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Abstract

This work presents a fully nonlinear geometrically-exact multi-parameter rod model that
incorporates general in-plane cross-sectional changes as well as general out-of-plane cross-
sectional warping. The formulation constitutes an extension of the earlier works, in the
sense that the restrictions to a rigid cross-section and to a Saint-Venant-like elastic warping
are now removed from the theory. The definition of energetically conjugated cross-sectional
resultants in terms of generalized stresses and strains, based on the concept of a cross-section
director, simplifies the derivation of equilibrium equations and the enforcement of boundary
conditions, in either weak or strong senses. In addition, the corresponding tangent bilinear
weak form is obtained in a more expedient way, rendering always symmetric for hyper-elastic
materials and conservative loadings. The definition of a cross-section director allows also the
introduction of independent degrees-of-freedom to describe both the in-plane cross-sectional
changes and the out-of-plane warping. Fully three-dimensional finite strain constitutive
equations can therefore be employed with no spurious stiffening. Finite rotations are treated
consistently by the Euler-Rodrigues formula in a pure Lagrangean framework. Altogether,
the present assumptions allow a consistent basis for the proper representation of profile
(distortional) deformations, which are typical of cold-formed thin-walled rod structures. This
is one of the main features of the formulation, as the use of more complex shell models in
order to capture such phenomena can be needless.

1 Introduction

Three-dimensional beam-like structures undergoing large displacements and large rotations are
increasingly common in engineering practice. The development of geometrically-exact models for
rod assemblages has consequently attracted much attention over the past decades, and numerous
papers have been published up to now on the subject (see e.g. [3, 5–7, 9, 13–17], and references
therein to name just a few).

The main purpose of this work is to present a fully nonlinear geometrically-exact multi-
parameter rod model that incorporates general in-plane cross-sectional changes as well as general
out-of-plane cross-sectional warping. The formulation constitutes an extension of the earlier
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works presented in [3, 9, 13–17], in the sense that the restrictions to a rigid cross-section and to
a Saint-Venant-like elastic warping are now removed from the theory.

Our approach defines energetically conjugated cross-sectional resultants in terms of general-
ized stresses and strains, based on the concept of a cross-section director. Besides their practical
importance, the use of cross-sectional resultants simplifies the derivation of equilibrium equa-
tions and the enforcement of boundary conditions, in either weak or strong senses. In addition,
the corresponding tangent bilinear weak form is obtained in a more expedient way, rendering al-
ways symmetric for hyper-elastic materials and conservative loadings (even far from equilibrium
states).

Definition of a cross-section director plays a central role in the present model. Accordingly,
it allows the introduction of independent degrees-of-freedom to describe both the in-plane cross-
sectional changes and the out-of-plane warping. Fully three-dimensional finite strain constitutive
equations can therefore be employed with no spurious stiffening. The ideas are general and
extension to inelastic rods, in particular to those of elastic-plastic materials, is straightforward
once a stress integration scheme within a time step is at hand.

Finite rotations are treated here by the Euler-Rodrigues formula in a pure Lagrangean frame-
work [8]. We assume a straight reference configuration for the rod axis, but initially curved rods
can also be considered if regarded as a stress-free deformed state from the straight position
(see [10]). The use of convective non-Cartesian coordinate systems is this way avoided and only
components on orthogonal frames are employed. Moreover, initial curvatures that are com-
pletely independent of the isoparametric concept are possible to be attained, which can be used
even in (for example) straight finite elements.

Altogether, the present assumptions allow a consistent basis for the proper representation of
profile (distortional) deformations, which are typical of cold-formed thin-walled rod structures.
We believe this is one of the main features of our formulation, as the use of more complex shell
models in order to capture such phenomena becomes unnecessary.

Throughout the text, italic Latin or Greek lowercase letters (a, b, . . . , α, β, . . .) denote scalar
quantities, bold italic Latin or Greek lowercase letters (a, b, . . . α, β, . . .) denote vectors, bold
italic Latin or Greek capital letters (A, B, . . .) denote second-order tensors, bold calligraphic
Latin capital letters (A, B, . . .) denote third-order tensors and bold blackboard italic Latin
capital letters (A, B, . . .) denote fourth-order tensors in a three-dimensional Euclidean space.
Vectors and matrices built of tensor components on orthogonal frames (e.g. for computational
purposes) are expressed by boldface upright Latin letters (A,B, . . .a,b, . . .). Summation con-
vention over repeated indices is adopted in the entire text, with Greek indices ranging from 1
to 2 and Latin indices from 1 to 3.

Latin American Journal of Solids and Structures 1 (2003)



A fully nonlinear rod model 121

2 A multi-parameter rod theory incorporating general cross-sectional in-plane changes and

out-of-plane warping

2.1 Kinematical assumptions
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Figure 1: Rod description and basic kinematical quantities

It is assumed at the outset that the rod is straight at the initial configuration, which is used
as reference. Initially curved rods can be mapped by standard isoparametric means, or can be
regarded as a stress-free deformed state from the straight reference position (see [10]).

Let {e1, e2,e3} be a unit orthogonal system in the reference configuration, with er
3 placed

along the rod axis as depicted in Fig. 1. Cross-sectional planes in this configuration are uniquely
defined by the vectors er

α. The position of the rod material points in the reference configuration
can be described by

ξ = ζ + ar, (1)

where

ζ = ζer
3, ζ ∈ Ω = [0, `] (2)

defines a point on the rod axis and
ar = ξαer

α (3)

is the cross-section director at this point. The axis-coordinate ζ defines the rod length ` in the
reference configuration (observe that {ξ1, ξ2, ζ} sets a three-dimensional Cartesian frame).
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Let now {e1, e2, e3} be a unit orthogonal system on the current configuration, with eα

attached to the cross-sectional plane before its warping. The rotation of the cross-section in
the 3-D space is described by a rotation tensor Q = Q̂ (ζ), such that ei = Qer

i . In the current
configuration the position x of the material points (see Fig. 1) is given by the vector field

x = z + y , (4)

where z = ẑ (ζ) represents the current position of a point on the rod axis and y the position of
the remaining points on the cross-section relative to the axis. We suppose that the cross-sections
are first rigidly rotated from the reference configuration, then undergo an in-plane deformation
and then are warped in the out-of-plane direction, so that the vector y can be decomposed as
follows

y = a + v + w. (5)

Here
a = Qar (6)

is the current cross-section director, representing the rotational part of the deformation,

v = vβeβ (7)

is the vector of in-plane (or transversal) displacements, describing the in-plane changes of the
cross-section, and

w = we3 (8)

is the vector of out-of-plane displacements, embodying the cross-sectional warping. Notice that
first-order shear deformations are accounted for since e3 is not necessarily coincident with the
deformed rod axis.

