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Abstract

In this paper, a micromechanical extension of the finite-volume
direct averaging micromechanics theory (FVDAM) is presented for
evaluation of the homogenized relaxation moduli of linear viscoelas-
tic unidirectional fiber reinforced composites with periodic micro-
structures. Such materials are assumed as composed of repeating
unit cell with arbitrary internal architectural arrangements of fibers
coated by thin flexible interphases. These interphases are replaced
by equivalent imperfect interface elements with imposed continuity
in tractions and discontinuity in displacements. Indeed, the pro-
posed computational procedure allows an easy and efficient treat-
ment of the displacement discontinuity condition across the inter-
faces. The viscoelastic behavior of the constituent phases is mod-
eled using the generalized Maxwell model. The formulation is par-
ticularly derived for the range of small strains, operating directly in
the time domain using a numerical incremental time-stepping pro-
cedure based on the concept of internal stress variables. The per-
formance of the proposed approach is demonstrated through ho-
mogenization of viscoelastic fiber reinforced composites and period-
ic multilayer materials with flat and wavy architectures.
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The number and variety of engineering applications of fiber reinforced composite materials have
greatly increased in recent decades. To assure the continuity of this rapid widespread use, it is es-
sential to have a more complete understanding about the composite material behaviors at different
scales. Among the available tools for contributing to this better understanding, the micromechanical
theories occupy an important place. Micromechanical modeling provides crucial information on the
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relationships between the macroscopic structural behavior of composite materials and the local
properties of the constituent phases and their microstructural arrangement. Then, it contributes to
the development of new engineered composite materials with desired effective or homogenized prop-
erties, identifying the more appropriate constituent phases and microstructural details, based on a
multiscale theoretical framework (Cavalcante et al., 2012). Furthermore, for the level of structural
components, the micromechanics theory contributes by providing the essential material homoge-
nized properties required by the conventional procedures of macroscopic structural analysis.

A review of the literature shows a large number of analytical and numerical micromechanical
models proposed for estimating the homogenized mechanical behavior of composites with random
and periodic microstructures (Nemat-Nasser and Mori, 1999, Zaoui, 2002, Cavalcante et al., 2012).
However, most of these models are applicable to linear elastic two-phase composites. Homogeniza-
tion models for nonlinear multiphase composites are less developed and currently have been a sub-
ject of significant research (Doghri and Tinel, 2005, Khatam and Pindera, 2009, Cavalcante et al.,
2011).

The first contributions to the homogenization of viscoelastic composites were given by Hashin
(1965, 1970a,b) and Christensen (1969). They used the well-known composite spheres assemblage
model (Hashin, 1962), developed for linear elastic materials, together with the correspondence prin-
ciple between linear elastic and viscoelastic behaviors to predict the effective moduli of two-phase
linear viscoelastic composites. For these viscoelastic composites exhibiting random microstructures,
many proposed homogenization approaches consist of extensions of the analytical classical mean-
field models based on the Eshelby ellipsoidal inclusion theory (Eshelby, 1957), making use of that
correspondence principle (Laws and Mc Laughlin, 1978, Wang and Weng, 1992, Brinson and Lin,
1998, Friebel et al., 2006). On the other hand, for the case of periodic microstructures, the homoge-
nization viscoelastic problem is, in general, solved by using the concept of repeating unit cell with
periodic boundary conditions (Luciano and Barbero, 1995, Cavalcante and Marques, 2014). The
analytical homogenization models for this last class of composites are restricted to repeating unit
cell with particular geometrical shape and very simple internal architectural arrangements. Then,
for more elaborated microstructure the use of numerical procedures is needed for accurate predic-
tions of the effective viscoelastic moduli. In these latter modeling studies, the finite-element method
is, typically, the more employed numerical technique.

An attractive alternative to the finite-element method in the solution of periodic repeating unit
cell (RUC) problems is the parametric finite-volume theory developedby Cavalcante et al. (2007)
having as basis the original version constructed by Bansal and Pindera (2003). In that parametric
version, the heterogeneous material microstructure is discretized using quadrilateral subvolumes
which are mapped into corresponding reference square subvolumes. This mapping has been incorpo-
rated into the standard finite-volume direct averaging micromechanics (FVDAM) model and ap-
plied successfully to solve several thermal and mechanical homogenization problems (Gattu et al.,
2008, Katham and Pindera, 2009, Cavalcante et al., 2011, Cavalcante and Marques, 2014, Escarpini
Filho and Marques, 2014). To improve some local interfacial conformability shortcomings between
adjacent subvolumes exhibited by the structural version of the parametric finite-volume theory,
Cavalcante and Pindera (2012) constructed a higher order formulation on rectangular subdomains
named generalized finite-volume theory. Subsequently, this formulation was incorporated into the
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FVDAM framework and applied to linear elastic periodic materials undergoing finite deformations
(Cavalcante and Pindera, 2014a). The results show that the different orders of the FVDAM theory
are very capable of reproducing the homogenized response with good accuracy (Cavalcante and
Pindera, 2014b). This issue can also be seen in Cavalcante and Marques (2014) for the viscoelastic
macroscopic response in infinitesimal deformation domain. Then, the higher computational cost
required by the generalized FVDAM justifies the use of the lower order FVDAM version for the
evaluation of the homogenized response.

In this paper a novel micromechanical extension of the FVDAM theory is presented for evalua-
tion of the homogenized relaxation moduli of linear viscoelastic unidirectional fiber reinforced com-
posites with periodic microstructures including the concept of imperfect interfaces. Such materials
are assumed as composed of repeating unit cell with arbitrary internal architectural arrangements of
fibers coated by thin flexible interphases. These interphases are replaced by equivalent imperfect
interfaces with imposed continuity in tractions and discontinuity in displacements (Hashin, 1990,
Hashin, 1991, Matzenmiller and Gerlach, 2004, Benveniste, 2006). The strategy consist of determin-
ing the effective response of a true three-phase (matrix, interphase and fiber) composite material
solving a homogenization problem for a two-phase (matrix and fiber) equivalent composite. To ad-
dress this issue a new imperfect interface element has been derived and incorporated into the
FVDAM framework. It is worth mentioning that, for the first time, an imperfect interface element
has been formulated with basis on the finite-volume theory for mechanical analysis of composite
material. So, the present formulation corresponds to the first version of the FVDAM theory employ-
ing the concept of imperfect interfaces for homogenization of fiber reinforced periodic viscoelastic
composites with thin interphases located between the matrix and the fibers.

