݐሻ ൅ ௜௝௞௟ܥ
ஶሺ௤ሻܣ௞௟௠௡

ሺ௤ሻ ሺݐ ൅ ௠̅௡ቃߝሻݐ∆

ே೜

௤ୀଵ

 (64)

 

where ܪഥ௜௝
ሺ௤ሻ indicates the subvolume-averaged components of the tensor ۶ defined in (22). Consider-

ing that ܪഥ௜௝
ሺ௤ሻሺݐሻ ൌ 0 at t ൏ 0 and using (60) together with (64), the homogenized elastic stiffness 

tensor can be obtained as 
 

௜௝௠௡ܥ
∗ ሺ0ሻ ൌ ෍ݒሺ௤ሻ

ே೜

௤ୀଵ

௜௝௞௟ܥ
ஶሺ௤ሻܣ௞௟௠௡

ሺ௤ሻ ሺ0ሻ (65)

 

Considering that the internal stress variables are null at time ݐ ൌ 0, it follows from Eq. (22) the 
relation 
 

ഥ௜௝ܪ
ሺ௤ሻሺ0ሻ ൌ ൫ ௜ܲ௝௞௟

ሺ௤ሻ ൅ ܴ௜௝௞௟
ሺ௤ሻ ൯ߪതஶ௞௟

ሺ௤ሻ ሺ0ሻ (66)
 

where ௜ܲ௝௞௟
ሺ௤ሻ and ܴ௜௝௞௟

ሺ௤ሻ  are the components of the tensors ℙ and Թ, respectively, for the ݍ-th sub-

volume. 
The homogenized relaxation functions at any time ݐ ൅  can be computed in an incremental ݐ߂

way using the following recursive expression: 
 

௜௝௞௟ܥ
∗ ሺݐ ൅ Δݐሻߝ௞̅௟	 ൌ ෍ݒሺ௤ሻ ቂܪഥ௜௝

ሺ௤ሻሺݐሻ ൅ ௜௝௞௟ܥ
ஶሺ௤ሻܣ௞௟௠௡

ሺ௤ሻ ሺݐ ൅ ௠̅௡ቃߝሻݐ∆

ே೜

௤ୀଵ

 (67)

 

once that all the terms appearing on the right side are previously known. The homogenized relaxa-
tion functions at time ݐ ൅ -are calculated by solving the systems (58) for six independent elemen ݐ߂
tary macroscopic strain states. In each case, only a single unit strain component ߝ௜̅௝	ሺ݅ ൒ ݆ሻ is ap-

plied, while the other strain components are kept to zero. For instance, Case 1: ߝଵ̅ଵ	 ൌ 1 with all 
other components ߝ௜̅௝	 ൌ 0; Case 2: ߝଵ̅ଶ	 ൌ 1 with all other components ߝ௜̅௝	 ൌ 0; and so on. For each 

elementary strain loading, the solutions of (58) enable the evaluation of  ߝ௜̅௝
ሺ௤ሻሺݐ ൅ -ሻ for all subݐ∆

volumes resident in the unit cell domain and, consequently, the corresponding set of homogenized 
relaxation functions can be evaluated through (67).  

Using the above described numerical procedure, the homogenized relaxation functions are eval-
uated at a set of discrete times ݐ௡ defined by the selected ∆ݐ values. In the examples shown in the 
next section, Prony series are used for interpolation of the discrete points. 
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3.8 Application to Large Displacement Problems 

An important role of the micromechanics theories is the evaluation of the material effective proper-
ties for subsequent use as input data for the computation of the macroscopic behavior of structures 
and other systems constituted by the same composite material. In the case of macro mechanics be-
havior involving geometrical nonlinearities, the analysis usually employs specialized energetically 
conjugate measures of strain and stress. For instance, in Lagrangian material description frame-
work, it is common the use of the second Piola-Kirchhoff stress tensor together with the Green-
Lagrange strain tensor, or the first Piola-Kirchhoff stress tensor with the deformation gradient ten-
sor(Bathe, 2014). 