Remark 1

As in (6), throughout the text we use the notation (·) = Q (·)r ⇔ (·)r = QT (·) for any vectors
(·) , (·)r. Vector (·)r is said to be the back-rotated counterpart of (·) and is not affected by
superimposed rigid body motions. It is noteworthy that vector (·) has the same components on
the local system {ei, i = 1, 2, 3} as (·)r has on {er

i , i = 1, 2, 3}.

Cross-sectional in-plane changes

Several kinematical assumptions are possible for the transversal displacement v. Let r = r̂ (ζ)
be a vector that collects the nv transversal degrees-of-freedom, necessary to describe the cross-
sectional in-plane changes. We assume here that v is a linear function of r such that

v =
(
eβ ⊗ φβ

)
r, (9)
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where φβ = φ̂β (ξα) are two vectors of shape functions describing the transversal distribution
of the components of v on the cross-section. We remark that nonlinear relations may be neces-
sary for the modeling of local buckling in cold-formed thin-walled metallic profiles; this will be
addressed in a forthcoming paper [2]. From (7), these components are after that given by

vβ = φβ · r. (10)

We discuss next some possible choices for φβ.

1. The simplest hypothesis for the transversal displacements is the traditional assumption of
rigid cross-sections, what means

v = o. (11)

where o is the zero vector. This restriction is adopted in nearly all rod formulations, such
as [3,9,13–17] to name just a few. The cross-sectional transversal deformation is taken as
zero and so a spurious stiffening is generated when 3-D constitutive models are utilized in
the regular way.

2. A more general but yet simple assumption that partially corrects this drawback is to adopt
a homothetic cross-sectional change, i.e.

v = ra, (12)

where r = r̂ (ζ) is the only transversal degree-of-freedom. This assumption is adequate for
isotropic materials (or for transversely isotropic materials with the material axis of sym-
metry parallel to er

3) subjected to stretching-dominated deformations, as those observed
in pure compression or pure tension. If (12) is adopted, we have nv = 1, with

φβ = [ξβ] and r = [r] . (13)

3. For bending-dominated deformations, the artificial stiffening is not completely circum-
vented by (12). A better assumption is

φ1 =




ξ1
1/2ξ2

1

ξ1ξ2


 , φ2 =




ξ2

ξ1ξ2
1/2ξ2

2


 and r =




r1

r2

r3


 , (14)

wherein 3 cross-sectional degrees-of-freedom are employed to describe the in-plane changes.
In this case, r1 corresponds to r in (12) and is important for stretching-dominated defor-
mations, while r2 and r3 are imperative for the bending-dominated situations. Statement
(14) is the simplest kinematical assumption that does not imply artificial stiffening in
bending. It may be more adequate for isotropic materials, but can be employed whenever
simplicity is aimed. We observe at this point that assumption (14) is equivalent to that
one adopted in [12] for variable-thickness shells.
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4. A complete quadratic assumption for v can be more appropriated, in particular for solid
sections of anisotropic materials (or for plasticity-induced anisotropy). It is given by (9)
with

φ1 =
[

ϕ

o5

]
, φ2 =

[
o5

ϕ

]
and ϕ =




ξ1

ξ2
1/2ξ2

1

ξ1ξ2
1/2ξ2

2




(15)

Here the vector r collects nv = 10 transversal degrees-of-freedom, that entirely describe
the quadratic in-plane cross-sectional changes.

5. More general functions must be assumed if one attempts to capture profile (distortional)
deformations, typical of cold-formed thin-walled sections. The degrees-of-freedom rv, v =
1, . . . , nv will then correspond to additional transversal displacements and axial rotations
of points along the mid-line of the thin-walled section. The corresponding shape functions
describe the profile deformation as transversal frames between these points, as done for
example in [18]. We will return to this issue in a forthcoming paper ( [2]).

Out-of-plane displacements

There is also a number of possible kinematical assumptions for the out-of-plane displacements
w due to warping. Let us write these displacements as

w = (e3 ⊗ψ) p, (16)

where p = p̂ (ζ) is a vector that collects the nw degrees-of-freedom describing the cross-sectional
warping, and ψ = ψ̂ (ξα) is the vector of corresponding warping shape functions ψw. According
to (16) the component w of (8) on the current local system is given by

w = ψ · p. (17)

The consideration of w is of central importance in torsion- and other shear-dominated deforma-
tions, and we discuss some possibilities in what follows.

1. The simplest assumption, which was employed in [3,9,13,15,16] among many others, is to
neglect all warping effects, what means

w = o. (18)

Accordingly, the cross-sections are forced to remain plane after the deformation, and there-
fore artificial stiffening is produced in torsion-dominated deformations as 3-D constitutive
models are directly employed.
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2. A simple choice that corrects this shortcoming is to adopt the classical warping functions
ψ = ψ̂ (ξα) from the Saint-Venant’s torsion theory, which can be found in any text-book
on Theory of Elasticity, as follows

w = ψp . (19)

Here p = p̂ (ζ) is the only cross-sectional degree-of-freedom, describing the warping mag-
nitude. Therefore nw = 1 and

ψ = [ψ] and p = [p] . (20)

This attractive kinematical assumption can be successfully used for either elastic (see [17])
or inelastic applications, whenever simplicity is desired.

3. For thin-walled cross-sections, the function ψ in (19) can be approximated by Vlasov’s
sectorial area, see [18]. In this case the warping function is assumed to be constant across
the wall thickness, and piecewise linear along the section mid-line as in [1, 11]. Further
improvements are still possible if we add to the Vlasov’s warping assumption a secondary
warping function, taken as linearly-varying across the wall thickness.