Indeed, the proposed computational procedure allows an easy and efficient treatment of the dis-
placement discontinuity condition across the interfaces. This can be justified by the fact that in the
FVDAM theory the displacement compatibility conditions are imposed in terms of subvolume sur-
face-averaged interfacial values, differently from the classical finite element method that employs
compatibility of nodal displacements of adjacent elements. The viscoelastic behavior of the constitu-
ent phases (matrix, fibers and interphases) is modeled using the generalized Maxwell model
(Marques and Creus, 2012). The formulation is particularly derived for the range of small strains,
operating directly in the time domain using a numerical incremental time-stepping procedure based
on the concept of internal stress variables (Simo and Hughes, 1998, Tran et al., 2011). All the ho-
mogenized components of the relaxation tensor are numerically evaluated at different time steps
and their discrete values stored along the analysis for generation of the corresponding relaxation
curves through the use of appropriate interpolation functions.Although the presented formulation
has been derived for small displacements, it can be readily extended to the case of large rotations
with small strains, as briefly explained in Subsection 3.8.

The paper is organized as follows. The local three dimensional viscoelastic formulation used for
the individual phases are presented in Section 2. All the numerical procedures used by the homoge-
nization viscoelastic model are described in Section 3. The basic ideas of the FVDAM are briefly
presented, followed by the detailed description of the formulation proposed for viscoelastic homoge-
nization. The methodology used to model the imperfect interface element is also derived in Section
3. Finally, numerical examples of viscoelastic homogenization are presented in Section 4. These ex-
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amples include viscoelastic fiber reinforced composites and multilayer materials with flat and wavy
architectures. Comparisons with analytical solutions show the good performance of the homogeniza-
tion approach.

NOMENCLATURE

strain concentration tensor component
relaxation function

viscoelastic interface function

Young's modulus

shear modulus

auxiliary time-dependent function

bulk moduli of the viscoelastic model
number of branches of the viscoelastic model
length of the subvolume face

SE>xX T OmY O

coefficient of the polynomial approximation

matrix dependent on the phase properties and time interval
matrix of subvolume face unit normal vectors

vector of surface-averaged viscoelastic strain contributions
time-dependent function

inverse of the volume-averaged Jacobian

stiffness matrix

vector of subvolume face unit normal vectors

vector of polynomial approximation coefficients

QS 2RV TN

global surface-averaged fluctuation displacement vector

interphase thickness

unit vector component
internal stress variables
time, traction component

displacement component

~

fluctuating displacement component
volume fraction

Cartesian global coordinate
Cartesian local coordinate

KRR < & g ¢+ 3 &

deviatoric strain tensor
deviatoric internal stress variables

deviatoric stress tensor

- n . a o

surface-averaged traction vector

=

surface-averaged fluctuation displacement vector
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Q unit cell volume

AC matrix of differences in the material stiffness matrices
At time interval

viscoelastic relative parameter

strain component

surface-averaged strain

macroscopic strain

viscosity constant, parametric coordinate
shear moduli of the viscoelastic model
Poisson ratio

parametric coordinate

stress component

surface-averaged stress

A Qg ™M < = 3 ol o om <

relaxation time

C fourth-order elastic constitutive tensor
M, P,R fourth-order tensors

Subscripts and superscripts
interphase, interface
subvolume face number, fiber

hydrostatic quantity
subvolume vertex number
subvolume number

time
bulk
global
shear

T AX QT O~

elastic branch of the viscoelastic material model

8

in in-plane

out out-of-plane

+ side adjacent to the matrix
— side adjacent to the fiber

*  effective quantity

2 LOCAL LINEAR VISCOELASTIC FORMULATION

The composite materials considered in this paper are composed in general of linear viscoelastic iso-
tropic phases consisting of a matrix embedding unidirectional long fibers coated with thin inter-
phases. The fibers and interphases have a periodic spatial arrangement inside the matrix so that the
composite material can be assumed as constructed by replicated fundamental building blocks, called
repeating unit cells (RUCs), as shown in Fig. 1. It is assumed that the viscoelastic behavior of the
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constituent materials is governed by a generalized Maxwell model with an arbitrary number n of
branches.

In the three-dimensional isotropic material viscoelastic analysis, the stress and strain states are
usually decomposed into their hydrostatic and deviatoric parts. The constitutive relation for the
hydrostatic state can be written as

€’ (S)

g°(t) = Cx(t)e?(0) + j Cy(t— s) (1)

where d® and €° are the hydrostatic stress and strain, respectively, and Ck(t) denotes the bulk
relaxation function. For the deviatoric state, the relation between the deviatoric stress (s) and
strain (e) tensors is given by

de (s)

s(t) = C,(t)e(0) +J Cyu(t—s) ds (2)

being C,(t) the shear relaxation function.
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Figure 1: Periodic composite material and repeated unit cell (RUC).
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Figure 2: Generalized Maxwell model.
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For the generalized Maxwell model with N + 1 branches (Fig. 2), the bulk and shear relaxation
functions are defined by

() = 3K, + Z 3K, exp(— t/75)
. (3)
Cu(t) = 2pe + Z 2u; exp(—t/t})

where K., and ps denote the bulk and shear moduli of the elastic element while K; and y; represent

the bulk and shear moduli of the viscoelastic elements that compose the rheological model. t¥ and

u

7; are the relaxation times related to the hydrostatic and deviatoric viscoelastic behaviors, respec-

tively.
Introducing (3) in (1) and (2), the following expressions are obtained (Marques and Creus,
2012):

N N
5o () = 62.(¢) + Z V¥ exp(—t/t)0% (0) + Z 0, (4)
i=1 i=1
N N
S0 = 550 + ) vl exp(=t/t)sa@ + ) af' © (5)

where gX(t) and q’il (t) denote internal stress variables given by

t t —s\dod(s)
qi(t) = jo yiexp (— T;) adss ds (6)
t _ d -

being 02 (t) = 3K,°(t), S, (t) = 2uooe(t),yiK =K; / K, and yi” = U; / ho- These internal stress var-
iables are employed strategically in the incremental time-stepping procedure for the numerical solu-
tion of the viscoelastic problem as illustrated below.

