1782

Latin American Journal of
Solids and Structures

www.lajss.org

Abstract

This study is devoted to strain-based formulation for a curved
beam. Arches with parabolic geometry, which have a variety of
applications, belong to this structural type. Dependency of the
curvature radius to the arch length creates some complexities in
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1 INTRODUCTION

For many years, researchers used a lot of short straight beams to analyze curved structures Kikuchi
(1975) Kikuchi and Tanizawa (1984) Chapelle (1997). In spite of the simple process, solving arches
by implementing these elements, even by reducing the mesh sizes, faces some troubles and complex-
ities. This kind of modeling for thin members leads to excessive stiff behavior and causes shear lock-
ing phenomena. To remove these errors, investigators have formulated these beams with curved
geometry. At first, by utilizing interpolation functions, with the same order and having independent
terms, displacement-based elements were proposed. These models resulted in responses with locking
errors. To overcome this obstacle, the number of nodes and order of functions were increased
Ashwell and Sabir (1971) Dawe (1974) Meck (1980). Reduced integration assumed strain function
and hybrid-mixed formulation are the other methods for creating locking-free elements Stolarski
and Belytschko (1982) Pandian et al. (1989) Choi and Lim (1993 and 1995) Yang and Sin (1995)
Kim and Park (2008) Benedetti and Tralli (1989) Kim and Kim (1998) Kim and Lee (2008).
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Raveendranath and his colleagues (1999) assumed cubic polynomial for radial displacement. By
taking advantage of the equilibrium equations, they suggested new displacement functions
Raveendranath et al. (2001). Similarly, this procedure was extended to create a three-nodded ele-
ment. Furthermore, it was stated that the consistent-field approach can find the sources of high-
stiffening errors. Afterward, many formulations were presented based on this effective technique
Babu and Prathap (1995) Prathap and Naganarayana (1990).

All mentioned investigators studied about curved beams with the constant radius of curvature.
In addition, few papers have focused on the variable-curvature structures. Marquis and Wang
(1989) used the energy principles to solve parabolic arches. It is worth emphasizing that most of the
proposed schemes have not offered a general finite element model. In fact, these solution techniques
have only considered a few particular cases that were more reachable. These investigators calculated
the stiffness matrix by considering the effect of special boundary conditions Gutierrez et al. (1989)
Lin and Huang (2007) Lin and Hsieh (2007) Lee and Wilson (1989) Lee et al. (2008) Tarnopolskaya
et al. (1996). Haung et al. (1998) utilized polynomial functions and power series to model the be-
havior of beams with variable curvatures and cross sections. In 1999, Oh et al. (1999) solved equi-
librium equations numerically, and found the first four natural frequencies of sinusoidal, elliptical
and parabolic beams for the special cases. This procedure was used by many researchers Huang et
al. (1998) Oh et al. (2000) Gimena et al. (2010). Another way of finding the structural stiffness
matrix is the flexibility-based method. Litewka and Rakowski (1998), Molari and Ubertini (2006),
and Attarnejad et al. (2013) utilized this approach in their study. Attarnejad and his coworkers
(2013) defined Basic Displacement Function (BDF) as the nodal displacement by applying unit load
technique. On the other hand, Molar & Ubertini (2006) employed a parametric cubic interpolation
to model geometry of the structure. These investigators considered two parameters for the versatili-
ty of interpolation function.

In this research, a scheme for analyzing general curved beam with the variable curvature is sug-
gested. Parabolic shapes are widely used in the group of arches, for their simple second-order poly-
nomial form. By employing the finite element method and closed-form solution, a novel parabolic
beam element is proposed. Choosing required interpolation function and satisfying the equilibrium
conditions have the most significant role in this procedure. In fact, by employing just one element
per member, precise responses are found. This is due to the exact strains that obtained by solving
differential equations. Moreover, an explicit stiffness matrix is obtained, which can be used in the
structural analysis. It should be noted that all shear, axial and bending effects are considered, sim-
ultaneously. The results of seven numerical tests show no locking error in the answers. All entries of
the suggested stiffness matrix are explicitly given in the appendix.