4. More general functions must be assumed in order to capture the real warping in the fully
nonlinear regime. For solid functions the cross-section domain can be discretized by simple
triangular and/or quadrilateral finite elements. For thin-walled rods the functions ψw can
be assumed to be constant across the wall thickness and linear between arbitrarily chosen
nodal points on the wall mid-lines. This assumption can be further improved if we add
secondary warping functions, which can be assumed to be linear across the wall thickness.
We will return to this issue in a forthcoming paper [2].

Remark 2

It is sometimes convenient that the warping functions ψw, w = 1, . . . , nw, satisfy the following
orthogonality conditions

∫

A
ψwdA =

∫

A
ξ2ψwdA =

∫

A
ξ1ψwdA = 0 , (21)

in which A is the cross-section area. If the warping functions
{
ψ̄w, w = 1, . . . nw

}
are initially

chosen that do not satisfy (21), they can be made orthogonal by

ψw = ψ̄w − aw − bwξ2 + cwξ1 , (22)

where the coefficients aw, bw and cw are computed through



aw

bw

cw


 =




A S1 S2

S1 I11 I12

S2 I21 I22



−1 


∫
A ψwdA∫

A ξ2ψwdA

− ∫
A ξ1ψwdA


 . (23)
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Here, the following cross-sectional geometric constants have been introduced

A =
∫
A dA , S1 =

∫
A ξ2dA , S2 = − ∫

A ξ1dA ,

I11 =
∫
A ξ2

2dA , I22 =
∫
A ξ2

1dA and I12 = I21 = − ∫
A ξ1ξ2dA .

(24)

2.2 Kinematics

The displacements of the points on the rod axis can be computed by

u = z − ζ. (25)

The rotation tensor Q, describing the rotation of the cross-sections, may be expressed in terms
of the Euler rotation vector θ, by means of the well-known Euler-Rodrigues formula

Q = I + h1 (θ)Θ + h2 (θ)Θ2 . (26)

In this case θ = ‖θ‖ is the true rotation angle and

h1 (θ) =
sin θ

θ
and h2 (θ) =

1
2

(
sin θ/2

θ/2

)2

(27)

are two trigonometric functions, with Θ = Skew (θ) as the skew-symmetric tensor whose axial
vector is θ. Altogether, the components of u, θ, r and p on a global Cartesian system constitute
the 3 + 3 + nv + nw parameters (or cross-sectional degrees-of-freedom) of this rod model.

From differentiation of (4) with respect to ξ one can evaluate the deformation gradient F .
After some algebra one gets

F = x,α ⊗ er
α + x′ ⊗ er

3 , (28)

wherein we have used the notation (·),α = ∂ (·) /∂ξα and (·)′ = ∂ (·) /∂ζ for derivatives. With
the aid of (4) through (8), the derivatives in (28) are

x,α = a,α + v,α + w,α and x′ = z′ + a′ + v′ + w′, (29)

in which
a,α = Qer

α , v,α =
(
φβ,α · r

)
Qer

β , w,α =
(
ψ,α · p

)
Qer

3 ,

a′ = Q (κr × ar) , v′ = Q
[(

φβ · r′
)
er

β + κr × vr
]

and

w′ = Q [(ψ · p′)er
3 + κr ×wr] ,

(30)

with
vr = vβer

β = QT v and wr = wer
3 = QT w . (31)

Still in (30), the following vector has been introduced

κr = ΓT θ′, (32)
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in which
Γ = I + h2 (θ)Θ + h3 (θ)Θ2 (33)

and
h3 (θ) =

1− h1 (θ)
θ2

. (34)

Vector κr in (32) can be regarded as the back-rotated counterpart of κ = axial (K) = Γθ′,
where K = Q′QT is a skew-symmetric tensor that shows up in deriving expressions (30). One
can understand K as the tensor describing the specific rotations of the cross-sections.

Thus, the deformation gradient may be rewritten as

F = Q (I + γr
α ⊗ er

α + γr
3 ⊗ er

3) = QF r , (35)

where F r = I + γr
α ⊗ er

α + γr
3 ⊗ er

3 is called the back-rotated deformation gradient and

γr
α =

(
φβ,α · r

)
er

β +
(
ψ,α · p

)
er

3 and
γr

3 = ηr + κr × yr +
(
φβ · r′

)
er

β + (ψ · p′) er
3 .

(36)

Here
ηr = QT z′ − er

3 , (37)

and yr is the back-rotated counterpart of y, i.e.

yr = ar + vr + wr = QT y . (38)

It will be clear on the next items that vectors ηr of (37) and κr of (32) can be understood
as generalized cross-sectional strains.

The material velocity gradient is given by time differentiation of (35) (denoted by a super-
posed dot) as follows

Ḟ = ΩF + Q (γ̇r
α ⊗ er

α + γ̇r
3 ⊗ er

3) , (39)

where Ω = Q̇QT represents the cross-section spin. The spin axial vector ω is obtained in a
similar way as to obtain the axial vector of K, i.e. ω = axial (Ω) = Γ θ̇. Derivatives γ̇r

i of (39)
are computed directly from (36), what yields

γ̇r
α =

(
er

β ⊗ φβ,α

)
q̇ +

(
er

3 ⊗ψ,α

)
ṗ and

γ̇r
3 = η̇r + κ̇r × yr + [(κr × er

3)⊗ψ] ṗ + (er
3 ⊗ψ) ṗ′+[(

κr × er
β

)
⊗ φβ

]
ṙ +

(
er

β ⊗ φβ

)
ṙ′

(40)

In order to fully evaluate expressions (40), the time derivatives η̇r and κ̇r are needed. From
(37) and (32), after some algebra it is possible to arrive at

η̇r = QT
(
u̇′ + Z ′Γ θ̇

)
and κ̇r = QT

(
Γ ′θ̇ + Γ θ̇

′)
, (41)
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where Z ′ = Skew (z′) and

Γ ′ = h2 (θ)Θ ′ + h3 (θ) (ΘΘ ′ + Θ ′Θ) + h4 (θ)
(
θ · θ′)Θ + h5 (θ)

(
θ · θ′)Θ2 . (42)

Notice that in (42) Θ ′ = Skew
(
θ′

)
and

h4 (θ) =
h1 (θ)− 2h2 (θ)

θ2
and h5 (θ) =

h2 (θ)− 3h3 (θ)
θ2

(43)

are two additional trigonometric functions.