As mentioned above, the presented formulation has been particularly derived for homogeniza-
tion of viscoelastic periodic materials in the range of small displacements. Despite this fact, the ho-
mogenized relaxation functions obtained by (67) may be employed in incremental viscoelastic macro 
mechanics analysis involving large displacements with small strains and based on the second Piola-
Kirchhoff stress and Green-Lagrange strain tensors. This is justified by the invariance of these stress 
and strain measures with respect to the rigid body motion, what implies that any material descrip-
tion formulated for infinitesimal displacement range using engineering stress and strain tensors can 
readily be applied to large displacement with small strain analysis, provided the second Piola-
Kirchhoff stress and Green-Lagrange strain tensors are used. 

On the other hand, the unit cell boundary-value problem corresponding to the homogenization 
approach described herein can be more convenient derived using the first Piola-Kirchhoff stress and 
the deformation gradient tensor, what enables to apply homogenous boundary conditions and write 
the equilibrium equations in a more direct and physically clearer manner. This is also pointed out 
by Cavalcante & Pindera (2014a) in the case of a homogenization framework derived for hyperelas-
tic periodic materials undergoing finite deformations using the generalized FVDAM.  The derivation 
of the unit cell boundary-value problem for homogenization of viscoelastic periodic composite mate-
rials under large displacement domain is out of the scope of the present work.  
 
4 NUMERICAL RESULTS 

4.1 Composite Material with Viscoelastic Matrix and Elastic Fibers 

The objective of this first example is to demonstrate the capability of the proposed model to de-
scribe the homogenized relaxation behavior of a two-phase composite material. The material has a 
periodic microstructure constituted by a linear viscoelastic isotropic matrix reinforced by unidirec-
tional elastic long fibers with volume fraction ݒ௙ ൌ 0.54. 

The viscoelastic matrix behavior is characterized by a Maxwell model with Young's modulus 
௠ܧ ൌ 3.27 MPa, dashpot modulus ߟ௠ ൌ 300	GPa ∙ hr and constant Poisson ratio ν௠ ൌ 0.38. On the 
other hand, the fiber elastic properties are ܧ௙ ൌ 68.67 MPa and ν௙ ൌ 0.21. 

To verify the performance of the homogenization model with respect to the convergence, three 
square meshes with different refinement degrees (coarse, medium and fine) were used for the unit 
cell discretization (Fig. 6). Six hundred incremental steps with a time interval ݐ߂ ൌ 10	sec	 were 
made for each analysis. The results obtained for the homogenized relaxation functions ܥଵଶଵଶ

∗  and 
ଶଶଶଶܥ
∗  are illustrated in Figures 7 and 8, respectively, compared with analytical solutions obtained 



2724     R.S. Escarpini Filho and S.P.C. Marques / A Model for Homogenization of Linear Viscoelastic Periodic Composite Materials… 

Latin American Journal of Solids and Structures 13 (2016) 2706-2735 

by Luciano and Barbero (1995) and Debotton and Tevet-Deree (2004). The former authors em-
ployed the Periodic Microstructure Method to derive closed-form expressions in the Laplace domain 
for the homogenized relaxation functions of periodic composite materials with square array of infi-
nitely long elastic fibers in a linear viscoelastic matrix.  The inversion to the time domain is carried 
out analytically for the case of viscoelastic matrix whose behavior can be represented by a Maxwell 
model connected in series to a Kelvin-Voigt model. On the other hand, Debotton and Tevet-Deree 
(2004) presented analytical equations in the time domain for the relaxation moduli of unidirectional 
fiber-reinforced composites with random array of linear elastic fibers embedded in a viscoelastic 
matrix whose behavior is elastic in dilatation and governed by a Zener model in shear. 

As it can be seen in Figures 7 and 8, the rate of convergence of the effective moduli with the 
mesh refinement is very rapid and the calculated relaxation functions are in excellent agreement 
with the closed-form analytical results due to Luciano and Barbero (1995). The differences between 
the effective relaxation curves obtained using Debotton and Tevet-Deree (2004) and those corre-
sponding to the other two solutions could be explained by the hypotheses related to the composite 
microstructures. The analytical expressions due to Debotton and Tevet-Deree (2004) were derived 
for composites with random array of fibers and, consequently, they are approximate for the cases of 
composites with periodic microstructures. 
 

 

Figure 6: Unit cell discretizations for the fiber-reinforced composite material. 