2 EQUILIBRIUM EQUATIONS

According to the classical Timoshenko beam theory, normals to the axis of the beam remain
straight after deformation. However, they are not required to remain perpendicular. This assump-
tion is used in the present article to develop a curved beam element with variable curvature. As it
is shown in Figure 1, the structure has two nodes and six degrees of freedom. Each node contains
three displacements and three forces. Throughout this study, u, v and @ refer to axial, radial and
rotational displacements, respectively. The width and thickness of the rectangular cross section are
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assumed as w and t. It should be noted that the geometry of suggested element is based on the sec-

1 1
ond-order polynomial function. Using the equationsy = a.az® +bz+c, — = y—3

(1+y")2
andy’ = tang, the radius of curvature function, R, can be achieved. In these formulas, ¢ denotes

the angle of tangential slope at a general point.

R-Rp)=—0 g L W

q )
cos® ¢ 2a

Strain functions for the neutral axis have the following form:

1d 1
R de R
=0 1 1d
{e}=1v1= R Rdp “L v (2)
K 14 0
0 - =
R de

< o
u y R((/J)/ )/ ; TR

Figure 1: Geometry of a parabolic beam.

By integrating the stresses over the thickness of cross section, the compliance material matrix
can be found. If the effect of thickness in strain equations is negligible, the following simple and
approximate material matrix will be obtained:

EA 0 0
D, ]=] 0 kGA 0 (3)
0 0 EI

Approximate material matrix is based on the assumption of ¢{/R<<1. Furthermore, the first

. - 2
three terms of Taylor's series are utilized for In( Ryt

) and the membrane-bending interaction is

eliminated. With these assumptions and ¢ = Dm’l.a , the next equality is held:
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9 0
& EA . N,
Yo 0 kGA 0 Vy (4)
K 1 MZ
0 0 —
EI

The Young’s modulus, shear modulus, area of the cross-section, bending moment of inertia
about the neutral axis, and a shear correction factor are indicated as F, G, A, I, k, respectively. A

set of equilibrium equations can be achieved by optimization of the following total potential energy:

Vv
——==0
Nus ™R
N
=0 —— Jv, + (5)
Mz,S+Vy:0

In these equations, subscript s demonstrates the differentiating with respect to the longitudinal
axis s. The related answers for the set of equilibrium equations can be written in the below form:

Ny = —€;.C08¢ + C,.8ine
Vy = ¢.8ing + c,.cosp (6)
M, C1-C1 + CZ.CQ + c3

A A

The unknowns C, and C, are expressed as:

C’l = fR(ga).singa.d(p
6'2 = fR(cp).cosgo.dgo

3 DISPLACEMENT FUNCTIONS

By assuming ¢/R< <1, the membrane-bending interaction is omitted. Consequently, internal forces
cause the next strains in the neutral axis.

Based on equation (2), the following equalities can be achieved
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0= fR.I{.ng
utu, = Ry, + 0 + s(w) + R,
v=u, - R.g,

Then, the coming displacement fields can be found by solving the equilibrium equations:

uwp) = ¢.C/"+ ¢,.Cy'+ ¢;.C5'+ d,.D'"| + d,.sinp + dy.cos

_ /) R.cosyp " R.singp ’
v(p) = 61'[01,¢ + n; + 6.1 Oy, — B + c3.(C37,¢) (10)
+d1'D1/,<,9 + dy.cosp — dy.sinp
0(¢) = ¢,.C] + ¢,.Cy + ¢;.C5 + 4,
C
O = AL d
1 [EI P
C
/ 3
C, = fR[EI dep (11)
R
C! = | —d
s B
O/ — sin fcos R.singp+RC,+R.sing0+R —cose || 4
1 7S Thga T o\ "ar )]
. R.sinp ;. R.sing —cosp
+ N . + RC + + R . .d
cos<pf smgp[ “CA 1 ” 1E ©
. R.cosy R.cosyp sin ¢
C) =sing. | cosp.| ——X 4+ RC, + ——Z + J—=1|d
2 o f SD[ KGA 2 24 v 12)
. R.cosyp ;  R.cosyp sin ¢
+ = . + RC, + ———+ R, d
COS@f Sm@[ kGA 2 AE s [ A 4
C, = sin go.f cos p.(R.C}).dp
+ cos @.f —sinp.(R.Cy).dp
D' = sin @.f R.cosp.dy + cos ga.f —R.sinp.dp
Furthermore, the vector of nodal unknowns is obtained as bellow:
i" =lc, ¢ ¢y d dy dy (13)
Finally, the next strain and displacement interpolation functions can be derived:
gz[Bq]'q’ ":[Nq]"i (14)
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1787
1 1
———.cos ——.sin 0 0 0 0
EA Y EATY
1 1
B | = sin cos 0 0 0 O
Bol=| gt ggareo (15)
R —
e N '} (-tanp) — 0 0 O
EI |2.cos? ¢
Ry |1sing + cos? @.In(sec  + tan ) n By | sinp+ cos? @.In(secp + tan )
kGA (2 cos EA cos
_’_&3 (105 cos? ¢ — 90) cos® p.In(sec  + tan ) + sin . cos? . (105 cos? ¢ — 20) — 4sin @
EI 960 cos® ¢ 7
2 _ 2
Ry | 1cos™p 41— sing.cos” @.In(secy + tanyp) n &(_1 + sing In(secqs + tan )
[N } _ kGA |2 (;os2 1% EA
4 _ig (105 cos? ¢ + 90)sin . cos® p.In(sec  + tan ) + cos® ¢.(—105 cos* o + 44 — 55cos? @) + 20
EI 960 cos’ ¢ 7
2 . .
R(_).[_ smgf B 3.sm2<,0 _ i.ln(secgo + tane) |,
EI [ 8.cosy 16.cos’¢
1 cos® p + 1 — sin.cos® p.1 t
R (—1 + sin.In(secp + tan<P)) + Hoy | Leos o + sin . cos” . In(sec + tan)
kGA EA|2 COSQQD
L R}?( 15sin¢.cos’ p.In(secp + tan @) 4 5cos® ¢.(1 — 3cos? ) + 2
EI 120 cos? ¢ ’
Ry |[sing + cos? ¢.In(secy + tan p) n Ry | 1sing + cos® p.In(secp + tan @)
kGA cos @ EA| 2 cos® ¢ (16)
n R} 15 cos® @.In(secp + tan ) + sinp.(8 + 10cos? ¢ + 15cos’ )
EI 120 cos® ¢ ,
Ry (-1
EI (3.cos®¢)
ﬁ (5 cos® p — 12).cos? ¢.In(sec ¢ + tan @) + 15sin p.cos? ¢ — 2sin
EI 48 cos® ¢
R? [ (15 cos® p + 12)sin . cos @.In(sec ¢ + tan @) + 6 — cos® ¢.(15cos® ¢ + 7)
EI 48 cos? ¢
R, |[sing + cos® p.In(secy + tan )
EI 2.cos’ ¢ ’
_ 2
& 1-2cosy singp  cosy
2 cos ¢
. 2
Ry | sinp.(1 4 2cos” o) cosp —sing
2 cos?
1 0 0
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4 FINITE ELEMENT FORMULATION

If ¢ is inserted in the equation (16), the vector of the nodal displacement will be found. It should
be noted, ¢ for the first node is zero while for the second one is unknown. The structural geometry

is utilized to find the amount of ¢ .

D = [Gq] 4, DT = [ul v, 0 u, v, 0, (17)
. -1
i=16,]".p (18)

At first, the displacement and strain interpolation functions are determined according to the
vector of nodal displacements. Then, the following shape functions become available:

w=|N (6" D), «=[8](6][ D (19)
N=[~N[6]" B=[8][c] (20)

Total potential energy can be written in terms of the strain interpolation function:

1 T
- EfS{E}T_[Dm]_{g}.ds -fs{u}T.{F}.ds— > A} (P} (21)

i=1,2

By optimization IT, a general finite element formulation is obtained for each member:

(J.[B] [D,)[Bl-ds)D = [[[N] .(F}ds + (R}, (22)

[s]= [ 8] [D,][B]ds

S|.D = {P} .
< {Py= [[N] {F)as + (B},

(23)

Calculating the exact integration over the arch length leads to the precise elemental stiffness
matrix. It should be added that general form of the stiffness matrix entries, § j » are based on the

i
approximation of the compliance material matrix. All of these entries are explicitly given in the
appendix.

5 NUMERICAL STUDIES

To verify the performance of the suggested element, some structures will be examined numerically.
It should be mentioned that the effect of shear deformation is taken into account in the presented
examples. Hence, in all tests, k is assumed 5/6 for rectangular cross section. In the following, the
results of these tests are compared with the exact answers of the Castigliano’s theory, which are
characterized by the subscript C.
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5.1 A Two-End Fixed Beam

A beam with a radial load at its middle point and two fixed supports is shown in Figure 2. Elastici-
ty modulus of Young, thickness and radius of curvature are 30,000( k/in°), 6( in) and 1200 (in),
respectively. Also, the tangent angle of the beam end is a =11.51 - Figure 2, illustrates the geome-
try of structure. Due to symmetry, this arch can be modeled with a single element. Marquis and
Wang (1989) analyzed parabolic beams by taking advantage of potential energy principles. In this
section, the answers of the proposed method can be compared with the responses of their study. It
should be noted that they ignored the shear effect to solve this structure. The obtained results are
available in Table 1.