2.3 Statics

Let the 1st Piola-Kirchhoff stress tensor be written as

P = Q (ταr ⊗ er
α + τ r

3 ⊗ er
3) . (44)

The quantities τ r
i are back-rotated stress vectors and act on cross-sectional planes whose

normals on the reference configuration are er
i . Expression (44) motivates the definition of a

back-rotated 1st Piola-Kirchhoff stress tensor P r, such that

P r = QT P = τ r
α ⊗ er

α + τ r
3 ⊗ er

3 . (45)

With the expressions for P and Ḟ , it is not difficult to show that the rod internal power per
unit reference volume may be written as

P : Ḟ = τ r
α · γ̇r

α + τ r
3 · γ̇r

3 , (46)

where the property PF T : Ω = 0, arising from the local moment balance, was utilized. Intro-
ducing (40) into (46) and performing some manipulation with the cross products, one gets

P : Ḟ = τ r
3 · η̇r + (yr × τ r

3) · κ̇r+
+

[
(τ r

α · er
3)ψ,α + (τ r

3 · e]κr × er
3) ψ

] · ṗ + [(τ r
3 · er

3) ψ] · ṗ′+
+

[(
τ r

α · er
β

)
φβ,α +

(
τ r

3 · κr × er
β

)
φβ

]
· ṙ +

[(
τ r

3 · er
β

)
φβ

]
· ṙ′

(47)

Integration of (47) over the cross-section provides
∫

A

(
P : Ḟ

)
dA = nr · η̇r + mr · κ̇r + π · ṗ + α · ṗ′ + ρ · ṙ + β · ṙ′, (48)

in which
nr =

∫
A τ r

3dA ,

mr =
∫
A (yr × τ r

3) dA ,

π =
∫
A

[
(τ r

α · er
3) ψ,α + (τ r

3 · κr × er
3) ψ

]
dA ,

α =
∫
A [(τ r

3 · er
3) ψ] dA ,

ρ =
∫
A

[(
τ r

α · er
β

)
φβ,α +

(
τ r

3 · κr × er
β

)
φβ

]
dA and

β =
∫
A

[(
τ r

3 · er
β

)
φβ

]
dA

(49)
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are generalized cross-sectional stresses energetically conjugated with the cross-sectional strains
ηr, κr, p, p′, r and r′. In this case nr is said to be the back-rotated cross-sectional forces
and mr the back-rotated cross-sectional moments (notice the effect of the in-plane-changes and
out-of-plane warping on the definition of mr). Vector π represents the axial bi-shears, α the
axial bi-moments, ρ the transversal bi-shears and β the transversal bi-moments.

It is important to remark that τ r
i , γr

i , nr, mr, ηr, κr, p, r, π, α, ρ and β are not affected
by superimposed rigid body motions and in this sense fulfill the objectivity requirements. We
now collect these cross-sectional quantities into three vectors, as displayed below

σ =




nr

mr

π

α

ρ

β




, ε =




ηr

κr

p

p′

r

r′




and d =




u

θ

p

r


 . (50)

Note that both σ and ε have 6 + 2 (nv + nw) elements, whilst d encompasses the 6 + nv + nw

cross-sectional degrees-of-freedom. Definitions in (50) allows us to write (48) as follows
∫

A

(
P : Ḟ

)
dA = σ · ε̇ . (51)

Here, the time derivative ε̇ may be written in a very compact manner as

ε̇ = Ψ∆ḋ, (52)

where

Ψ =
[

Ψ̄ O6×2(nv+nw)

O2(nv+nw)×9 I 2(nv+nw)

]
and ∆ =




∆̄ O9×nw O9×nv

Onw×9 I nw Onw×nv

Onw×9 I nw
∂
∂ζ Onw×nv

Onv×9 Onv×nw I nv

Onv×9 Onv×nw I nv
∂
∂ζ




(53)

are respectively a [6 + 2 (nv + nw)]× [9 + 2 (nv + nw)] linear operator and a [9 + 2 (nv + nw)]×
(6 + nv + nw) differential operator. In (53) one has

Ψ̄=
[

QT O QTZ ′Γ
O QTΓ QTΓ ′

]

6×9

and ∆̄ =




I ∂
∂ζ O

O I ∂
∂ζ

O I




9×6

, (54)

which correspond exactly to Ψ and ∆ of [11].
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With (51) at hand, the rod internal power on a domain Ω = [0, `] is then given by

Pint =
∫

Ω
(σ · ε̇) dζ . (55)

The external power on the same domain Ω = [0, `] can be expressed by

Pext =
∫

Ω

(∫

Γ
t · ẋdΓ +

∫

A
b · ẋdA

)
dζ , (56)

where Γ is the contour of a cross-section, t is the external surface traction per unit reference
area and b is the vector of body forces per unit reference volume. By time differentiation of (4)
one has

ẋ = u̇ + ω × y +
(
eβ ⊗ϕβ

)
ṙ + (e3 ⊗ψ) ṗ . (57)

which can be introduced into (56) so that

Pext =
∫

Ω

(
q̄ · ḋ

)
dζ , (58)

where

q̄ =




n̄

µ̄

ᾱ

β̄


 . (59)

In this expression the following generalized external forces have been introduced

n̄ =
∫
Γ tdΓ +

∫
A bdA ,

µ̄ = ΓT m̄ , with m̄ =
∫
Γ y × tdΓ +

∫
A y × bdA ,

ᾱ =
∫
Γ (e3 · t) ψdΓ +

∫
A (e3 · b) ψdA and

β̄ =
∫
Γ (eβ · t)φβdΓ +

∫
A (eβ · b)φβdA

(60)

wherein n̄ is the applied external force, m̄ the applied external moment, ᾱ the applied external
axial bi-moments and β̄ the applied external transversal bi-moments, all per unit length of the
rod axis in the reference configuration.

Remark 3

The vector µ̄ = ΓT m̄ emerging from (60) is the distributed external moment truly power-
conjugated with θ, and not purely m̄ as one would expect. The same holds for external
concentrated moments and for the natural boundary conditions. This fact has far-reaching
consequences in the nonlinear analysis of structures with rotational degrees of freedom, since a
non-trivial geometric contribution of the applied moments is introduced in the tangent bilinear
form (see appendix C).
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2.4 Equilibrium equations

In the same way as to obtain (55), one can have the expression for the rod internal virtual work
on a domain Ω = [0, `] as follows

δWint =
∫

Ω
(σ · δε) dζ , with δε = Ψ∆δd . (61)

The external virtual work on the same domain Ω = [0, `] may be evaluated similarly to (58), i.e.