At time t + At, equations (6) and (7) can be written in the forms

At At\ At t — s\ do%(s)
K =gk —— K - - >
q (t + At) = q; (t)exp( Ti{) +y; exp< T{(>J; exp( Ti ) s ds (8)
At At\ (At t — 5\ dse(s)
q (t + At) = q¥ (t)exp <— E) + v exp <— E)J; exp <— - ) I ds (9)

Using the following approximations for sufficiently small time step At,

dod%(s) Aol 0% (t+ At) — ol (t) ds,(s) Asy, S (t+ At) — s, (t)
= = e = = ,

ds At At ds At At

equations (8) and (9) provide the recursive relations
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1 —exp(—At/1;) Ag®

qi (t + A9 = g (Oexp(— At/7) + v Y: % (10)
1—exp(— At/
q; (t + AY) = g (Dexp(— At/7) +y{ T} gt ) Asc, (11)
Then, through equations (4) and (5), the stresses at time t + Atare given by
N N
X t+At X
0O+ A0 = 5t + 80 + )yl exp( = )o2(0) + ) af (44D (12)
i=1 T i=1
N N
M t+ At u
st + At) = 55,(¢ + A) + Z v exp( — o ) 5,0(0) + Z q" (t + Ab) (13)
i=1 T i=1
which, using (10) and (11), can be written in the compact forms
o%(t + At) = HX(t) + M¥cQ,(t + At) (14)
s(t + At) = HA(t) + M*s, (t + At) (15)
where
: At
HX(t) = Z qf(t)exp (— T_K) + NX¥6%(0) + (1 — M¥)6%.(t) (16)
i=1 :
N At
H4(E) = Z [qf(t)exp <—T7>] + N#s5,(0) + (1 — M*)so, () (17)
i=1 t
At At
N 1—exp <_17> N 1—exp <_r_f‘)
MK=1+Zy{‘r{(T‘,M”=1+Zyi”TfT‘ (18)
1= i=

N N
t+ At t+ At
NKzz]/iKexp(— e ), Nﬂzzyi“exp<— o ) (19)
i= i=1

i=1 t t
The total stress tensors at time t + At is given by
o(t + At) = 6°(t + At). 1 + s(t + At) (20)

being 1 the second order unit tensor. By substituting the equations (14) and (15) into Eq. (20), the

following relation is obtained:

o(t+ At) =H(t) + M : 0, (t + At) (21)
where
S At At
H(t) = Z [qi’((t)exp (— T_K) 1+ q%(t)exp (— T7>] +P:0,(t)+R:064,(0) (22)

i=1

In (21) and (22), M, P and R are fourth-order tensors defined by
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M = MX], + M*],, P = (1 — M®)]; + (1 — M¥)],, R = NXJ; + N#], (23)
with
J; = %1@1, J,=1- %1@1 (24)
being I the fourth-order identity tensor. Equation (21) also can be written in the form
o(t + At) = H(t) + C* : e(t + At) (25)

where C° = 3K MX]; + 2ue, M*],.

3 NUMERICAL FORMULATION FOR THE VISCOELASTIC HOMOGENIZATION

Using the parametric FVDAM theory, the unit cell domain is discretized into quadrilateral sub-
volumes whose locations inside the unit cell are specified by their vertices referred to a fixed coordi-
nate system (Cavalcante et al., 2007). Here, it is assumed that the periodic multiphase composite
material is continuously reinforced along the y1 axis so that the homogenization procedures require
only the unit cell discretization in the yo-y3 plane. As shown in subsection 3.5, interface elements
are used when the interphases are replaced by imperfect interfaces.

3.1 Subvolume Mapping and Displacement Field Representation

By the parametric FVDAM, the solution to the unit cell problem is generated by mapping a refer-
ence subvolume in the n — & plane bounded by —1 <7 <1 and —1 < ¢ <1 onto a quadrilateral
subvolume resident in the actual microstructure (Fig. 3) using the following coordinate transfor-

mations:
4
Y8 = > N, . P, (=23 (26)
p=1

where yi(p) denote the vertex coordinates of the subvolume and N, (n,¢) are the interpolation func-

tion given by (Cavalcante et al., 2007)

3 O=¥)? face 3 (1)@
(-1.1) (1.1) -

face 2

(-1-1) (1-1) (¥2y)® P
dce ]

¥3
(2@
¥2

Figure 3: Mapping of the reference square subvolume onto a quadrilateral subvolume

of the actual microstructure (after Cavalcante et al., 2007).
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1 1
MmO =70-DA-5, M =70+nA-9

1 1 (27)
MmO =3A+MA+O, M@ =70 -1+

For homogenization of a composite material with periodic microstructure, the displacement field
at time t in a subvolume can be represented by the two-scale expansion involving macroscopic and
fluctuating components (Gattu et al., 2008)

u; () = &jx; +ui() (28)

where &;; denote the macroscopic strain components, x; are the point global coordinates and u;
stand for the microstructure-induced fluctuating displacement components. Notice that in a relaxa-
tion test the macroscopic strains &;; are constant with respect to time. Using the standard version of

the parametric FVDAM, the fluctuating components for each subvolume are approximated by pol-
ynomial expansions in the form

, 1 1
u;(t) = Ufopy + nU{10y + $Uf o) + > (3n* = DUf50) + > (38% = DUz (29)

being i = 1,2,3 and Uit(mn) denoting the unknown coefficients.