10(k)
20(f)

:LI_NZ(H}
{ L=40 (1) J

Figure 2: Geometry of a two-end fixed parabolic beam Marquis and Wang (1989).

Marquis and Wang (1989) with no Present method with no
shear effect shear effect
1.2309E-03 1.2309E-03

Table 1: Middle point radial displacement of a two-end fixed beam with a central radial load.
According to the results, there is no locking error in the answers of the suggested element.

5.2 Verifying Responses

In this section, the displacements of parabolic beams are calculated and compared with the availa-
ble solution. Some cases of loading and slenderness ratios are considered in this study. Two bounda-
ry conditions are employed for this test. In addition, a nodal load is applied at the middle point.
The structure has different slenderness ratios and is carrying radial, tangential and rotational loads,
separately. The main aim of this study is to evaluate the new element efficiency, when it is used for
thin and thick members. Constant radius of the curvature and variable thickness lead to the differ-
ent slenderness ratios. Load’s magnitude is assumed to be unit and the radius of curvature at p=0
is presumed to be 25. Tangent angles of both beam ends, Young’s modulus and shear correction
factor in all cases are 38. 6’60, 10.5E+06 and 4.0E+06, respectively. The results of this analysis and

exact answers are inserted in Table 2.

Latin American Journal of Solids and Structures 13 (2016) 1782-1801
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Slender- Present method Exact
Structural geometry ness ratio
( R, / t) u v 9 Uc Ve Ve

5 4.7428E-07 0.0000 -6.0156E-08 4.7428E-07 0.0000 -6.0156E-08
50 2.1447E-04 0.0000 -6.4613E-05 2.1447E-04 0.0000 -6.4613E-05
100 1.7000E-03 0.0000 -5.1717E-04 1.7000E-03 0.0000 -5.1717E-04

q, ‘ 5 0.0000 1.3525E-06 0.0000 0.0000 1.3525E-06 0.0000

50 0.0000 3.1481E-04 0.0000 0.0000 3.1481E-04 0.0000

100 0.0000 2.4527E-03 0.0000 0.0000 2.4527E-03 0.0000
m 5 -6.0156E-08 0.0000 3.2872E-08 -6.0156E-08 0.0000 3.2872E-08
50 -6.4613E-05 0.0000 3.1426E-05 -6.4613E-05 0.0000 3.1426E-05
100 -5.1717E-04 0.0000 2.5132E-04 -5.1717E-04 0.0000 2.5132E-04
P, 5 3.3241E-07 0.0000 -3.0596E-08 3.3241E-07 0.0000 -3.0596E-08
50 8.4414E-05 0.0000 -3.3000E-05 8.4414E-05 0.0000 -3.3000E-05
100 6.6028E-04 0.0000 -2.6406E-04 6.6028E-04 0.0000 -2.6406E-04

q\'i 5 0.0000 1.3414E-06 0.0000 0.0000 1.3414E-06 0.0000

50 0.0000 2.1845E-04 0.0000 0.0000 2.1845E-04 0.0000

/z\ 100 0.0000 1.6618E-03 0.0000 0.0000 1.6618E-03 0.0000
5 -3.0596E-08 0.0000 2.6714E-08 -3.0596E-08 0.0000 2.6714E-08

m._

] 50 -3.3000E-05 0.0000 2.3737E-05 -3.3000E-05 0.0000 2.3737E-05
100 -2.6406E-04 0.0000 1.8971E-04 -2.6406E-04 0.0000 1.8971E-04

Table 2: Load point displacements in parabolic beams with different conditions.

Results of this study demonstrate the ability of the proposed element in modeling of the thin

and thick structures. In fact, all tests with distinctive features give the precise answers. The out-

comes indicate the extensive performance of the novel element.

5.3 A Two-End Hinged Beam

After examination of the displacement's quality, it is better to verify the internal forces, since the

suggested element is formulated based on the equilibrium equations. For this purpose, the beam

with mechanical and geometrical properties similar to the previous test is utilized. Figure 3 shows

this structure with R, = 25and R, / t = 100 . An external bending moment of m_ = 2 is applied at

the center of structure. This moment causes a discontinuity in the internal bending moment.

Latin American Journal of Solids and Structures 13 (2016) 1782-1801
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Figure 3: A two-end hinged parabolic beam with a discontinuity in bending moment.