δWext =
∫

Ω
(q̄ · δd) dζ , (62)

so that the rod local equilibrium can be stated by means of the virtual work theorem in a
standard way:

δW = δWint − δWext = 0 in Ω , ∀δd . (63)

Introducing (61) and (62) into this expression, and performing partial integration on the terms
with δu ′, (Γδθ)′, δp ′ and δr ′, the following local equilibrium equations in Ω are obtained by
usual arguments of variational calculus

n ′ + n̄ = o ,

m ′ + z ′ × n + m̄ = o ,

α′ − π + ᾱ = o and
β′ − ρ + β̄ = o .

(64)

Here
n = Qnr and m = Qmr (65)

are the true cross-sectional stress resultants with respect to the current configuration. Equations
(64)1 and (64)2 could be obtained by Statics as well.

Remark 4

The essential boundary conditions emanating from (63) are prescribed in terms of d , i.e. u , θ,
p and r . On the other hand, the natural boundary conditions are prescribed in terms of the
static quantities n , µ = ΓTm , α and β. We draw the attention of the reader to the fact that
the pseudo-moment µ = ΓTm must be prescribed, and not purely m as one would expect.

2.5 Tangent bilinear form

The Gateaux derivative of δW in (63) with respect to d , after some lengthy algebraic, leads to
the tangent bilinear form

δ (δW ) =
∫

Ω
[(Ψ∆δd) · (DΨ∆δd) + (∆δd) · (G∆δd)− δd · (Lδd)] dΩ , (66)
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in which

D =
∂σ

∂ε
, G =

[
Ḡ O9×2(nv+nw)

O2(nv+nw)×9 O2(nv+nw)×2(nv+nw)

]
and L =

∂q̄

∂d
. (67)

are tangent operators. D and G represent the constitutive contribution and the geometrical
effects of the internal forces on the tangent bilinear form, respectively. It is worth mentioning
that operator Ḡ in (67) is identical to G of [9] (where it was first derived, see appendix A
for more details), what remarkably means that the consideration of cross-sectional in-plane
changes and out-of-plane warping does not introduce any additional geometric terms in (66).
Consequently, G is a function of nr, mr, u and θ only, remaining always symmetric even far
from equilibrium states. Operator L, however, stands for the geometrical effects of the external
forces and depends directly on the character of the external loading, as one can see in (67).
More details on the operator L can be found in appendix C. The bilinear form (66) is therefore
symmetric whenever D = DT and L = LT , i.e. whenever the material is hyperelastic (or
whenever the stress integration algorithm for inelastic materials possesses a potential) and the
external loading is locally conservative.

We introduce now the following tensors of elastic (or algorithmic) tangent moduli

∂τ r
i

∂γr
j

= C ij . (68)

With the aid of (68) together with the derivatives

∂γr
α

∂ηr = O ,
∂γr

α
∂κr = O ,
∂γr

α
∂p = er

3 ⊗ψ,α ,
∂γr

α
∂p ′ = O ,
∂γr

α
∂r = er

β ⊗ φβ,α ,
∂γr

α
∂r ′ = O ,

∂γr
3

∂ηr = I ,
∂γr

3
∂κr = −Y r,
∂γr

3
∂p = (κr × er

3)⊗ψ ,
∂γr

3
∂p′ = er

3 ⊗ψ ,
∂γr

3
∂r =

(
κr × er

β

)
⊗ φβ and

∂γr
3

∂r ′ = er
β ⊗ φβ ,

(69)

where Y r = Skew (yr), one can obtain the elements of D (see appendix B) by the chain rule.
We remark that D is symmetric if

C ij = C T
ji . (70)

3 Elastic constitutive equations

3.1 General hyperelastic materials

We write the symmetric Green-Lagrange strain tensor as

E =
1
2

(C − I ) , (71)
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where
C = FTF = (F r)T F r (72)

is the right Cauchy-Green strain tensor. The second Piola-Kirchhoff stress tensor S is energeti-
cally conjugated to E and is such that P = FS , or equivalently

Pr = F rS . (73)

A general hyperelastic material can be fully described by a specific strain energy function ψ =
ψ̂ (E), such that S is given by

S =
∂ψ

∂E
. (74)

As a consequence, a fourth-order tensor of elastic tangent moduli for the pair {S ,E} can be
defined as

D =
∂S

∂E
=

∂2ψ

∂E2 . (75)

With the aid of the following third-order tensors

Bi =
∂E

∂γr
i

= (Sym (er
k ⊗ er

i ))⊗ f r
k , (76)

where f r
k = er

i + γr
k, the relations

τ r
i = BT

i S (77)

can be readily derived from (73), where

BT
i = f r

k ⊗ (Sym (er
k ⊗ er

i )) . (78)

From these last three expressions and from (68) we arrive at

C ij = BT
i DBj +

(
er

i · Ser
j

)
I . (79)

with which D can be computed.

Remark 5

The just developed approach for hyperelastic materials is general and can be straightforwardly
extended to inelastic rods, once a stress integration scheme within a time step is available.

3.2 General isotropic hyperelastic materials

For isotropic hyperelasticity, the strain energy function ψ can be written in terms of the invari-
ants of the right Cauchy-Green strain tensor C . We adopt here the following set of invariants

I1 = I : C , I2 =
1
2
I : C 2 and J = detF , (80)
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with which we write ψ = ψ̂ (I1, I2, J). Using (73) and (74), the back-rotated first Piola-Kirchhoff
stress tensor is then obtained via

Pr = 2F r

(
∂ψ

∂C

)
, (81)

what yields

Pr =
∂ψ

∂J
J(F r)−T + 2F r

(
∂ψ

∂I1
I +

∂ψ

∂I2
C

)
(82)

if the chain rule is applied with the derivatives

∂J

∂C
=

1
2
JC−1 ,

∂I1

∂C
= I and

∂I2

∂C
= C . (83)

Conversely, as one can readily verify, if we write the back-rotated deformation gradient as