3.2 Surface-Averaged Strain-Displacement Relations

Considering the displacement field given in (29), the infinitesimal strain components for a sub-

volume are calculated by

ou;(t) au ®)
y; 9y

gij(t) &+ [ (30)

Introducing (29) into (30) and making the transformation of the Cartesian coordinates (y,,y3)to
the parametric coordinates (n,¢), the in-plane surface-averaged strain vectors at time t for the sub-
volume faces (Fig. 3) can be found by (for more details, see Cavalcante et al., 2007; Gattu et al.
2008)

[ ¢ (t)'(“) &5

22 T

£33(b) 2 +F J 9] Az O ]Um(t)
2523(15) J 0 A

- - 31
ézz(t) T A 0 ( )
£43() o ' "][ S LC

[ 26,3(1) ] 2523 0 Lo A

T <. .
where Uln(t) = [UE(IO)UE(Ol)UE(ZO) U;(OZ)UE(IO)Ug(Ol)Ug(ZO) U;(OZ)] s ] is the inverse Of the volume-

averaged Jacobian and

[t 000
E=|0 0 0 1],

Oi] 1 0 0
1
01 10

_n
Asz =] 0 01 0 +3 (32)

Similarly, the out-of-plane surface-averaged strain vectors can be obtained by
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n (2,4) _
28,,(t 2€ -
[ 12 )] = 12] + ]Al,ZUout(t)

28,5(t —|2¢

A13( ) @) 13 (33)
2812(t) — [2812] + iA U (t)
28,3(1) 283 34 Tout

. T
being Uy (t) = [Ug(lo)Ui(m)Ui(zo)Ug(oz)] .

3.3 Surface-Averaged Tractions

Using the Cauchy relations for a subvolume at time t, the tractions t; are related to the stress com-
ponents gj; by

t:(t) = (O (34)

where n; indicate the components of the outward unit normal vector to the subvolume faces (Fig.
3). Through equation (34) the in-plane surface-averaged tractions on each face f of a subvolume
can be written in function of the corresponding in-plane surface-averaged stress components 6;; by

~ (N
2 (D o
A 1 I ) e P (35)
n f3 0 n3 nz ,\33
033

Similarly, the out-of-plane surface-averaged tractions are given by

~ ()
a a 0
£ = [5]0 = [, na]D [612] (36)

From equations (35) and (36), the in-plane and out-of-plane surface-averaged tractions on the
four faces of a subvolume, t;,, and t,,;, respectively, can be written in the general form

t@ s
N O P
t=1lio|=Pls® (37)
t@ @
where
~ ()
022 ~ (N
N o N 13
8y = [‘Tzsl : B = [5.12] (38)
6. 13
23

and the matrices D, and D,,; are given in Appendix A.
From Eq. (25), the in-plane and out-of-plane surface-averaged stress components at time t + At
can be written, respectively, as follows:

3 N
~ v (6] &
G52(t + At) " qzz(t) ézz(tl-ll- AD)
G33(t+At)| = |Hy;(t)| +Ciy £..(t+ AD) (39)
Go3(t + At) H,5(t)

26,5 (t + At)
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)]

S 0p)
2 t+ At
+ Cgout 812( )

2&,3(t + At)

[@za +a0 [ﬁu(t)
G.3(t + At) H5(0)

being

o
S—

2 4 2
[KooMk - §uwM“ KMk + §u°oM” K MK — §umM”

Cin = k_ 2 m k_2 R kg H
KoM 3u°oM KoM 3pooM Koo M* + 3umM 0 (40)
0 0 0 oo MM
w _ [HoM* 0
out — 0 uooMu

Introducing (39) into (37), for the time t + At, the following relations between the surface-
averaged tractions and strain components of a subvolume can be obtained:

(¢t + At) = DH(t) + DC&(t + At) (41)

where the matrices Hyy,, Hpye, Cin, and C,y are presented in Appendix A and

g§=[s® @ g® ™7 (42)
with
“1711 N o
W= =l (43
2853

Introducing (31) and (33) into (41), the following relations between the surface-averaged trac-
tions and unknown coefficients of the fluctuating displacement fields are obtained

t(t + At) = DH(t) + NC*€ + AU(t + At) (44)

where &, = [611 &2 €33 2&3]T and £, = [2812  2&:3]T and the matrices N, Noye, Ajy and

A,,: can be seen in Appendix A. The matrices C* for in-plane and out-of-plane cases are given in
(40).

3.4 Equilibrium Equations and Subvolume Stiffness Matrix

The surface integral version of the equilibrium equations of a subvolume involving the surface-
averaged tractions at time t-+At are given by

4
Z te+a0PL =0 (45)
f=1

where £ and Ly indicate the vector of surface-averaged tractions and the length of the subvolume

face f, respectively. Introducing (44) into (45) and using (29), the following general expression can
be found for the zeroth order coefficients of the fluctuating displacement fields:
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Ugo(t + At) = ®[LDH(t) + we + 08’ (¢t + At)] (46)

P =1 o1 1 T . . T
where @' = [P @WE@®] and, for in-plane loading, Ug(t+ At) = [U;{OA;) U;JEOA;)] and
T
o) = [ﬁ'z(f )ﬁ;(f )] , while for out-of-plane loading, Uyy(t + At) = [U}J('OA&)] and ') = [ﬁ;(f )]. The
matrices ®, w, 0 and L are presented in Appendix A.

Using (46) and (29), the vector U(t+ At) is determined in function of the vector of surface-
averaged fluctuating displacements @’ and, then, Eq. (44) can be rewritten in the form

t(t + At) = S+ FH(t) + K’ (¢t + At) (47)

where K = AB is the subvolume stiffness matrix. The matrices B, S and F for in-plane and out-of-
plane loadings are given in the Appendix A.

