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Eigenvalue based inverse model of beam for structural modifi-
cation and diagnostics. Part II: Examples of using

Abstract

In the work, in order to solve the inverse problem, i.e. the

problem of finding values of the additional quantities (mass,

elasticity), the beam inverse model was proposed. Analysis

of this model allows finding such a value of additional mass

(elasticity) as a function of its localization so that the free vi-

bration frequency changes to desirable value. The criteria for

choice of the “proper” pair (mass – its position), including

the criterion allowing changing the position of the vibration

node of the second mode of the free vibrations, were given.

Analysis of the influence of uncertainties in the determina-

tion of the additional quantity value and its position on the

desired free vibration frequency was carried out, too.

The proposed beam inverse model can be employing to iden-

tification of the beam cracks. In such a case, the input quan-

tity is free vibration frequency measured on the damaged

object. Each determined free-vibration frequency allows de-

termining the flexibility curve for the spring modeling crack

as a function of its position. The searched parameters of

the crack (its depth and position) are indicated by the com-

mon point of two arbitrary curves. Accuracy of crack pa-

rameters determination depends on accuracy (uncertainty)

of frequency measurement. Only some regions containing

the searched crack parameters can be obtained in such a

situation.
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1 INTRODUCTION

The part of the work devoted to structural modification concerns searching for such value and

position of an additional mass, coupled to the main system, or for such a position of the elastic

support and its coefficient of elasticity, that the system after modification achieves the required

eigenfrequencies or (and) eigenmodes.
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In the part devoted to diagnostics, the work concerns identification of the place and the

depth of the crack modeled as the elastic joint.

The common feature for both problems is that the material parameters in each of the

discussed cases change only in one point (the point mass, the support in one point, the crack

described as the joint). These systems, after determination of the value of additional element

and its position, should have a given natural vibration frequency (required one for the object

- in modification, and determined one on the object - in diagnostics).

The typical approach to the optimization problem for the system vibration is carrying out

a series of modifications of the numerical or analytical model to obtain the required eigen-

frequencies [1, 3]. Another approach is based on determination the proper receptance in the

point where the additional element is added [9, 10].

Structural modification can be also defined as the inverse problem [2, 3]. The inverse

engineering refers to the problems where the desired response (for example eigenvalue) of the

system in known (diagnostics) or decided (modification) but the physical system is unknown

[4]. These problems are difficult because a unique solution is rarely possible.

Generally speaking, all methods of the inverse problem solution, described above, are based

on the single- or multiple-analysis of the direct problem. In this paper, a different novel beam

model, called the inverse model of a beam, is proposed. Thanks to such an approach, the

problems related to the measurement noise, which is inevitable in direct problem analysis are

avoided.

2 DESCRIPTION OF VIBRATIONS OF A BEAM WITH POINT CHANGE OF MATE-
RIAL PROPERTIES

As it was mentioned in the introduction, the material parameters of the system, such as mass

(additional mass) or elasticity (elastic support and crack modeled as elastic joint), in each of

the problems discussed in the work change only in one point. Generalized functions were used

for description of vibrations of such discrete-continuous systems.

Using generalized functions allow writing of the equations for the beam vibration ampli-

tudes in the form of one equation, without necessity of dividing into subsystems. This, in its

turn, allows building the inverse model.

Because the beam material parameters in each discussed problem change only in one point,

the equations describing vibration amplitudes have similar forms.

Beam with additional mass

X(x) = P coshλx +Q sinhλx +R cosλx + S sinλx + (1)

+λma

2ρF
⋅X(xa) ⋅ [ sinhλ(x − xa) − sinλ(x − xa)] ⋅H(x,xa)

where: ma – additional mass, xa – mass location.
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Beam with internal elastic support

X(x) = P coshλx +Q sinhλx +R cosλx + S sinλx + (2)

+ ks
2 ⋅EI ⋅ λ3

⋅X(xs) ⋅ [ sinhλ(x − xs) − sinλ(x − xs)] ⋅H(x,xs)

where: ks – support elasticity coefficient, xs – location of the support.