F r = f r
i ⊗ er

i , (84)

where f r
i = er

i + γr
i (see expression (35)), then

J = (f r
1 × f r

2) · f r
3 , J(F r)−T = gr

i ⊗ er
i and F rC =

(
f r

i · f r
j

)
f r

i ⊗ er
j , (85)

in which
gr

1 = f r
2 × f r

3 , gr
2 = f r

3 × f r
1 and gr

3 = f r
1 × f r

2 . (86)

Introducing (85) into (82), one arrives at the following expression for the vector-columns of Pr:

τ r
i =

∂ψ

∂J
gr

i + 2
∂ψ

∂I1
f r

i + 2
∂ψ

∂I2

(
f r

j ⊗ f r
j

)
f r

i . (87)

3.3 A neo-Hookean hyperelastic material

A simple poly-convex neo-Hookean material as proposed in [4] is represented by the strain energy
function

ψ (J, I1) =
1
2
λ

[
1
2

(
J2 − 1

)− ln J

]
+

1
2
µ (I1 − 3− 2 lnJ) , (88)

in which λ and µ are material parameters (or Lamé coefficients). With this expression at hand,
from (87) we get

τ r
i =

1
J

[
λ

1
2

(
J2 − 1

)− µ

]
gr

i + µf r
i , (89)

and then the tangent tensors in (68) are given by

C ij =
[

1
2λ

(
1 + 1

J2

)
+ 1

J2 µ
]
gr

i ⊗ gr
j + µ δijI − 1

J

[
λ1

2

(
J2 − 1

)− µ
]

εijk Skew (f r
k) . (90)

Here δij = er
i · er

j and εijk = er
i · er

j × er
k are the usual Kronecker and permutation symbols,

respectively. From (90) the constitutive matrix D can be computed.
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4 Finite element solution

The description of the rod deformation generates a boundary value problem whose weak form
(63) can be solved by several approximation techniques. We adopt here a Galerkin type of
approximation, the trial functions of which are to be supplied by the finite element method. We
write the finite element interpolation in a particular element e, e = 1, . . . Ne, as follows

d = Npe , (91)

where N is the matrix of element shape functions and pe the vector of element nodal degrees-
of-freedom. The vector of the residual nodal forces for a particular element is then given by

Pe =
∫

Ωe

[
NT q̄ − (Ψ∆N)T σ

]
dζ , (92)

in which Ωe is the element domain. The element tangent stiffness matrix is straightforwardly
obtained with the help of (66), leading to

ke =
∫

Ωe

[
(Ψ∆N)T D (Ψ∆N) + (∆N)T G (∆N)−NTLN

]
dζ . (93)

Here it is important to remark that the linearization stated in (93) can be performed either
before or after discretization. Assemblage of the global residual forces and of the global tangent
stiffness may be done as usual by

R =
Ne∑

e=1

AT
e Pe and K =

Ne∑

e=1

AT
e keAe, (94)

respectively, where Ae is the connectivity matrix relating the element nodal degrees-of-freedom
pe with the whole domain nodal degrees-of-freedom r, i.e.

pe = Aer . (95)

Equilibrium is then reached by vanishing the global residual forces,

R(r) = o, (96)

what can be iteratively solved by the Newton method for the free degrees-of-freedom.

5 Concluding Remarks

The geometrically-exact six-parameter rod model presented in [9, 13, 14] was extended to a
multi-parameter formulation that allows for general cross-sectional in-plane changes and out-
of-plane warping. Our approach defines cross-sectional stresses and strains in a consistent way,
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thus rendering a complete stress-resultant model. Large rotations are exactly treated in the
context of finite elasticity, and very large strain problems can be realistically represented since
the cross-sectional changes are incorporated within the rod kinematics. Remarkably, no ad-
ditional geometric terms regarding these changes need to be included in the tangent bilinear
form. Three-dimensional finite strain constitutive equations can be directly employed, with no
spurious stiffening or approximations. The present assumptions allow a consistent basis for the
proper representation of profile (distortional) deformations, typical of cold-formed thin-walled
rod structures, and we believe this is one of the main features of our formulation.
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linear de perfis metálicos conformados a frio). Master of Science Dissertation. Escola Politécnica da
Universidade de São Paulo, São Paulo, 2000.

[2] E.M.B. Campello, P.M. Pimenta, and P. Wriggers. A fully nonlinear multi-parameter rod model
incorporating profile deformation and general cross-sectional warping for the analysis of thin-walled
structures. (to appear).

[3] A. Cardona and M. Gerardin. A beam finite element non-linear theory with finite rotations. Int. J.
Numer. Meths. Engrg, 26:2403–2438, 1988.

[4] P.J. Ciarlet. Mathematical elasticity. vol 1, North Holland, Amsterdam, 1988.

[5] F. Gruttmann, R. Sauer, and W. Wagner. A geometrical nonlinear eccentric 3d-beam element with
arbitrary cross-sections. Comp. Meth. Appl. Mech. Eng, 160:383–400, 1998.

[6] F. Gruttmann and W. Wagner. Geometrical and material nonlinear three-dimensional beams –
theory and numerics. In W. Wundrlich, editor, Proceedings of the ECCM ’99, pages 1–13. Munich,
Germany, 276, 1999.

[7] G. Jelenic and M. Saje. A kinematically exact space finite strain beam model – finite element
formulation by generalized virtual work principle. Comp. Meth. Appl. Mech. Eng, 120:131–161,
1995.

[8] P.M. Pimenta. Finite rotations (in portuguese: “rotações finitas”). Technical report, BT/PEF-
8714, Department of Structural and Foundation Engineering, Polytechnic School at University of
Sao Paulo, 1987.

[9] P.M. Pimenta. On a geometrically-exact finite-strain rod model. In Proceedings of the 3rd Pan-
American Congress on Applied Mechanics, III PACAM, São Paulo, 1993.

[10] P.M. Pimenta. Geometrically exact analysis of initially curved rods. In Advances in Computational
Techniques for Structural Engineering, pages 99–108, vol.1, Edinburgh, U.K., 1996.

Latin American Journal of Solids and Structures 1 (2003)



A fully nonlinear rod model 137

[11] P.M. Pimenta and E.M.B. Campello. Geometrically nonlinear analysis of thin-walled space frames.
In II ECCM, Proceedings of the Second European Conference on Computational Mechanics, Cracow,
Poland, 2001.