3.5 Viscoelastic Imperfect Interface Element

Figure 4 shows an arbitrarily curved linear viscoelastic isotropic thin interphase of constant thick-
ness h located between a fiber and the matrix of a composite material. The displacements and trac-
tions are assumed as continuous across the matrix/interphase and fiber/interphase interfaces, what
is referred to as perfect interfaces. On the contrary, when these continuity conditions of tractions or
displacements do not exist across an interface, it is named as imperfect interface. It can be found in
the literature studies on the possible substitution of a thin interphase for an equivalent imperfect
interface with appropriate discontinuities in tractions and displacements (Benveniste,2006, Hashin,
2002). This strategy allows to analyze a three-phase material (matrix, fiber and interphase) using
an equivalent two-phase material (matrix, fiber and interface), as shown in Fig. 4.

Matrix

Matrix

Interphase Interface

<:> Fiber

(a) (b)

Figure 4: (a) Interphase between fiber and matrix and b) equivalent imperfect interface.

Here, a viscoelastic imperfect interface element is derived based on the idea of replacing the thin
interphase by an imperfect interface, positioned at the location of the middle surface So (see Fig. 4),
across the which are imposed continuity in tractions and appropriate displacement jumps related to
their associated traction components. These interface conditions are demonstrated to be adequate

when the interphase has stiffness much smaller than the other two composite phases (matrix and
fiber).
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For the case of linear viscoelastic interphase, the traction components can be written as follows
(Hashin, 1991):

t;(¢) = D;(0)[w;(0)] +j Dy(t - S) S [wi(s)lds (i=123) (48)

being D; the viscoelastic interface functions and the directions 1, 2 and 3 are shown in Fig. 4, where
1 and 2 are the tangential directions and 3 is the normal direction. The symbol | | is used to repre-
sent displacement jumps across the interface, so that

[w; (O] = u (©) —ui (O (49)

where the signals + and — indicate the interface sides adjacent to the matrix and fiber, respectively.
For a linear viscoelastic interphase obeying a generalized Maxwell model, the interface functions
are given by

N
Dl(t) = Dioo + Z DL] exp(— t/TU) (50)

=1
being Dj,, and Dj; the elastic constants corresponding to the springs and 7;; are the relaxation times

related to the direction i and j-th Maxwell branch of the model. Introducing (50) into (48), the
following expression can be found:

N N
t
t(t) = z 4 (t) + Dico Z Yij €Xp (— r_) [;(0)] + Dy [w; ()] (51)
j=1 j=1 y
where y;; = D;;/D;o, and q;; are internal variables defined by
¢ t — s\ [0u;(s)
q;;(t) = fo D;jexp (— ™ ) 75 ds (52)

Considering small time step At and using an incremental procedure similar to that used to de-
rive (10), one can obtain from Eq. (52) the recursive expression for the internal variables

) ag(©+ 5|1 —exp (-] cue+ 2001 - e (53)

qij(t + At) = exp(
ij

being 1;; = D;j7;; (no summation) the dashpot constant corresponding to the direction i and the j-
th Maxwell element of the viscoelastic model. Using the equations (51) and (53), the traction com-
ponents at time t + At can be written in the form

t;(t + At) = Mi(6) + Qi () [w; (0)] + R;[u; (O] + K;[u;(t + At)] (54)
with
$ At t+ At
Ml-(t) = ;exp <_ E) qij(t)r Q (t) Dloozyuexp ( Ty ) (55>

Latin American Journal of Solids and Structures 13 (2016) 2706-2735



2720  R.S. Escarpini Filho and S.P.C. Marques / A Model for Homogenization of Linear Viscoelastic Periodic Composite Materials...

N
RiZ_ZA_llJf[l_eXp(_r_i)]' Ki = Dios — R;
j=1

As the parametric finite-volume formulation employs quadrilateral subvolumes for discretization
of fiber and matrix, the interfaces are discretized into straight line segments as shown in Fig. 5.
Using Eq. (54), the surface-averaged traction vector of the interface element at time t + At can be
expressed as

£,(t + At) = H; () + K0, (¢t + At) (56)

where &) = [£,£,£5]T, G = [G70;05070303]7, K; is the interface element stiffness matrix and
H;(t) = Q(V)u;(0) + M(t) + Ru;(t). The matrices L, M, R and K; are shown in the Appendix B.
Notice that £ = £;.

Here, i and @ indicate the surface-averaged displacement components on the two interface
sides — and +, respectively. It is worth noting that, in accordance with Eq. (28), [w;(t)] =
[u;(®)] = wj*(t) — u;~(t) for any time t. Then, the vector @i; appearing in Eq. (56) can be substitut-
ed by the corresponding surface-averaged fluctuation displacement vector Uy.

For the case of isotropic interphase with linear viscoelastic effect restricted to shear, the viscoe-
lastic interface functions can be expressed as

Gi(t)
PR

1 4
Dy(1) = D,(0) = Dy =3 [k +5 G| (57)

where Kj and Gy(t) are the elastic Bulk modulus and the relaxation shear function of the interphase
material, respectively.

Figure 5: Interface element.

3.6 Assembly of the Global System of Equations

The surface-averaged tractions on the local faces of each subvolume and interface elements of the
unit cell are related to the corresponding surface-averaged fluctuating displacements through the
local stiffness matrices, as shown in (47) and (56), respectively. The local stiffness matrices are
assembled into global systems of equations by applying surface-averaged interfacial fluctuating dis-
placements and tractions compatibility conditions, followed by the specified boundary conditions.
This approach is based on an appropriate global face numbering system, in which each internal
local face has a corresponding global face number, common to the adjacent subvolumes or sub-
volume and interface element, while the external faces of subvolumes along the opposite unit cell
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boundaries are numbered taking into account the periodicity conditions. These external faces, with
similar fluctuating displacement distributions imposed by the periodicity conditions, receive com-
mon face numbers.