Beam with a crack

X(x) = P coshλx +Q sinhλx +R cosλx + S sinλx + (3)

+ cb
2λ
⋅X ′′(xc) ⋅ [ sinhλ(x − xc) + sinλ(x − xc)] ⋅H(x,xc)

where: cb – flexibility of the joint (crack model) [5], xc – crack location

In all equations: λ4 = ω2 ⋅ ρF /EI; EI – bending stiffness, ρ – material density, F - cross-

section area, ω – natural frequency of the beam.

Integral constants P , Q, R, S depends on the boundary conditions the initial - boundary

problem under consideration.

3 INVERSE MODEL OF A BEAM

Construction of inverse model of beam will be shown using structural modification, consisting

in coupling point mass to the system, as an example.

The equations describing the boundary conditions constitute the system of 4 algebraic

homogeneous equations, to which one can add, as the fifth equation, the equation connecting

the beam vibration amplitude in the point x = xa with the constants of integration.

In this way, the homogeneous system of 5 algebraic equations is obtained, where the un-

knowns are: the constants of integration P , Q, R, S and the beam vibration amplitude in the

point where the mass is added X(xa).
This system can be written in the matrix form M ⋅C = 0:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

four equations which 0

describes the boundary conditions 0

of the beam without a35
an additional element a45

coshλxa sinhλxa cosλxa sinλxa −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P

Q

S

R

X(xa)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

The coefficients a35, a45 depend on the forms of the equations describing the boundary

conditions at the right end of the beam (x = l). These are the coefficients at the constant

X(xa) in the equation (1) and its derivatives.

The similar equation (4) is obtained in the case of structural modification of a beam through

adding an elastic support. However, the difference is that in the last row xa should be replaced

with xs, and the coefficients a35, a45 result from the form of the equation (2) and its derivatives.
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In the case of crack diagnostics, the coefficients in the fifth row result from the equation

connecting the second derivative of vibration amplitude X ′′(x), determined in the point x = xc
to the constants of integration [6],

λ2 ⋅ [P coshλxc +Q sinhλxc −R cosλxc − S sinλxc] −X ′′(xc) = 0

and the coefficients a35, a45 results from the form of equation (3) and its derivatives.

Solution of the eigenvalue problem, formulated in this way, consists in searching for solution

of the function of two variables (ma and xa) written in the form of determinant equation:

detM = 0. To solve this equation, developing of the inverse model that allows to transform

the equations of the form F1(ma, xa) = 0 to the form ma = g1(xa), was proposed.
In order to determine the inverse model, the following algorithm of calculations, easy to

computer implementation, was proposed:

1o One should build a new matrix (marked as A) that comes from the main matrix of the

initial - boundary problem (eq. (4)) through replacement of the quantity ma (ks or cb)

with the number 1

2o One should build the second matrix (marked asB) that comes from the matrixA through

crossing the last row and the last column off. So, the matrix B is a matrix describing

the eigenvalue problem for a beam without an additional element.

3o After defining of the matrixes A and B, the equation detM = 0 can be written in the

form:

ma ⋅ (detA + detB) − detB = 0

or ks ⋅ (detA + detB) − detB = 0

or cb ⋅ (detA + detB) − detB = 0

4o After some transformation, it is possible to determine the additional ma (ks or cb) value

for each xa(xs, xc) ∈ (0, l), with the help of the relationship:

ma(ks, cb) = detB/(detA + detB) (5)

The equation (5) is useful for determination of such a value of mass (elasticity or flexibility)

as a function of its position so that the system has the free vibration frequency, which is desired

in the modification problem or measured on the object.

4 EXAMPLES OF USING THE INVERSE MODEL

In this section of the work, examples of using of the proposed model will be shown.

The first part devoted to structural modification concerns searching for such value and

position of an additional mass, coupled to the main system, or for such a position of the elastic
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support and its coefficient of elasticity, that the system after modification achieves the required

first natural frequency. The criteria for choosing the “proper” pair ma, xa (ks, xs) were given

and influence of their uncertainties on the result of modification is shown.