 
4.2 Composite Material with Viscoelastic Interphase 

In this example, the proposed model is applied to investigate the influence of a thin viscoelastic 
interphase on the relaxation of the homogenized axial shear stiffness of a periodic fiber reinforced 
composite with linear elastic fibers and matrix. Fiber and matrix have the following elastic proper-
ties, respectively: 
 

௙ܧ ൌ 193	GPa, ν௙ ൌ 0.2 
௠ܧ ൌ 62.7	GPa, ν௠ ൌ 0.22 

 

The fibers present a volume fraction of 50% and circular cross section with a radius r ൌ
100	μm. The interphase has a thickness h ൌ 20	nm and its material is linear elastic in dilatation 
and linear viscoelastic in shear. This viscoelastic behavior is defined by a Maxwell model with the 
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following properties: ܩ௜ ൌ 1.608ൈ10ିଷ	GPaand ߬௜ ൌ 1	hr. The Poisson's ratio is considered constant 
and given by ν୧ ൌ 0.375. 
 

 

Figure 7: Homogenized relaxation function ܥଵଶଵଶ
∗  of the fiber-reinforced composite material. 

 

Figure 8: Homogenized relaxation function ܥଶଶଶଶ
∗  of the fiber-reinforced composite material. 

 
The analyses included two different discretization cases: a) square unit cell with three constitu-

ent phases (matrix, interphase and fiber) and b) square unit cell with two phases (matrix and fiber) 
and imperfect interface. Figure 9 shows the results found for the homogenized axial shear relaxation 
curves ܩ௔∗ሺݐሻ for the two discretization cases together with the analytical solution presented in 
Hashin (1991), which considers the case of a thin linear viscoelastic interphase between two elastic 
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components. This analytical solution is based on closed-form results for elastic composites with in-
terphase and correspondence principle for linear viscoelastic materials. As it can be observed, the 
numerical results obtained by using the proposed viscoelastic imperfect interface model are in excel-
lent agreement with those corresponding to three-phase unit cell, as well as, with the Hashin's ana-
lytical solution. The differences between the numerical and analytical solutions are also shown in 
Fig. 9. It is observed that the values of these differences, for the whole time interval, are smaller 
than 2%, what indicates the very good performance of the proposed viscoelastic model in relation to 
the closed-form analytical solution. 
 

 

Figure 9: Effective axial shear relaxation function. 

 
4.3 Viscoelastic Multilayers with Periodic Architecture and Interphases 

In this example, the proposed homogenization model is applied to determine the effective relaxation 
functions of periodic multilayers comprised of alternating viscoelastic and elastic layers with elastic 
interphases between them. Multilayers with flat and sinusoidal wavy architectures are considered 
(Fig. 10(a)). The unit cell and its discretization employed in the analyses for the case of amplitude-
to-wavelength ratio of 10% are shown in Fig. 10(b). 

The material behavior of the viscoelastic layer is simulated by a generalized Maxwell model 
with the following properties: ܧஶ ൌ 72.4 GPa, ܧଵ ൌ 36.2 GPa, ߟଵ ൌ 100	GPa ∙ sec and Poisson's 
ratio constant ν ൌ 0.3. The reinforcing elastic layers present a volume fraction of 20% and elastic 
properties: ܧ ൌ 420	GPa and ν ൌ 0.25. The interphase has thickness ݄ ൌ 20	nm and elastic con-
stants ܩ௜ ൌ ௠ and ν୧ܩ݇ ൌ 0.30, where ܩ௠ is the shear elastic modulus of the viscoelastic layers and 
݇ is a variable parameter. Different values of ݇ are assumed in order to investigate the range of the 
interphase stiffness for which the hypothesis of discontinuity in displacements and continuity in 
tractions across the interfaces provides consistent results when compared with the three phase unit 
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cell solutions. Figures 11 - 18 show the results of homogenized relaxation functions obtained by the 
proposed model for different values of ݇, considering two situations: a) three-phase unit cell (viscoe-
lastic and elastic layers separated by the interphases) and b) two-phase unit cell (viscoelastic and 
elastic layers separated by imperfect interfaces). 