The procedure for assembling the global systems is similar to that used in the finite-element al-
gorithms. In these later, the degrees of freedom are associated with the element nodes, while in the
present finite-volume formulation they are referred to the subvolume and interface element faces.

Imposing compatibility conditions of tractions and surface-averaged fluctuating displacements
on the common interfaces, as well as, the specified boundary conditions, the global systems of equa-
tions takes the following forms for the in-plane and out-of-plane, respectively:

Klgnﬁgn(tL + At) = ACip & + Gin(t)Kgutﬁz’)ut(t + At) = ACoutEour + Goue (£) (58)

where U’ represents the unknown global surface-averaged fluctuation displacement vectors and K¢
stands for the global stiffness matrices. The global AC matrices are comprised of the differences in
the material stiffness matrices of adjacent subvolumes and G contains known surface-averaged vis-
coelastic strain contributions. To eliminate the singularity of the systems (58), the four corner sub-
volume faces of the unit cell are constrained. The solutions of these systems enable the calculation
of the fluctuating displacement coefficients and thus displacement, strain and stress fields in each
subvolume for the time step.

3.7 Homogenization Procedures

Composite materials with linear viscoelastic phases exhibit effective linear viscoelastic behaviors
(Hashin, 1965, 1970a). Then, the effective constitutive relation for these materials can be written in

the form
* * * ‘ * d{;‘:;(s)
07; () = Cja(©)e;(0) + | Cja(t —s) s ds (59)
0
where o; and g;; are the effective unit cell stress and strain components, respectively, and Cjjy

indicate the material homogenized relaxation functions. For the particular case of relaxation test,
with imposed macroscopic constant strain components &;, the effective stresses are given by
03; () = Clia ()& (60)

The subvolume-averaged strains Ei(?)of the g-th subvolume in the discretized unit cell are relat-

ed to the macroscopic strains by the expression

g0 = AR, (D& (61)

being Ag?}?cl the subvolume strain concentration tensor components. The subvolume-averaged strains

and stresses of a subvolume g with volume 2, are defined by the relations

1

1
s_l.(;’)(t) = Q—fn g (£)dQy, Ei(jq)(t) = Q—L oy ()dQq (62)

q7Qq q7Qq

Using the definition of effective unit cell stress, the following expression can be readily derived:
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Ng
5i(0) = ) v @5 (1) (63)
q=1
where N; is the total number of subvolumes in the discretized unit cell and v@ the volume fraction
of the subvolume g, i.e., v(@ = 2,/Q, being Q the unit cell volume.

Using the relations (25), (61) and (63), the effective stresses at time t + At can be written in the
form

Ng
a7yt + At) = Z v@ [P () + CTPAD, o ( + A& (64)
q=1

where ﬁi(]g) indicates the subvolume-averaged components of the tensor H defined in (22). Consider-
ing that Hi(f)(t) =0 at t < 0 and using (60) together with (64), the homogenized elastic stiffness

tensor can be obtained as

Ngq
Cimn(®) = ) v@ A%, (0) (65)
q=1

Considering that the internal stress variables are null at time t = 0, it follows from Eq. (22) the

relation
Hi(]g) (0) = (Plgzt)l + Ri(;llzl)acgoqk)l (0) (66)
where Plg?c)l and Ri(;-l,zl are the components of the tensors P and R, respectively, for the g-th sub-

volume.
The homogenized relaxation functions at any time t + At can be computed in an incremental
way using the following recursive expression:

Ng
Ciat + A& = Z v@ [P () + CTPAD, o ( + A& (67)
q=1

once that all the terms appearing on the right side are previously known. The homogenized relaxa-
tion functions at time t 4+ At are calculated by solving the systems (58) for six independent elemen-
tary macroscopic strain states. In each case, only a single unit strain component &; (i = j) is ap-
plied, while the other strain components are kept to zero. For instance, Case 1: &, = 1 with all
other components &; = 0; Case 2: &, = 1 with all other components &; = 0; and so on. For each
elementary strain loading, the solutions of (58) enable the evaluation of s_i(;l)(t + At) for all sub-
volumes resident in the unit cell domain and, consequently, the corresponding set of homogenized
relaxation functions can be evaluated through (67).

Using the above described numerical procedure, the homogenized relaxation functions are eval-
uated at a set of discrete times t,, defined by the selected At values. In the examples shown in the
next section, Prony series are used for interpolation of the discrete points.
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3.8 Application to Large Displacement Problems

An important role of the micromechanics theories is the evaluation of the material effective proper-
ties for subsequent use as input data for the computation of the macroscopic behavior of structures
and other systems constituted by the same composite material. In the case of macro mechanics be-
havior involving geometrical nonlinearities, the analysis usually employs specialized energetically
conjugate measures of strain and stress. For instance, in Lagrangian material description frame-
work, it is common the use of the second Piola-Kirchhoff stress tensor together with the Green-
Lagrange strain tensor, or the first Piola-Kirchhoff stress tensor with the deformation gradient ten-
sor(Bathe, 2014).

As mentioned above, the presented formulation has been particularly derived for homogeniza-
tion of viscoelastic periodic materials in the range of small displacements. Despite this fact, the ho-
mogenized relaxation functions obtained by (67) may be employed in incremental viscoelastic macro
mechanics analysis involving large displacements with small strains and based on the second Piola-
Kirchhoff stress and Green-Lagrange strain tensors. This is justified by the invariance of these stress
and strain measures with respect to the rigid body motion, what implies that any material descrip-
tion formulated for infinitesimal displacement range using engineering stress and strain tensors can
readily be applied to large displacement with small strain analysis, provided the second Piola-
Kirchhoff stress and Green-Lagrange strain tensors are used.

On the other hand, the unit cell boundary-value problem corresponding to the homogenization
approach described herein can be more convenient derived using the first Piola-Kirchhoff stress and
the deformation gradient tensor, what enables to apply homogenous boundary conditions and write
the equilibrium equations in a more direct and physically clearer manner. This is also pointed out
by Cavalcante & Pindera (2014a) in the case of a homogenization framework derived for hyperelas-
tic periodic materials undergoing finite deformations using the generalized FVDAM. The derivation
of the unit cell boundary-value problem for homogenization of viscoelastic periodic composite mate-
rials under large displacement domain is out of the scope of the present work.