In the second part, the proposed algorithm was used to diagnose (to identify) the cracks

on the basis of the measured free vibration frequencies. To determine flexibility of the element

being the crack model and its position, analysis of the inverse model for two different free

vibration frequencies (the first and second one) is necessary. Function of flexibility cb changes

vs. position of crack xc was obtained for each of them. Influence of the uncertainty in the free

vibration frequency measurement on the result of identification was shown, too.

5 STRUCTURAL MODIFICATION

The calculations were carried out for the beam with geometrical dimensions: height h = 0.025
[m], width b = h, length l = 1.6 [m] and material constants: density ρ = 7860 [kg/m3], Young

modulus: E = 2.1 ⋅ 1011 [Pa].

5.1 A simply supported beam - decreasing of the free vibration frequencies

The boundary conditions for a simply supported beam are described by the equations: X(0) =
0, X ′′(0) = 0, X(l) = 0 and X ′′(l) = 0 and free vibration frequencies can be determined from

the relationship:

ωn = (
nπ

l
)
2

⋅
√

EI

ρF

are listed in Table 1:

ω1 ω2 ω3 ω4 ω5

140.35 561.40 1263.2 2245.6 3508.8

Table 1 Five first natural frequencies of the beam before modification

It is assumed that after modification the first natural frequency have to equal to ω1 = 100
[1/sec].

According to the proposed algorithm the needed matrixes takes form:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

coshλ0 sinhλ0 cosλ0 sinλ0 0

coshλ0 sinhλ0 − cosλ0 − sinλ0 0

coshλl sinhλl cosλl sinλl a35
coshλl sinhλl − cosλl − sinλl a45
coshλxa sinhλxa cosλxa sinλxa −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

where coefficients a35 and a45 has the form (see table 1 from part 1 of the work [7]):
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a35 =
λ

2ρF
⋅ [ sinhλ(l − xa) − sinλ(l − xa)]

a45 =
λ

2ρF
⋅ [ sinhλ(l − xa) + sinλ(l − xa)]

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

coshλ0 sinhλ0 cosλ0 sinλ0

coshλ0 sinhλ0 − cosλ0 − sinλ0
coshλl sinhλl cosλl sinλl

coshλl sinhλl − cosλl − sinλl

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where: λ4 = ρF /EI ⋅ (100)2
For the assumed frequency ω1, the curve ma = f(xa), representing the value of additional

mass vs. its position, was determined from the equation:

ma = detB/(detA + detB)

This curve is shown in Fig. 1.
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Figure 1 The value of additional mass ma vs. its position xa

For each pair (ma, xa) on the curve showed in Fig.1 the first free vibration frequency is

equal to the desired value (ω1 = 100 1/sec). Author proposes to choose the additional mass

and its position according to one of the four criteria:

1. the choice of the minimal mass;

2. the arbitrary choice of mass and determination its position;

3. the arbitrary choice of mass location and determination of the corresponding value of

mass;
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4. such a choice of mass and corresponding position so that the vibration node of the second

form of the free vibrations (mode) is placed in the desired cross-section.

The criterion of minimal mass is the most obvious criterion for choice of mass and its

position. In the analyzed case, the additional mass with the value of ma = 3.78 [kg] should

be added to the beam in the cross-section with the coordinate xa = 0.8 [m]. To check the

computational model, also the calculations for the system with the additional mass were carried

out with the use of the Finite Element Method.

The free vibration frequencies, determined for this mass, coming from the analytical inverse

model and from the FEM, are listed in Tab. 2.

Table 2 Five first natural frequencies of the system after modification - with minimal mass

ω1 ω2 ω3 ω4 ω5

102.40 574.24 1043.2 2288.6 3069.8

Using criteria No 2 and No 3 is quite obvious. They consist in arbitrary choice of the

additional mass and determination of its position from Fig. 1 - criterion No 2. The criterion

No 3 concerns the case when adding the mass is possible only in the given section - the mass

values can be determined from Fig. 1.