[12] P.M. Pimenta, E.M.B. Campello, and P. Wriggers. A fully nonlinear multi-parameter shell model
with thickness variation and a triangular shell finite element. Computational Mechanics, 2003 (to
appear).

[13] P.M. Pimenta and T. Yojo. Geometrically-exact analysis of spatial frames. Applied Mechanics
Reviews, 46(11):118–128, ASME, New York, 1993.

[14] P.M. Pimenta and T. Yojo. Geometrically exact analysis of spatial frames with consideration of
torsion warping. In XIV CILAMCE (Proceedings of the XIV Iberian-Latin-American congress on
computational methods in engineering), pages 21–30, IPT, São Paulo, 1993.

[15] J.C. Simo. A finite strain beam formulation. The three-dimensional dynamic problem. Part I.
Computer Methods in Applied Mechanics and Engineering, 49:55–70, 1985.

[16] J.C. Simo and L. Vu-Quoc. A three-dimesional finite strain rod model. Part II: Computational
aspects. Computer Methods in Applied Mechanics and Engineering, 58:79–116, 1986.

[17] J.C. Simo and L. Vu-Quoc. A geometrically exact rod model incorporating shear and torsion-warping
deformation. Int. J. Solid Structures, 27:371–393, 1991.
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Appendix

A Tangent operator Ḡ

Tangent operator Ḡ in (67) has the following structure

Ḡ =




O O Gu′θ

O O Gθ′θ

Gθu′ Gθθ′ Gθθ


 . (A.1)

In order to derive the elements of (A.1), the following result is obtained by differentiation

∂
(
ΓT t

)

∂θ
=ΓT ∂t

∂θ
+ V (θ,t) , (A.2)

where t is a generic vector and

V (θ, t) = h2 (θ)T + h3 (θ) (TΘ − 2ΘT )+
−h4 (θ) (Θt ⊗ θ) + h5 (θ)

(
Θ2t ⊗ θ

)
,

(A.3)

with T = skew (t). One can show that property

V (θ, t) = V T (θ, t) + ΓTTΓ (A.4)
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holds for V (θ, t), and this is a crucial result in proving the symmetry of (A.1). With the aid of (A.2)
and (A.3) it is possible to write

Gu′θ =
(
Gθu′

)T

= −NΓ ,

Gθθ′ =
(
Gθ′θ

)T

= V (θ, m) and

Gθθ =
(
Gθθ

)T

= ΓTZ ′NΓ −V (θ, z ′ × n) + V ′ (θ, θ′, m
)− Γ ′TMΓ ,

(A.5)

in which N = Skew(n), M = Skew(m) and

V ′ (θ, θ′, m
)

= h3 (θ)
(
MΘ ′

−2Θ ′M
)− h4 (θ)

(
Θ ′m⊗ θ + Θm⊗ θ,α

)
+

+ h5 (θ)
((

Θ ′Θ + ΘΘ ′)m ⊗ θ + Θ2m ⊗ θ′
)
+

+
(
θ · θ′) [h4 (θ)M + h5 (θ) (MΘ − 2ΘM )]+

+
(
θ · θ′) [−h6 (θ) (Θm ⊗ θ) + h7 (θ)

(
Θ2m ⊗ θ

)]
.

(A.6)

Here the following trigonometric functions have been introduced

h6 (θ) = h3(θ)−h2(θ)−4h4(θ)
θ2 and h7 (θ) = h4(θ)−5h5(θ)

θ2 . (A.7)

B Tangent operator D

Tangent operator D in (67) has following structure

D =




∂nr

∂ηr
∂nr

∂κr
∂nr

∂p
∂nr

∂p ′
∂nr

∂r
∂nr

∂r ′
∂mr

∂ηr
∂mr

∂κr
∂mr

∂p
∂mr

∂p ′
∂mr

∂r
∂mr

∂r
∂π
∂ηr

∂α
∂ηr

∂π
∂κr

∂α
∂κr

∂π
∂p

∂π
∂p ′

∂α
∂p

∂α
∂p ′

∂π
∂r

∂π
∂r ′

∂α
∂r

∂α
∂r ′

∂ρ
∂ηr

∂β
∂ηr

∂ρ
∂κr

∂β
∂κr

∂ρ
∂p

∂ρ
∂p ′

∂β
∂p

∂β
∂p ′

∂ρ
∂r

∂ρ
∂r ′

∂β
∂r

∂β
∂r ′




. (B.1)
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The elements of (B.1) are displayed next.

∂nr

∂ηr =
∫

A
C 33dA ,

∂nr

∂κr = − ∫
A
C 33Y

rdA ,
∂nr

∂p =
∫

A

[
C 3α

(
er

3 ⊗ψ,α

)
+ (C 33 (κr × er

3))⊗ψ
]
dA ,

∂nr

∂p ′ =
∫

A
C 33 (er

3 ⊗ψ) dA ,

∂nr

∂r =
∫

A

[(
C 3γe

r
β

)
⊗ φβ,γ +

(
C33

(
κr × er

β

))
⊗ φβ

]
dA ,

∂nr

∂r ′ =
∫

A

(
C 33e

r
β

)
⊗ φβdA ,

∂mr

∂ηr =
∫

A
Y rC 33dA ,

∂mr

∂κr = − ∫
A
Y rC 33Y

rdA ,
∂mr

∂p =
∫

A

[
(Y rC 3αe

r
3)⊗ψ,α + (Y rC 33 (κr × er

3))⊗ψ + (er
3 × τ r

3)⊗ψ
]
dA ,

∂mr

∂p ′ =
∫

A
(Y rC 33e

r
3)⊗ ψdA ,

∂mr

∂r =
∫

A

[(
Y rC 3γe

r
β

)
⊗ φβ,γ +

(
Y rC 33

(
κr × er

β

))
⊗ φβ +

(
er

β × κr
3

)
⊗ φβ

]
dA ,

∂mr

∂r ′ =
∫

A

(
Y rC 33e

r
β

)
⊗ φβdA ,

∂π
∂ηr =

∫
A

[
ψ,α ⊗

(
C T

α3e
r
3

)
+ ψ ⊗

(
C T

33 (κr × er
3)

)]
dA ,

∂π
∂κr =

∫
A

[
ψ,α ⊗

(
Y rC T

α3e
r
3

)
+ ψ ⊗

(
Y rC T

33 (κr × er
3)