4 NUMERICAL RESULTS
4.1 Composite Material with Viscoelastic Matrix and Elastic Fibers

The objective of this first example is to demonstrate the capability of the proposed model to de-
scribe the homogenized relaxation behavior of a two-phase composite material. The material has a
periodic microstructure constituted by a linear viscoelastic isotropic matrix reinforced by unidirec-
tional elastic long fibers with volume fraction vy = 0.54.

The viscoelastic matrix behavior is characterized by a Maxwell model with Young's modulus
E,, = 3.27 MPa, dashpot modulus 1,, = 300 GPa - hr and constant Poisson ratio v,;, = 0.38. On the
other hand, the fiber elastic properties are Ef = 68.67 MPa and vy = 0.21.

To verify the performance of the homogenization model with respect to the convergence, three
square meshes with different refinement degrees (coarse, medium and fine) were used for the unit
cell discretization (Fig. 6). Six hundred incremental steps with a time interval At = 10 sec were
made for each analysis. The results obtained for the homogenized relaxation functions Cj,;, and
C35,, are illustrated in Figures 7 and 8, respectively, compared with analytical solutions obtained
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by Luciano and Barbero (1995) and Debotton and Tevet-Deree (2004). The former authors em-
ployed the Periodic Microstructure Method to derive closed-form expressions in the Laplace domain
for the homogenized relaxation functions of periodic composite materials with square array of infi-
nitely long elastic fibers in a linear viscoelastic matrix. The inversion to the time domain is carried
out analytically for the case of viscoelastic matrix whose behavior can be represented by a Maxwell
model connected in series to a Kelvin-Voigt model. On the other hand, Debotton and Tevet-Deree
(2004) presented analytical equations in the time domain for the relaxation moduli of unidirectional
fiber-reinforced composites with random array of linear elastic fibers embedded in a viscoelastic
matrix whose behavior is elastic in dilatation and governed by a Zener model in shear.

As it can be seen in Figures 7 and 8, the rate of convergence of the effective moduli with the
mesh refinement is very rapid and the calculated relaxation functions are in excellent agreement
with the closed-form analytical results due to Luciano and Barbero (1995). The differences between
the effective relaxation curves obtained using Debotton and Tevet-Deree (2004) and those corre-
sponding to the other two solutions could be explained by the hypotheses related to the composite
microstructures. The analytical expressions due to Debotton and Tevet-Deree (2004) were derived
for composites with random array of fibers and, consequently, they are approximate for the cases of
composites with periodic microstructures.

Coarse Mesh Medium Mesh Fine Mesh

Figure 6: Unit cell discretizations for the fiber-reinforced composite material.

4.2 Composite Material with Viscoelastic Interphase

In this example, the proposed model is applied to investigate the influence of a thin viscoelastic
interphase on the relaxation of the homogenized axial shear stiffness of a periodic fiber reinforced
composite with linear elastic fibers and matrix. Fiber and matrix have the following elastic proper-
ties, respectively:

E; = 193 GPa, v, = 0.2
E,, = 62.7 GPa, v,, = 0.22

The fibers present a volume fraction of 50% and circular cross section with a radius r =
100 um. The interphase has a thickness h = 20 nm and its material is linear elastic in dilatation
and linear viscoelastic in shear. This viscoelastic behavior is defined by a Maxwell model with the
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following properties: G; = 1.608x1073 GPaand t; = 1 hr. The Poisson's ratio is considered constant
and given by v; = 0.375.
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Figure 7: Homogenized relaxation function Cq,;, of the fiber-reinforced composite material.
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Figure 8: Homogenized relaxation function Cj,,, of the fiber-reinforced composite material.

The analyses included two different discretization cases: a) square unit cell with three constitu-
ent phases (matrix, interphase and fiber) and b) square unit cell with two phases (matrix and fiber)
and imperfect interface. Figure 9 shows the results found for the homogenized axial shear relaxation
curves Gg(t) for the two discretization cases together with the analytical solution presented in
Hashin (1991), which considers the case of a thin linear viscoelastic interphase between two elastic
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components. This analytical solution is based on closed-form results for elastic composites with in-
terphase and correspondence principle for linear viscoelastic materials. As it can be observed, the
numerical results obtained by using the proposed viscoelastic imperfect interface model are in excel-
lent agreement with those corresponding to three-phase unit cell, as well as, with the Hashin's ana-
lytical solution. The differences between the numerical and analytical solutions are also shown in
Fig. 9. It is observed that the values of these differences, for the whole time interval, are smaller
than 2%, what indicates the very good performance of the proposed viscoelastic model in relation to

the closed-form analytical solution.

0.8 10.0%
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Figure 9: Effective axial shear relaxation function.

4.3 Viscoelastic Multilayers with Periodic Architecture and Interphases

In this example, the proposed homogenization model is applied to determine the effective relaxation
functions of periodic multilayers comprised of alternating viscoelastic and elastic layers with elastic
interphases between them. Multilayers with flat and sinusoidal wavy architectures are considered
(Fig. 10(a)). The unit cell and its discretization employed in the analyses for the case of amplitude-
to-wavelength ratio of 10% are shown in Fig. 10(b).

The material behavior of the viscoelastic layer is simulated by a generalized Maxwell model
with the following properties: E, = 72.4 GPa, E; = 36.2 GPa, n; = 100 GPa-sec and Poisson's
ratio constant v = 0.3. The reinforcing elastic layers present a volume fraction of 20% and elastic
properties: E =420 GPa and v = 0.25. The interphase has thickness h = 20 nm and elastic con-
stants G; = kG,, and v; = 0.30, where G, is the shear elastic modulus of the viscoelastic layers and
k is a variable parameter. Different values of k are assumed in order to investigate the range of the
interphase stiffness for which the hypothesis of discontinuity in displacements and continuity in

tractions across the interfaces provides consistent results when compared with the three phase unit
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cell solutions. Figures 11 - 18 show the results of homogenized relaxation functions obtained by the
proposed model for different values of k, considering two situations: a) three-phase unit cell (viscoe-
lastic and elastic layers separated by the interphases) and b) two-phase unit cell (viscoelastic and
elastic layers separated by imperfect interfaces).