Choice of the pair (ma, xa) determinates the value of the second frequency of free vibration

and the position of vibration node of the second mode of the beam.

Graph of this frequency changes vs. position (for the corresponding value of additional

mass) is shown in Fig. 2.
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Figure 2 Second natural frequency as a function of the addition mass location

Position of the vibration node as a function of the additional mass position is presented in

Fig. 3.
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Figure 3 Position of the second eigenmode node as a function of the additional mass location

If, in the discussed case, not only the given value of the first frequency ω1 is desired, but

the vibration node of the second mode has to be in the section with coordinate xn = 1 [m],

then one should choose the additional mass position, according these criteria and on the basis

on the characteristic shown on Fig. 3, as xd = 1.26[m]. Next, the additional mass with the

value of ma = 6.05 [kg] is selected on the basis on the characteristic shown on Fig. 1

To check the correctness of the model, the calculations (for the determined values) with

the help of the FEM were carried out. Frequencies, determined in the analysis, are listed in

Table 3.

Table 3 Five first natural frequencies of the system

ω1 ω2 ω3 ω4 ω5

102.4 409.5 1100.6 2213.3 3537.1

The second mode of the free vibrations, determined from the FEM analysis, is shown in

Fig. 4. The square marks the additional mass position.

Of course, the node position does not depend on the mass value. This allows to determinate

of such its position so that the vibration node of the second form of the free vibrations occurs

in a given section, first, and next to select such a value of mass ma so that the desired first

frequency is achieved.

Taking into account free vibration frequencies of the system after modification, listed in

Tab. 2 and Tab. 3, one can see that selection of mass with the accuracy 0.01 kg causes that

the first free-vibration frequency differs from the desired value by about 2%.

Influence of the uncertainties of mass and its position, correspondingly, determination on

the free vibration frequency is shown in Fig. 5.

For determination of the curve in Fig. 5b, the value of mass ma = 4.17[kg] was assumed,
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Figure 4 Second eigenmode of beam

i.e. such a value for which the curve in Fig. 5a achieves the value 1. This is mass that

should be added to the beam in the section with coordinate x = 0.8[m] to cause that the first

free-vibration frequency of the system after modification is equal to the desired frequency, i.e.

ω1 = 100[1/sec].

5.2 Cantilever beam - increasing of free vibration frequencies

For cantilever beam boundary conditions are described by equations: X(0) = 0, X ′(0) = 0,
X ′′(l) = 0 i X ′′′(l) = 0. Natural frequencies for beam with data as in previous example in

Table 4 are listed:

Table 4 Five first natural frequencies of the cantilever beam

ω1 ω2 ω3 ω4 ω5

50.0 313.4 877.4 1719.3 2842.1

It is assumed that after modification the first natural frequency has to equal to ω1 = 100 [1/s].

In order to find the value of elastic support coefficient the proposed algorithm is used. The

matrixes from proposed algorithm have the forms:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

coshλ0 sinhλ0 cosλ0 sinλ0 0

sinhλ0 coshλ0 − sinλ0 cosλ0 0

coshλl sinhλl − cosλl − sinλl a35
sinhλl coshλl sinλl − cosλl a45
coshλxs sinhλxs cosλxs sinλxs −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

where (see Table 2 from the Part 1 of this work [7]):
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(b) Influence of uncertainties of mass position determina-
tion

Figure 5 Influence of uncertainties of mass value and its position determination on natural frequency

a35 = −
1

2EIλ3
⋅ [ sinhλ(l − xs) + sinλ(l − xs)]

a45 = −
1

2EIλ3
⋅ [ coshλ(l − xs) + cosλ(l − xs)]
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B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

coshλ0 sinhλ0 cosλ0 sinλ0

sinhλ0 coshλ0 − sinλ0 cosλ0

coshλl sinhλl − cosλl − sinλl
sinhλl coshλl sinλl − cosλl

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(9)

where: λ4 = ρF /EI ⋅ (100)2
Matrix B comes from the matrix A through crossing the last row and the last column

off. So, the matrix B is a matrix describing the eigenvalue problem for a beam without an

additional element.