Figures 11–14 show that, for the effective relaxation moduli Cଶଶଶଶ
∗  and Cଵଶଵଶ

∗ , the curves corre-
sponding to the cases of three-phase unit cell and two-phase unit cell with imperfect interface are 
practically coincident for values of ݇ ൑ ݇௟௜௠ ≅ 10 and, from this point, the mentioned curves exhibit 
a rapid and increasing separation.This means that the hypothesis of continuity in tractions and 
discontinuity in displacements, adopted for the derivation of the imperfect interface element, is not 
adequate for modeling of composites with interphases of high stiffness in relation to the other phas-
es. The limit value of the interphase stiffness to applicability of the imperfect interface model de-
pends on the composite features. In general, as commented in section 3.5, the hypothesis of continu-
ity in tractions and discontinuity in displacements is adequate when the interphase material has 
stiffness small in relation to the other composite phases. The homogenized relaxation curves in Fig-
ures 15-18 also show the limitation of the imperfect interface model with respect to the values of ݇. 

The influence of the wavy architecture on the stiffness of multilayers can also be observed by 
comparing the homogenized relaxation curves of the flat and wavy multilayers (Figures 15-18). As 
shown in these figures, the waviness can reduce substantiallythe stiffness of multilayers. This reduc-
tion is strongly dependent on the amplitude-to-wavelength ratio of the layers and interphase stiff-
ness. It is shown from the results that the influence of the interphase stiffness is particularly very 
significant for the case of wavy multilayers. 
 

a)  

b)  

Figure 10: a) Periodic multilayer composite with sinusoidal wavy architecture and  

b) the repeating unit cell and its discretization. 
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Figure 11: Variation of Cଶଶଶଶ
∗  with the parameter k ൌ G୧ G୫⁄  for the flat multilayer. 

 
 

 

Figure 12: Variation of ܥଶଶଶଶ
∗  with the parameter k ൌ ௜ܩ ⁄௠ܩ  for the wavy multilayer. 
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Figure 13: Variation of ܥଵଶଵଶ
∗  with the parameter ݇ ൌ ௜ܩ ⁄௠ܩ  for the flat multilayer. 

 
 

 

Figure 14: Variation of ܥଵଶଵଶ
∗  with the parameter ݇ ൌ ௜ܩ ⁄௠ܩ  for the wavy multilayer. 
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Figure 15: Homogenized relaxation function Cଶଶଶଶ
∗  of the flat multilayer for different values of the ratio ݇ ൌ ௜ܩ ⁄௠ܩ . 

 
 

 

Figure 16: Homogenized relaxation function ܥଶଶଶଶ
∗  of the wavy multilayer for different values of the ratio ݇ ൌ ௜ܩ ⁄௠ܩ . 
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Figure 17: Homogenized relaxation function ܥଵଶଵଶ
∗  of the flat multilayer for different values of the ratio݇ ൌ ௜ܩ ⁄௠ܩ . 

 

 

Figure 18: Homogenized relaxation function ܥଵଶଵଶ
∗  of the wavy multilayer for different values of the ratio݇ ൌ ௜ܩ ⁄௠ܩ . 

 
5 CONCLUSIONS 

This paper presented a theoretical model for evaluation of the homogenized moduli of unidirectional 
periodic composite materials with linear viscoelastic phases, including flexible interphases between 
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the matrix and the fibers, based on the FVDAM theory. The model can be applied to materials 
composed of repeating unit cells with arbitrary internal architectural arrangements of fibers. To 
model the influence of the viscoelastic interphases, the paper presented an equivalent imperfect 
interface element derived under the hypothesis of continuity in tractions and discontinuity in dis-
placements. 

The proposed model operates directly in the time domain using a numerical incremental time-
stepping procedure based on the concept of internal stress variables applicable to viscoelastic behav-
ior described by generalized Maxwell models. 

To demonstrate the performance of the presented formulation, the paper presented examples of 
homogenization for fiber reinforced composites and periodic multilayer materials with flat and wavy 
architectures. The efficiency of the imperfect interface element was verified through comparisons of 
computed homogenized viscoelastic moduli with analytical solutions and also with results obtained 
by the discretization of the repeating unit cell as constituted by three phases (matrix, reinforcement 
and interphase). Such comparisons showed a good performance of the proposed formulation. 
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APPENDIX A 

Matrices appearing in the subvolume derivation are given below. 
 