)
+ ψ ⊗ (er

3 × κr
3)

]
dA ,

∂π
∂p =

∫
A

[
(er

3 ·Cαβe
r
3)

(
ψ,α ⊗ψ,β

)
+ (er

3 ·Cα3 (κr × er
3))

(
ψ,α ⊗ψ

)]
dA+

+
∫

A
ψ ⊗ (κr × er

3)
[
C 3α

(
er

3 ⊗ψ,α

)
+ C 33 (κr × er

3)⊗ψ
]
dA ,

∂π
∂p ′ =

∫
A

[(
ψ,α ⊗ er

3

)
Cα3 (er

3 ⊗ψ) + ψ ⊗ (κr × er
3)C 33 (er

3 ⊗ψ)
]
dA ,

∂π
∂r =

∫
A

(
ψ,α ⊗ er

3

) [
Cαγ

(
er

β ⊗ φβ,γ

)
+ Cα3

(
κr × er

β

)
⊗ φβ

]
dA+

+
∫

A
ψ ⊗ (κr × er

3)
[
C 3γ

(
er

β ⊗ φβ,γ

)
+ C 33

(
κr × er

β

)
⊗ φβ

]
dA ,

∂π
∂r ′ =

∫
A

[(
ψ,α ⊗ er

3

)
Cα3

(
er

β ⊗ φβ

)
+ ψ ⊗ (κr × er

3)C 33

(
er

β ⊗ φβ

)]
dA ,

∂α
∂ηr =

∫
A

(ψ ⊗ er
3)C 33dA ,

α
∂κr = − ∫

A
(ψ ⊗ er

3)C 33Y
rdA ,

α
∂p =

∫
A

(ψ ⊗ er
3)

[
C 3α

(
er

3 ⊗ψ,α

)
+ C 33 (κr × er

3)⊗ψ
]
dA ,

α
∂p ′ =

∫
A

(ψ ⊗ er
3)C 33 (er

3 ⊗ψ) dA ,

α
∂r =

∫
A

(ψ ⊗ er
3)

[
C 3γ

(
er

β ⊗ φβ,γ

)
+ C 33

(
κr × er

β

)
⊗ φβ

]
dA ,

α
∂r ′ =

∫
A

(ψ ⊗ er
3)C 33

(
er

β ⊗ φβ

)
dA ,

∂ρ
∂ηr =

∫
A

[(
φδ,α ⊗ er

δ

)
Cα3 + φδ ⊗ (κr × er

δ)C 33

]
dA ,

∂ρ
∂κr =

∫
A

[
− (

φδ,α ⊗ er
δ

)
Cα3Y

r − φδ ⊗ (κr × er
δ)C 33Y

r + φβ ⊗
(
er

β × κr
3

)]
dA ,

∂ρ
∂p =

∫
A

(
φδ,α ⊗ er

δ

) [
Cαβ

(
er

3 ⊗ψ,β

)
+ Cα3 ((κr × er

3)⊗ψ)
]
dA+

+
∫

A
φδ ⊗ (κr × er

δ)
[
C 3α

(
er

3 ⊗ψ,α

)
+ C 33 (κr × er

3)⊗ψ
]
dA ,

∂ρ
∂p ′ =

∫
A

[(
φδ,α ⊗ er

δ

)
Cα3 (er

3 ⊗ψ) + φδ ⊗ (κr × er
δ)C 33 (er

3 ⊗ψ)
]
dA ,

∂ρ
∂r =

∫
A

(
φδ,α ⊗ er

δ

) [
Cαγ

(
er

β ⊗ φβ,γ

)
+ Cα3

(
κr × er

β

)
⊗ φβ

]
dA+

+
∫

A
φδ ⊗ (κr × er

δ)
[
C 3γ

(
er

β ⊗ φβ,γ

)
+ C 33

(
κr × er

β

)
⊗ φβ

]
dA ,

∂ρ
∂r ′ =

∫
A

[(
φδ,α ⊗ er

δ

)
Cα3

(
er

β ⊗ φβ

)
+ φδ ⊗ (κr × er

δ)C 33

(
er

β ⊗ φβ

)]
dA ,

(B.2)
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∂ρ
∂ηr =

∫
A

(
φβ ⊗ er

β

)
C 33dA ,

∂ρ
∂κr = − ∫

A

(
φβ ⊗ er

β

)
C 33Y

rdA ,

∂ρ
∂p =

∫
A

(
φβ ⊗ er

β

) [
C 3α

(
er

3 ⊗ψ,α

)
+ C 33 (κr × er

3)⊗ψ
]
dA ,

∂ρ
∂p ′ =

∫
A

(
φβ ⊗ er

β

)
C 33 (er

3 ⊗ψ) dA ,

∂ρ
∂r =

∫
A

(φα ⊗ er
α)

[
C 3γ

(
er

β ⊗ φβ,γ

)
+ C 33

(
κr × er

β

)
⊗ φβ

]
dA and

∂ρ
∂r ′ =

∫
A

(φα ⊗ er
α)C 33

(
er

β ⊗ φβ

)
dA .

(B.3)

C Tangent operator L

Tangent operator L has following structure

L =




∂n̄
∂u

∂n̄
∂θ

∂n̄
∂p

∂n̄
∂r

∂µ̄
∂u

∂µ̄
∂u

∂µ̄
∂p

∂µ̄
∂r

∂ᾱ
∂u

∂ᾱ
∂u

∂ᾱ
∂p

∂ᾱ
∂r

∂
¯β

∂u
∂

¯β
∂u

∂
¯β

∂p
∂

¯β
∂r




. (C.1)

For instance, semi-tangential external moments are conservative moments characterized by the fol-
lowing time derivative

˙̄m =
1
2
ω × m̄ . (C.2)

For this type of loading the only nonzero element of L is

∂µ̄

∂θ
= Sym (V (θ, m̄)) . (C.3)

In contrast, for a constant eccentric force n̄ whose moment is m̄ = s × n̄ (with s as the eccentricity
vector), this tensor is given by

∂µ̄

∂θ
= ΓT Sym

(
SN̄

)
Γ + Sym (V (θ, m̄)) , (C.4)

where S = Skew(s) and N̄ = Skew(n̄).
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