From equation:

ks = detB/(detA + detB)

the curve representing the value of support elasticity vs. support position is determined. This

curve is shown in Fig. 6
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Figure 6 Support elasticity ks as a function of support location xs

Similar like in case of additional mass, for each pair (ks, xs) on the curve showed in Fig.6

the first free vibration frequency is equal to the desired value i.e. (ω1 = 100 rad/sec).

Choice of the value of support elasticity and its position can be made according to one of

the criteria:

1. the choice (if possible) of the rigid support (ks →∞);

2. supporting the beam with a system with positive coefficient of elasticity

• the arbitrary choice of elasticity (from the possible values) and determination of the

support position;
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• the arbitrary choice of the support position and determination of corresponding

elasticity;

3. supporting the beam with a system with negative coefficient of elasticity

• the arbitrary choice of elasticity (from the possible values) and determination of the

support position;

• the arbitrary choice of the support position and determination of corresponding

elasticity;

The easiest task for technical realization seems to be supporting the beam with the rigid

support. The beam should be supported in the section where the coefficient ks → ∞. In the

analyzed case, this is the section with coordinate xs = 0.6[m].

To check correctness of the proposed inverse model algorithm, the free vibration frequencies

for a beam with a rigid internal support were determined using Finite Elements Method. The

results are presented in Tab. 5.

Table 5 Five first natural frequencies of the beam with internal right support

ω1 ω2 ω3 ω4 ω5

103.24 687.35 1728.9 2286.99 4087.53

Influence of the uncertainties of rigid support position on the first (modified) free vibration

frequency is shown in Fig.7.
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Figure 7 The change of first natural frequency as a function of support location

Not always it is possible to support the beam with the right support. In such a case,

one should consider supporting with the use of a spring (positive coefficient of elasticity) or a
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special system with negative coefficient of elasticity. More information about the systems with

negative coefficient of elasticity can be found in [8].

With the assumption that the beam can be supported in the section with coordinate x = 1m,

the coefficient of elasticity amount to ks = 68.6 ⋅ 103[N/m].

The free vibration frequencies of the so supported beam, determined with the use of FEM,

are listed in Tab.6.

Table 6 Five first natural frequencies of the beam after modification

ω1 ω2 ω3 ω4 ω5

103.62 336.61 902.25 1752.56 2892.07

Influence of the uncertainties in the determined elasticity and support coordinate values

on the difference between the desired and determined free frequency value, correspondingly, is

shown in Fig. 8.

5.3 Cracks diagnostics

The calculations were carried out for the beam with data: length l = 0.1m, height h = 0.0016m,

width b = h, density ρ = 7960 kg/m3, Young’s modulus E = 2.1 ⋅ 1011 Pa and Poisson ratio

ν = 0.3 [11]

5.3.1 Simply supported beam

In case of simply supported beam, boundary conditions are described by equations X(0) = 0,

X ′′(0) = 0, X(l) = 0 and X ′′(l) = 0.

Matrix A from proposed above algorithm has form:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

coshλ0 sinhλ0 cosλ0 sinλ0 0

coshλ0 sinhλ0 − cosλ0 − sinλ0 0

coshλl sinhλl cosλl sinλl a35
coshλl sinhλl − cosλl − sinλl a45
coshλxc sinhλxc − cosλxc − sinλixc −1/λ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

where (see Table 3 from [7]):

a35 =
1

2EI ⋅ λ
⋅ [ sinhλ(l − xc) + sinλ(l − xc)]

a45 =
1

2EI ⋅ λ
⋅ [ sinhλ(l − xc) − sinλ(l − xc)]

and matrix B:
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Figure 8 Influence of the uncertainties in the determined elasticity and support coordinate on first natural
frequency of the beam

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

coshλ0 sinhλ0 cosλ0 sinλ0

coshλ0 sinhλ0 − cosλ0 − sinλ0
coshλl sinhλl cosλl sinλl

coshλl sinhλl − cosλl − sinλl

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(11)

This matrix has identical form lake main matrix for boundary problem of beam without

crack.