Figures 11-14 show that, for the effective relaxation moduli C3,,, and Cj,,, the curves corre-
sponding to the cases of three-phase unit cell and two-phase unit cell with imperfect interface are
practically coincident for values of k < k;;;, = 10 and, from this point, the mentioned curves exhibit
a rapid and increasing separation.This means that the hypothesis of continuity in tractions and
discontinuity in displacements, adopted for the derivation of the imperfect interface element, is not
adequate for modeling of composites with interphases of high stiffness in relation to the other phas-
es. The limit value of the interphase stiffness to applicability of the imperfect interface model de-
pends on the composite features. In general, as commented in section 3.5, the hypothesis of continu-
ity in tractions and discontinuity in displacements is adequate when the interphase material has
stiffness small in relation to the other composite phases. The homogenized relaxation curves in Fig-
ures 15-18 also show the limitation of the imperfect interface model with respect to the values of k.

The influence of the wavy architecture on the stiffness of multilayers can also be observed by
comparing the homogenized relaxation curves of the flat and wavy multilayers (Figures 15-18). As
shown in these figures, the waviness can reduce substantiallythe stiffness of multilayers. This reduc-
tion is strongly dependent on the amplitude-to-wavelength ratio of the layers and interphase stiff-
ness. It is shown from the results that the influence of the interphase stiffness is particularly very
significant for the case of wavy multilayers.

AANANANA N U NANANANAN
PN NN

NN V. NAANANAN

ANANANAT W NANANANAN
AANANANAT V. NANANANAN

b)

Figure 10: a) Periodic multilayer composite with sinusoidal wavy architecture and

b) the repeating unit cell and its discretization.
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Figure 11: Variation of C3,,, with the parameter k = G;/Gy, for the flat multilayer.
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Figure 12: Variation of Cy,,, with the parameter k = G;/G,, for the wavy multilayer.
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Figure 14: Variation of C{,;, with the parameter k = G;/G,, for the wavy multilayer.
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Figure 15: Homogenized relaxation function C3,,, of the flat multilayer for different values of the ratio k = G;/G,,.
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Figure 16: Homogenized relaxation function Cy,,, of the wavy multilayer for different values of the ratio k = G;/G,,.
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Figure 17: Homogenized relaxation function C;,;, of the flat multilayer for different values of the ratiok = G;/Gp,.
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5 CONCLUSIONS

This paper presented a theoretical model for evaluation of the homogenized moduli of unidirectional
periodic composite materials with linear viscoelastic phases, including flexible interphases between
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the matrix and the fibers, based on the FVDAM theory. The model can be applied to materials
composed of repeating unit cells with arbitrary internal architectural arrangements of fibers. To
model the influence of the viscoelastic interphases, the paper presented an equivalent imperfect
interface element derived under the hypothesis of continuity in tractions and discontinuity in dis-
placements.

The proposed model operates directly in the time domain using a numerical incremental time-
stepping procedure based on the concept of internal stress variables applicable to viscoelastic behav-
ior described by generalized Maxwell models.

To demonstrate the performance of the presented formulation, the paper presented examples of
homogenization for fiber reinforced composites and periodic multilayer materials with flat and wavy
architectures. The efficiency of the imperfect interface element was verified through comparisons of
computed homogenized viscoelastic moduli with analytical solutions and also with results obtained
by the discretization of the repeating unit cell as constituted by three phases (matrix, reinforcement
and interphase). Such comparisons showed a good performance of the proposed formulation.
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APPENDIX A

Matrices appearing in the subvolume derivation are given below.

D,, = diag[nz(rll) n® @ n(‘*)], D,y = diag[n(l) n® 0 ™

in in in out out out out

0 ®
with nl(r? = "2 n3] and n¥ = [nz n3]®. The symbol diag means diagonal matrix.

0 n3 nz out

Cin = diag[C{ﬁ Cﬁ Cﬁ Ciori ’ Cout = diag[Cgy; out out out)

where Cip and Cgy, are given in Eq. (40).
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where E, = diag[EE EE], B, = diag[JjiJjiij], Bo.. = diag[jjjj],
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Am 0 A4_ 0 Al 0 A3 0 A2 and Aout [A4 Al A3 AZ]
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0 0 1/2 0 0 0 -1/2 0 1
-1/2 0 0 0 1/2 0 0 0
0 0 1/2 0 0 0 1/2 0
p. — 1/2 0 0 0 1/2 0 0 0
o 0 0 0 1/2 0 0 0 -1/2
0 -1/2 0 0 0 1/2 0 0
0 0 0 1/2 0 0 0 1/2
0 1/2 0 0 0 1/2 0 0 |
0 1/2 0 —-1/2
p_|-12 0 172 0
out — 0 1/2 0 1/2
1/2 0 1/2 0
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Y o e = A10
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o o Al
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APPENDIX B
Matrices appearing in the imperfect interface element derivation are given below.
N N N T
At . At . At .
M= Zexp - quzexp - qz,-zexp — ;) (B.1)
= 1j = 2j = 3j
—-Q 0 0 @ 0 0]
Q =[ 0 -¢ 0 0 Q 0 (B.2)
0 0 -0Q; 0 0 Qi
_Rl 0 0 Rl 0 0
R=|0 —-R 0 0 R, O (B.3)
0 0 —R; 0 0 R4
-K, 0 0 K, 0 0
K,=|/0 —-K, 0 0 K, O (B.4)
0 0 _K3 0 0 K3

where the components Q;, R; and K; are defined in Eq. (55).
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