Figures 4, 5 and 6 illustrate the internal forces versus horizontal distance from center line.
These distances are found from equation H = R,.tanp . Based on the potential energy principles, all

internal forces are found from below equations.

0.5m,( —1+ 0.05R,.tanp),0 < H < 20

M =
= 0.5m, (1 + 0.05R,.tan)-20 < H < 0 (24)
N_ = 0.5m_.(—0.05sin ¢) (25)
Vy = 0.5m_.(—0.05cos p) (26)

0.8 Br/

0.6 ﬁ/
/r O Present Method
0.2 /

0@ &

Exact

Bending Moment

038 /“/9’

1 &

-20 -175 -15 -125 -10 -75 -5 -25 0 25 5 75 10 125 15 175 20
Horizental Distance from Center

Figure 4: Distribution of bending moment in the two-end hinged parabolic beam.
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0.035

G
0.028 ;\‘L Exact

0.021 S
0.014 U\ O Present Method

o
o
o
~
/

Axial Force
o

-0.007 AT
-0.014

-0.021 S
~s.
-0.028 Q\

-0.035

-20 -175 -15 -125 -10 -75 -5 -25 0 25 5 75 10 125 15 17.5 20
Horizental Distance from Center

Figure 5: Distribution of axial force in the two-end hinged parabolic beam.

-0.039 C\ /)
-0.04 — Exact

-0.041

-0.042 \ O Present Method /

-0.043 X ﬂ

o]

2

ug -0.044 \ /

] \ /

o -0.045

<

5 N\ /
-0.046 N\ /

-0.047 \-\ ‘/v

-0.048

-0.049

3‘-_[\2

-20 -175 -15 -125 -10 -75 -5 -25 0 2.5 5 75 10 125 15 175 20
Horizental Distance from Center

-0.05

Figure 6: Distribution of shear force in the two-end hinged parabolic beam.

According to the Figures 4, 5 and 6, by employing the proposed method, all internal forces are
precise. Based on this benchmark’s outcomes, the accuracy of the suggested element in evaluating

the structural internal forces is concluded.
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5.4 Cantilever Parabolic Beam

Figure 7 shows a cantilever parabolic beam, with R, =25, which is tested in this section. Mechani-

cal properties of this structure are similar to the structure in section 5.2. Radial and tangential dis-
placements of this beam are obtained for the radial concentrated unit load at the free-end. Tangent
angle of the beam’s end is equal to a =45 " Table 3 illustrates all displacements of this structure
versus the slenderness ratio. The answers are compared with the obtained results, for the composite
curved beams Lin and Hsieh (2007). By assuming the equal transverse and longitudinal modulus,
the anisotropic material reduces to an isotropic one, and in this case, the answers are comparable.
For this cantilever parabolic beam, tangential and radial displacements are calculated from equation

(27).

/
Rlp) / J/
! qy

Figure 7: Geometry of a cantilever parabolic beam Lin and Hsieh (2007) .

u[l]: Ry [3ln(v2 +1) - V2| - By [33In(v/2 + 1) + 128 — 83V2]
384E1

4 4FA
- R R 3 (27>
o| | = o [In(V2 + 1) + 4 - 3V2] + —C—[1155In(V2 + 1) + 1088 — 8572
4 4FA 1920FET1
Slenderness Present method Lin et. and Hsieh (2007)
Type of ratio
loading (R,,/t) u v u v
5 1.4625E-05 6.6594E-05 1.4625E-05 6.6594E-05
Radial 50 1.4770E-02 6.6519E-02 1.4770E-02 6.6519E-02
100 1.1817E-01 5.3215E-01 1.1817E-01 5.3215E-01

Table 3: Load point displacements in cantilever parabolic beam.

5.5 Parabolic Beam in Pure Bending

The geometry of a parabolic beam, with R, = 25 and a couple of moments at two ends, is shown

in Figure 8. Both end moments are assumed to be unit. Mechanical properties in this benchmark
are considered to be the same as one in section 5.2. It is clear that this load produces pure-bending
behavior in the structure. By utilizing the symmetrical characteristics, the parabolic beam can be
replaced by a cantilever beam having a moment at its free end. For a constant slenderness ra-

Latin American Journal of Solids and Structures 13 (2016) 1782-1801
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tioR, / t = 100, the radial displacement is achieved for variable a. Table 4 demonstrates the results

of proposed method, along with the one obtained by Lin and Hsieh (2007).

Figure 8: A parabolic beam under pure bending Lin and Hsieh (2007).