Local flexibility cb for every xc can be obtain from equation:
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cb =
detB

detA + detB
(12)

Function of one variable is obtained in this way for every free vibration frequency (the

inverse model in ambiguous). Thus, one needs at least two free vibration frequencies. The

crossing point of the cb vs. xc curves for two different free-vibration frequencies determines

the searched crack parameters.

In figure 9a and 9b curves cb = f(xc) for two first natural frequency of simply supported

beam with two different cracks (data from [11]) are showed.
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Figure 9 Curves flexibility cg as function of crack location xp

In fig. 9 continuous line marked curve, which is obtained for frequency f1 and dashed line

for f2. From regard on symmetry of system curves crossed in two points, determination on
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which side of beam centre is crack one should carry out with other methods.

Comparison of crack parameters identified and modeled in FEM for cases: “crack 1” and

“crack 2” are showed in Tab. 7.

Table 7 Identification of crack

crack FEM model natural frequencies [Hz] identification error

“1” xc = 70mm f1 = 370.31 f2 = 1475.36 xc = 70.4 0.6%

a = 0.3 ⋅ h a = 0.303 ⋅ h 1.0%

“2” xc = 80mm f1 = 371.93 f2 = 1481.52 xc = 80.9 1.25%

a = 0.2 ⋅ h a = 0.205 ⋅ h 2.5%

Graphs of flexibility cb as a function of crack position xc for free vibration frequencies, with

the measurement uncertainties taken into account, are shown in Fig.10. The errors δ1 and δ2
were determined from comparison of the free vibration frequencies of the beam without crack

modeled by FEM ω0i−FEM and the frequencies obtained for the analytical model ω0i−A:

δi = ∣ω0i−MES − ω0i−A∣/ω0i−A

Graphs of the searched curves for four frequencies ω1 ± δ1 and ω2 ± δ2 for the case “crack

2” in the vicinity of crack position xc = 80mm are shown in Fig. 10.
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Figure 10 Flexibility cb as a function of xc for frequencies “determined” with an error

Solid lines mark the curves determined for ω1 ± δ1, while the dotted ones – the curves

determined for ω2±δ2. The identified values of crack position and its depth are situated in the

common part of the interiors of the regions bounded with the curves determined by solid lines

and by dotted lines. This region defines position of the crack in the interval xc ∈ (75 − 83)mm

and its depth in the interval a ∈ (0.15 − 0.26) ⋅ h (the modeled parameters are xc = 80mm and

a = 0.2 ⋅ h). The frequencies in the discussed example were taken also from [11].
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5.3.2 Cantilever beam

In case of cantilever beam main matrix A has a form:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0

0 1 0 1 0

coshλil sinhλil − cosλil − sinλil a35

sinhλil coshλil sinλil − cosλil a45

coshλixc sinhλixc − cosλixc − sinλixc −1/λ2i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where:

a35 =
1

2λi
⋅EI ⋅ [ sinhλi(l − xc) − sinλi(l − xc)];

a35 =
1

2λi
⋅EI ⋅ [ coshλi(l − xc) − cosλi(l − xc)]

And matrix B:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0

0 1 0 1

coshλil sinhλil − cosλil − sinλil

sinhλil coshλil sinλil − cosλil

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
This matrix have identical form lake main matrix for boundary problem of beam without

crack.

Natural frequencies of cantilever beam, necessary to identification came from FEM analyses.

Geometrical and material parameters of beam are the same as in previous example. Author

has examined 6 different variants of crack parameters. Identification results of are showed in

Table 8

Graphs of the searched curves for four frequencies ω1 ± δ1 and ω2 ± δ2 for the case “crack

4” in the vicinity of crack position xc = 80mm are shown in Fig.11. Errors δ1 and δ2 was

determined as in previous example.