۲௜௡ ൌ ௜௡࢔ൣ܏܉ܑ܌
ሺଵሻ ௜௡࢔

ሺଶሻ ௜௡࢔
ሺଷሻ ௜௡࢔

ሺସሻ൧, ۲௢௨௧ ൌ ௢௨௧࢔ൣ܏܉ܑ܌
ሺଵሻ ௢௨௧࢔

ሺଶሻ ௢௨௧࢔
ሺଷሻ ௢௨௧࢔

ሺସሻ ൧ (A.1)
 

with n୧୬
ሺ୤ሻ ൌ ൤

nଶ 0 nଷ
0 nଷ nଶ

൨
ሺ୤ሻ

	and			n୭୳୲
ሺ୤ሻ ൌ ሾnଶ nଷሿሺ୤ሻ. The symbol diag means diagonal matrix. 

 
۱୧୬ ൌ ሾ۱୧୬܏܉ܑ܌

ஶ ۱୧୬
ஶ ۱୧୬

ஶ ۱୧୬
ஶሿ, ۱୭୳୲ ൌ ሾ۱୭୳୲ஶ܏܉ܑ܌ ۱୭୳୲ஶ ۱୭୳୲ஶ ۱୭୳୲ஶ ሿ (A.2)

 
where C୧୬

ஶ and C୭୳୲ஶ  are given in Eq. (40). 
 

۶෡୧୬ ൌ ൣ۶෡୧୬
ሺଵሻ ۶෡୧୬

ሺଶሻ ۶෡୧୬
ሺଷሻ ۶෡୧୬

ሺସሻ൧
୘
, ۶෡୭୳୲ ൌ ൣ۶෡୭୳୲

ሺଵሻ ۶෡୭୳୲
ሺଶሻ ۶෡୭୳୲

ሺଷሻ ۶෡୭୳୲
ሺସሻ ൧

୘
 (A.3)

 

with H෡୧୬
ሺ୤ሻ ൌ ቎

H෡ଶଶ
H෡ଷଷ
H෡ଶଷ

቏

ሺ୤ሻ

and H෡୭୳୲
ሺ୤ሻ ൌ ቈ

H෡ଵଶሺtሻ
H෡ଵଷሺtሻ

቉
ሺ୤ሻ

 

 

௜௡ۼ ൌ ௜௡࢔ൣ
ሺଵሻ ௜௡࢔

ሺଶሻ ௜௡࢔
ሺଷሻ ௜௡࢔

ሺସሻ൧
୘
, ௢௨௧ۼ ൌ ௢௨௧࢔ൣ

ሺଵሻ ௢௨௧࢔
ሺଶሻ ௢௨௧࢔

ሺଷሻ ௢௨௧࢔
ሺସሻ ൧

୘
 (A.4)

 
ഥ௜௡ۯ ൌ ۲௜௡۱௜௡۳௜௡۰௜௡ۯ௜௡ , ഥ௢௨௧ۯ ൌ ۲௢௨௧۱௢௨௧۰௢௨௧ۯ௢௨௧  (A.5)

where ۳௜௡ ൌ ,۳ഥ۳തሿ	ሾ۳ത۳ത܏܉ܑ܌ ۰௜௡ ൌ ,۸መ۸መ۸መ۸መ۸መ۸መ۸መ۸መ൧ൣ܏܉ܑ܌ ۰௢௨௧ ൌ  ,۸መ۸መ۸መ۸መ൧ൣ܏܉ܑ܌
 

A୧୬ ൌ ൤
Aସ 0 Aଵ 0 Aଷ 0 Aଶ 0
0 Aସ 0 Aଵ 0 Aଷ 0 Aଶ

൨
୘

	and	ۯ௢௨௧ ൌ ሾAସ Aଵ Aଷ Aଶሿ୘ 

઴୧୬ ൌ ,ഥ୧୬ۼഥ୧୬ۯ୧୬ۺ ઴୭୳୲ ൌ ഥ୭୳୲ (A.6)ۼഥ୭୳୲ۯ୭୳୲ۺ
 

૑௜௡ ൌ ௜௡۱௜௡ۼ௜௡ۺ
ஶ, ૑௢௨௧ ൌ ௢௨௧۱௢௨௧ஶۼ௢௨௧ۺ  (A.7)