R 1 1 5. 1, 1 )
v = —|——+4 —cosp + —tan + —tan + —sinp.(9 + 4 tan In(secy + tan 28
() o T3 T3t g vt v+ i ( ¢)In(secyp ®)|  (28)
a -Degree 80 70 60 50 40 30 20

Present method
Answers 6.9955E+00  5.3415E-01 1.2653E-01 4.5322E-02 1.9176E-02 8.2895E-03 3.1309E-03
W
Lin and Hsieh

(2007) 6.9955E+00  5.3415E-01 1.2653E-01 4.5322E-02 1.9176E-02 8.2895E-03 3.1309E-03

Table 4: Radial displacement at the middle point of a parabolic beam in pure bending.

5.6 Arch Structure

A structure which is formed by three parabolic arches, with different geometries, is shown in Figure
9. This arch is modeled with three elements. Element 1 with (R,); = 2 and ¢ = 0.01 is assembled
with two half-arches of element 2, having (R,), = 0.5 and¢ = 0.0025. In fact, the slenderness ratios
(R, / t = 200) for both elements are the same. The parabolic vertex is carrying a moment of
m_ = 2. All of mechanical properties are considered to be similar to the one in section 5.2. Table 5

gives the middle-point displacements. Figures 10, 11 and 12 illustrate internal forces versus horizon-
tal distance from the center line. These distances are calculated by employing equation (29).

H
mZ
Iy Y=
_YOo
y Yo!
Element 1
&
/ 3
o
Element 2
_v

2.00 " 2.00

Figure 9: Geometry of an arch structure.
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0.5tanp —2 , -4 < H <-2;-75.9637° < p <0
H=1{2tanp , -2 < H <2:-45° < ¢ < 45°
0.5tanp +2 |, 2 < H < 4;0 < ¢ < 75.9637°

Exact internal forces are given in the following equations:

m, m
——2 4 —2(0.25(2 + (R,),-tan)),0 < ¢ < 75.9637°

ENY

2
m

L+ —2£(0.25(R)),-tan ¢),0 < ¢ < 45°
M = 2 2

m m
2Z + 2Z (0.25(R)),.tan ¢),-45° < H < 0
m m,
2Z + 2Z (0.25( -2 + (Ro)z.tan ©)),-75.9637° < v <0
m,
N, =-— 2Z (0.25siny)
m
— %
vV, =— 5 (0.25cos p)
Displ ¢ Present method with no Exact answers with no
isplacemen shear effect shear effect
u -104.26459 -104.26459
0} 19.88145 19.88145

Table 5: Middle-point displacements in arch structure.
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Figure 10: Distribution of the bending-moment in arch structure.

(30)
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Figure 11: Distribution of the axial force in arch structure.
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Figure 12: Distribution of the shear force in arch structure.
5.7 Sinusoidal Loading
The last example is a parabolic beam under a distributed load. Figure 13 depicts two beams with

different boundary conditions and identical loading and geometry. Boundary conditions of the first
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case and the second one are pinned-pinned and pinned-roller, respectively. Two pinned supports
make the beam statically indeterminate, but a pinned-roller beam is a determinate structure. A
sinusoidal distributed load is applied to the beam with a maximum amount of a unit at the middle
point. It should be noted, the geometry, cross section properties and mechanical characteristics are
similar to the upper part of the structure shown in Figure 9. In this solution, only the bending ef-
fect is taken into account, due to negligibility of the axial and shear effects. Obtained results of the
displacements with different meshes are shown in Table 6. By utilizing only one element, the an-
swers for this complex loading are precise with zero errors. This is the result of using the exact solu-
tion and also satisfying the equilibrium equations.

Ofx)=sinfmx/d+rx/2) OQ(x)=sin{mx/d+n/2)

"--_- e-2

(11}
001

Nod 'v

2.00

Figure 13: Parabolic structures with sinusoidal load.

Displacements of node-2 in Fig. 13-1 Displacements of node-3 in Fig. 13-2
u v 0 v 0
Exact 0.0000 0.0180 0.0000 -1.0707 -0.6354
1-element — — S -1.0707 -0.6354
Present 2-element 0.0000 0.0180 0.0000 -1.0707 -0.6354
Method  3-element — S — -1.0707 -0.6354
4-element 0.0000 0.0180 0.0000 —_ _

Table 6: Displacements of the beam with distributed load.