Solid lines mark the curves determined for ω1 ± δ1, while the dotted ones - the curves

determined for ω2±δ2. The identified values of crack position and its depth are situated in the

common part of the interiors of the regions bounded with the curves determined by solid lines

and by dotted lines. This region defines position of the crack in the interval xc ∈ (27.1−40.4)mm
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Table 8 Identification of crack

crack FEM model natural frequencies [Hz] identification error

“1” xc = 10 f1 = 132.41 f2 = 834.07 xc = 8.94 10.6%

a = 0.2 ⋅ h a = 0.189 ⋅ h 5.5%

“2” xc = 10 f1 = 131.07 f2 = 830.57 xc = 8.91 10.9%

a = 0.3 ⋅ h a = 0.274 ⋅ h 8.7%

“3” xc = 30 f1 = 133.04 f2 = 835.45 xc = 32.2 7.3%

a = 0.2 ⋅ h a = 0.208 ⋅ h 4.0%

“4” xc = 30 f1 = 132.44 f2 = 834.20 xc = 31.6 5.3%

a = 0.3 ⋅ h a = 0.283 ⋅ h 5.7%

“5” xc = 50 f1 = 133.40 f2 = 832.32 xc = 49.3 1.4%

a = 0.2 ⋅ h a = 0.189 ⋅ h 5.5%

“6” xc = 50 f1 = 133.32 f2 = 827.33 xc = 53.6 7.2%

a = 0.3 ⋅ h a = 0.264 ⋅ h 12.0%
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Figure 11 Flexibility cb as a function of xp for frequencies “determined” with an error

and its depth in the interval a ∈ (0.22− 0.378) ⋅h (the modeled parameters are xc = 30mm and

a = 0.3 ⋅ h).

6 SUMMARY AND CONCLUSIONS

In the work, the problems of the beam structural modification through coupling the additional

point mass or elastic support, as well as the problem of diagnostics of the beam cracks, were

discussed.

Thanks to using of elastic joint model to describe the crack, the common feature of both

problems is that material parameters of the beam change only in one point (additional mass,
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support in one point, crack described as joint). This allows describing vibrations of such

system with the use of generalized functions, thanks to what the mathematical description of

vibrations in each problem has the same form.

In order to solve the inverse problem, i.e. the problem of finding values of the additional

quantities (mass, elasticity), the beam inverse model was proposed. Analysis of this model

allows finding such a value of additional mass (elasticity) as a function of its localization so

that the free vibration frequency changes to desirable value, when such mass is coupled to the

beam. The criteria for choice of the “proper” pair (mass - its position), including the criterion

allowing changing the position of the vibration node of the second form of the free vibrations

(or of arbitrary another one) (retaining the desired value of the first free vibration frequency),

were given.

Analysis of the influence of uncertainties in the determination of the additional quantity

value and its position on the desired free vibration frequency was carried out, too. With 10%

errors in determination of this quantity and its position assumed, the errors of the desired

frequency did not exceed 5%.

The proposed beam inverse model can be employed to identify of the beam cracks. In

such a case, however, the input quantity is free vibration frequency measured on the damaged

object.

Each determined free-vibration frequency allows determining the flexibility curve for the

spring modeling crack as a function of its position. For each pair of parameters (cb, xc) lying
on the curve, the free vibration frequency is equal to the frequency measured. The searched

parameters of the crack lay in the point that is common for two arbitrary curves.

Accuracy of crack parameters (its depth and position) determination depends on accuracy

(uncertainty) of frequency measurement. Only some regions containing the searched crack

parameters can be obtained in such a situation. In extreme cases, these regions can contain

the whole length of the beam. The identification errors can be decreased by increasing number

of the determined free-vibration frequencies. For instance, for five determined frequencies,

ten pairs of curves are obtained and next, after statistical processing, one can determine the

searched crack parameters.
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