 
ી୧୬ ൌ 	,௜௡۾ഥ௜௡ۯ௜௡ۺ ી௢௨௧ ൌ ௢௨௧ (A.8)۾ഥ௢௨௧ۯ௢௨௧ۺ

 
with 
 

௜௡ۺ ൌ ൤
Lଵ 0 Lଶ 0 Lଷ 0 Lସ 0
0 Lଵ 0 Lଶ 0 Lଷ 0 Lସ

൨
୘

, ௢௨௧ۺ								 ൌ ሾLଵ Lଶ Lଷ Lସሿ 

 

ഥ௜௡ۼ ൌ ቂ0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1

ቃ
୘
ഥ௢௨௧ۼ																								, ൌ ሾ0 0 1 1ሿ୘ 
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௜௡۾ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

0 0 1 2⁄ 0 0 0 െ1 2⁄ 0
െ1 2⁄ 0 0 0 1 2⁄ 0 0 0
0 0 1 2⁄ 0 0 0 1 2⁄ 0
1 2⁄ 0 0 0 1 2⁄ 0 0 0
0 0 0 1 2⁄ 0 0 0 െ1 2⁄
0 െ1 2⁄ 0 0 0 1 2⁄ 0 0
0 0 0 1 2⁄ 0 0 0 1 2⁄
0 1 2⁄ 0 0 0 1 2⁄ 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

௢௨௧۾ ൌ ൦

0 1 2⁄ 0 െ1 2⁄
െ1 2⁄ 0 1 2⁄ 0
0 1 2⁄ 0 1 2⁄
1 2⁄ 0 1 2⁄ 0

൪ 

 
۰ഥ௜௡ ൌ ௜௡۾ െ ഥ௜௡઴௜௡ۼ

ି૚ી௜௡,	 														 ۰ഥ௢௨௧ ൌ ௢௨௧۾ െ ഥ௢௨௧઴௢௨௧ۼ
ି૚ ી୭୳୲ (A.9)

 

୧୬܁ ൌ ୧୬۱୧୬ۼ
ஶ െ ഥ୧୬઴୧୬ۼഥ୧୬ۯ

ି૚૑୧୬,											܁୭୳୲ ൌ ୭୳୲۱୭୳୲ஶۼ െ ഥ୭୳୲઴୭୳୲ۼഥ୭୳୲ۯ
ି૚૑୭୳୲ 

(A.10
)

 

۴୧୬ ൌ ۲୧୬ െ ഥ୧୬઴୧୬ۼഥ୧୬ۯ
ି૚ۺ୧୬۲୧୬,											۴୭୳୲ ൌ ۲୭୳୲ െ ഥ୭୳୲઴୭୳୲ۼഥ୭୳୲ۯ

ି૚  ୭୳୲۲୭୳୲ۺ
(A.11

)
 
APPENDIX B 

Matrices appearing in the imperfect interface element derivation are given below. 
 

ۻ ൌ ቎෍expቆെ
Δݐ
߬ଵ௝
ቇ ොଵ௝෍expቆെݍ

Δݐ
߬ଶ௝

ቇ ොଶ௝෍expቆെݍ
Δݐ
߬ଷ௝

ቇ ොଷ௝ݍ

ே

௝ୀଵ

ே

௝ୀଵ

ே

௝ୀଵ

቏

୘

 (B.1)

 

ۿ ൌ ൥
െܳଵ 0 0 ܳଵ 0 0
0 െܳଶ 0 0 ܳ 0
0 0 െܳଷ 0 0 ܳଷ

൩ (B.2)

 

܀ ൌ ൥
െܴଵ 0 0 ܴଵ 0 0
0 െܴଶ 0 0 ܴଶ 0
0 0 െܴଷ 0 0 ܴଷ

൩ (B.3)

 

۹ூ ൌ ൥
െܭଵ 0 0 ଵܭ 0 0
0 െܭଶ 0 0 ଶܭ 0
0 0 െܭଷ 0 0 ଷܭ

൩ (B.4)

 
where the components Q୧, R୧ and K୧ are defined in Eq. (55). 