6 CONCLUSION

A novel curved beam element with two nodes and six degrees of freedom was suggested to model
parabolic members. By applying exact strain functions, an element with high accuracy was ob-
tained. Precise strains were calculated by incorporating the equilibrium equations in the proposed
formulation. The accuracy of element’s responses was verified with some numerical tests. For differ-
ent structures, the effects of loading, slenderness ratio, boundary conditions and geometry were
investigated in this study. Comparing the results of the new model with the exact solution, con-
firmed the precision of obtained displacements. Since the authors' formulation was based on the
assumed-strain functions, it led to the precise internal forces. As a result, the proposed element can
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be utilized in the analysis of any parabolic structure. Utilizing suggested explicit form of the beam
stiffness matrix, which is available in appendix, can accelerate the analysis procedure considerably.
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APPENDIX - EXPLICIT FORM OF THE PARABOLIC BEAM STIFFNESS MATRIX

Gy, = 5(((m2,3m5,5 = My 5+ Mg 315 )m4,6 — Mg (m2,3m4,5 —mys + m6,3m4,4))m3,z + (_m6,2m2,3
My 5 — My oM 3 + m6,2m5,3)m4,6 + ms,s(m6,2m2,3m4,5 +my oM s — m6,2m4,3))

1
Gy = *5(((("11,4"15,6 - m5,4)m4,5 - m5,5(m1,4m4,6 - m4,4))m3.,2 + (*mLzms.,ﬁ + My, )m4,5 + my 5

(m1,2m4,6 - m4,2))m<s,3 - (*ms,z + m6,2) —My 3My 5 + m5,3m4,5))

1
Gy = B((((*m4,5m5,6 + M 5y 6 )m1,4 = My My 5 + m5,4m4,5)m6,2 + (m4,5m5,6 - m5,5m4,6)m1,2
My omy 5 — m5,2m4,5)m2,3 + ((m4,3m5,6 - m5,3m4,6)m1,4 = My 3Myy + m5,3m4,4)m6,2 + ((*m6,3m5,4
+m5,3)m4,6 + My (—m4’3 + m6,3m4.4))m1,2 - m6,3<m4,2m5,6 — My M5 9 )m1,4 + <_m5.2m4,4 + m4,2m5,4)
Mg 3 — My My 5 + m5,2m4,3)

1
Gy = *5(((*7”1,47”5,6 + m5,4)m6,3 = My g+ My 3My )m3,2 + (m1,2m5,6 - m5,2)m6,3 — Mg (m2,3m5,5
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1

G; = E(((—m1~4 =My My Mgy = My g My My )My + (M My g — My o )M 5 — Mo (Mg g3my 5
—my3))

1
Gie = _5((((_7”4.57”5,6 + Mg My )y g = Ty M o+ s gy 5 )y o (1 5 g — T 51Ty 6 )y

TMy oMy 5 — m5,2m4,5)m2,3 + ((m4,3m5,6 - m5,3m4,6)m1,4 = My 3Mgy + m5,3m4,4)m3,2 + (_m4,3m5,6

+m5,3m4,6)m1,2 — My oMy g + m5,2m4,3)

1
Gy = _B(((—mmm&g + mgamy )M g + Mgy (=g gmy 5+ ms )+ mg g (my g 5 — Mgy ))my
_m5,6(m6,1m4,3 - m4,1m6,3))
1
Gy = B(mG,S(_m4,1m5,5 + m5,1m4,5) + mﬁ,l(m4,3m5,5 - m5,3m4,5))
1
Gy = _5(((((_7”5,6 g g )My g — Mg g mg g — Mg ((=mg g+ mg s )my g — mg g ))myy g ymg g

Mg Mg 3Meg 4 — Mg Mg 5 + m6,1m2,3m5,4)m4,5 + ms,a(m6,1m4,3 - m4,1m6,3)m1,4 + (_m2,3m4,4m5,5
My g Mgyt Mg My )mﬁ,l + (m4,1m5,4 My gy My — M Ty )m6,3 T My 1My gMg 5 — Ty 1My g

+my My 3Ms 5 + m5,1m4,3)

1
Gy = B(mﬁ,l(*m2,3m5,5 + m5,3) + m6,3(m2,1m5,5 - m5,1))
Gos = _B(m&l(_m2,3m4,5 +myg) + mgg(my my 5 —my )
1

Gy = 5((m2_’3m4’1 - m2,1m4,3)m5,5 = My My g My Mg gy 5 — Mg 1My 3TNy 5+ m5,1m4,3)
G 1
31 = 5(((_7”2,17"5,5 + My — m6,1m5,4)m4,6 + My (m2,1m4,5 —my; + m6,1m4,4))m3,2 + <m2,1m6,2m5,5

—M5 1Mo+ Mg 1M )m4,6 - m5,6<_m4,1m6,2 + My Mg oMy 5 + m6,1m4,2))

1
Gyy = _5((<(_m1,4m5,6 + m5,4)m4,5 + my 5 (ml,4m4,6 - m4,4))m3,2 + <m1,2m5,6 — My, )m4’5 — My 5

(m1,2m4.6 - m4,2))m6,1 - (—m372 + m6,2)(m4,1m5,5 - m5,1m4,5))

1
Gy = B(((ml,4(m4,5m5,6 — Mg My ) & My Mg 5 — Mg Ty 5 ) o+ (=T 5T 6 = Mg 5Ty )y
My oMy 5 + My oMy 5 )mz,l + ((m5,1m4,6 - m4,1m5,6)m1,4 = Mg My 4+ My Ty )m6,2 + ((m6,1m5,4
_m5,1)m4,6 - m5,6(_m4,1 + m6,1m4,4))m1,2 - m6,1(_m5.6m4,2 + m5,2m4,6)m1,4 + (_m4,2m5,4 + m5,2m4,4)
Mgy + My My o — m4,1m572)

-1
Gy = 5(((7”1,47”5,6 - m5,4)m6,1 — My M5 + m5,1)m3,2 + (*m1,2m5,6 + m5,2)m6,1 + Mg, (m2,1m5,5

*m5,1))
1
Gy = B(((ml,4m4,6 — My, )mﬁ,l = My My 5 + My )m3,2 + (7m1,2m4,6 + m4,2)m6,1 + Mg o (m2,1m4,5
*m4,1))
1
Gy = 5(*7”3,2((7”4,1 - m1,2m4,5)m5,4 + m4,4(m2,1m5,5 - m5,1)) T My oMy T+ Mg oMy + My (*m5,2m4,5

+m472m5y5) + (ml,Z - m3,2m1,4)((m2,1m4,5 — My, )ms,(s - m4,<;(m2,1m5,5 - m5,1)))
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D = (((m1,4m5,6 - m5,4)m4,5 - m55(m14m46 - m44))m23 + (_m4,3m5,6 + m5,3m4,6)m14 — M5 3Myy
Fmygms Jmgy + ((=myyms g + mg Jmy 5 + mg s (my gmy g — my ))my, + (myyms g — mg myg)m,
My My — My Ty 4)m63 + (my 3M55 — Mg 3m45)m21 + (= My 1My 5 + m5,1m4,5)m2,3 — M5 My 3
+m4.1m5.3)m3,2 + (= My oMy g + My 2)m45 + my 5(m12m46 m4,2))m2,3 + (_m5,3m4,6 + m4.3m5,6)m1,2
My 9Mg g — Mg oMy 3)m61 + (((my, 9Mse — m5,2)m4,5 - m5,5(m1,2m4.6 - m“))mm + (my my g

My My 6)m12 T My Mgy — My oMy 1)m63 - ((m4,3m5,5 - m5,3m4,5)m2,1 + (_m4,1m5,5 + m'1m4o)m23

My My 5+ m4,1m5,3)m6,2

GGy Ry GGy R, GG, Ry GGy R, R R, R
S . =I(—=2 24 2 L (— = 22 ) L) GG )+ T 0
5 = Al EA kGA )+ I EA kGA ) d(4E1r)( 1) (kGA EA)
(G,Gy; + Gy,Gyy) + I i + 1. i + 1 (EI)(G Gs;)
R} R GGy + Gy Gy
+1 (E )(Gy,Gy,) + 0 (G, z} 2 2]),i,j =123
3 . . .
=05 )~ 1)1, = 1,1, = AS0@ 5 sin(e) 5 sinl@) 5
cos?(a) 6 cos®(a) 24 cos'(a) 16 cos’(a) 16
L= (— 11— 02— 1)1, = 0.5, Sinle) | 3sin(@) 3
cos(a) cos(a) cos’(a)  2cos’(a) 2
. 203 i3
I = 0.2.( sin(a) | L), I, = 0.25.(32 (@) L Isini@) | 1oy —Loy, L=ty
cos? () cos’(a)  2cos*(a) 2 2 3 “cos(a)

L = In(sec(a) + tan(a))
m, ;= N, ogrmiis,; = N(i:0)] _ori = 1,2,3,5 = 1,2,3,4,5,6

All terms of matrix N, are found from equation (16).
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