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On asymptotic analysis of spectral problems in elasticity

Abstract

The three-dimensional spectral elasticity problem is stud-

ied in an anisotropic and inhomogeneous solid with small

defects, i.e., inclusions, voids, and microcracks. Asymp-

totics of eigenfrequencies and the corresponding elastic eigen-

modes are constructed and justified. New technicalities of

the asymptotic analysis are related to variable coefficients

of differential operators, vectorial setting of the problem,

and usage of intrinsic integral characteristics of defects. The

asymptotic formulae are developed in a form convenient for

application in shape optimization and inverse problems.
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1 INTRODUCTION

1.1 Asymptotic analysis of eigenvalues in singularly perturbed domains

In the paper asymptotic analysis of eigenvalues and eigenfunctions is performed with respect

to singular perturbations of geometrical domains (see Fig. 1). By singular perturbations of

the boundary it is understood e.g., the creation of the new parts of the boundary due to the

nucleation of small voids.

The case of low frequencies is considered for elasticity spectral problems in three spatial

dimensions. The results established here can be directly used in some applications, for example

in inverse problems of identification of small defects in the body based on the observation of

elastic eigenmodes. Compared to the existing results in the literature, the technical difficulties

of the present paper mainly concern vectorial setting of boundary value problems, anisotropy

of physical properties, and variable coefficients of differential operators, i.e., inhomogeneity

of elastic materials. Exisiting results on elasticity problems with singular perturbations of

boundaries (see monographs [36, 38] and [13]) deal with homogeneous, mainly isotropic elastic

bodies. For a system of differential equations, an asymptotic analysis is required to be much

more elaborated and direct adopting of the methods proper for scalar equations may lead to

an unfortunate mistake (cf. [18] and corrections in [1]).

The known results are given in particular for singular perturbations of isolated points of the

boundary (small holes in the domain, see [14], [15], [5], [1], [13], [35] and others), perturbations
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28 S.A. Nazarov et al / On asymptotic analysis of spectral problems in elasticity

Figure 1 Sketch of an elastic body with small voids, inclusions and microcracks.

of straight boundaries including perturbations by changing the type of boundary conditions

(cf. [2]-[3]), and the dependence of the obtained results in more general geometrical domains

on the curvature is clarified in [8, 22, 23] in the case of scalar equations. The most of attention

is paid in the present paper to derivation of explicit formulae for solutions and extraction

of principal characteristics of elastic fields and defects which influence these formulae. To

this end, we employ matrix/column notation, use the notion of elastic polarization matrix

(tensor), and perform certain additional technical calculations which are not needed in the

case of homogeneous, isotropic elastic materials.

Small defects can be regarded as singular perturbations of the interior piece of the boundary

of the body. In this way we can consider e.g., the finite number of isolated points which

approximate small cavities. More generally, by means of asymptotic analysis we can model the

creation of caverns, i.e., some piece of material is taken off from the elastic body. We can also

fill the cavern with some other elastic material and model such a phenomenon by formation of

one or more inclusions in the body.

Roughly speaking, the influence of a substantial change of local properties of the elastic

body cannot be analysed by the classical tools of the shape sensitivity analysis or any other

type of sensitivity analysis, but it requires the application of asymptotic methods. Especially,

such methods turn out to be of importance for the microcracks, since the microcrack implies

the creation of a new portion of internal boundary in the body, which cannot be taken into

account in the framework of classical sensitivity analysis based on regular perturbations of

the coefficients and of the boundary. The asymptotic methods seem to be the only avalaible

tool to perform the efficient analysis of solutions, eigenvalues and eigenfunctions, and of shape

functionals, in general setting.

We leave aside an important and still not completed topic related to the so-called concen-

trated masses. Since the pioneering work [37] of E. Sanchez-Palencia, a lot of attention has

been paid to mathematical analysis of vibrations of elastic bodies, with small parts wich are

very heavy (e.g., pellets in an aspic or in a meat-jelly); see papers [4, 9, 12, 25, 30, 33, 39], as

well as the monographs [34, 38] in an incomplete list. Such problems are the best examples
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of the topping role of the boundary layer effect. Although we analyse the boundary layers in

details, the purposes of the present paper is essentially different so that we cannot mutually

serve for an analysis of concentrated masses.

1.2 Preliminaries, anisotropic inhomogeneous elastic body

Let us consider in three spatial dimensions the elasticity problem for an elastic body Ω, written

in the matrix/column notation, see e.g., [10], [19] for more details,

D(−∇x)
⊤A(x)D(∇x)u = 0 in Ω, (1)

D(n)⊤A(x)D(∇x)u = gΩ on ∂Ω, (2)

where A is a symmetric positive definite matrix function in Ω of size 6 × 6, with measurable

or smooth elements, consisting of the elastic material moduli (the Hooke’s or stiffness matrix)

and D(∇x) is (6× 3)-matrix of the first order differential operators,

D(ξ)⊤ =

 ξ1 0 0 0 2−1/2ξ3 2−1/2ξ2

0 ξ2 0 2−1/2ξ3 0 2−1/2ξ1

0 0 ξ3 2−1/2ξ2 2−1/2ξ1 0

 , (3)

u = (u1, u2, u3)
⊤ is displacement column, n = (n1, n2, n3)

⊤ is the unit outward normal vector

on ∂Ω and ⊤ stands for transposition. In this notation the strain ε(u;x) and stress σ(u;x) =

A(x)D(∇x)u(x) columns are given respectively by

D(∇x)u = ε(u) =
(
ε11, ε22, ε33,

√
2ε23,

√
2ε31,

√
2ε12

)⊤
, (4)

AD(∇x)u = σ(u) =
(
σ11, σ22, σ33,

√
2σ23,

√
2σ31,

√
2σ12

)⊤
. (5)

The factors 2−1/2 and
√
2 imply that the norms of strain and stress tensors coincide with the

norms of columns (4) and (5), respectively. From the latter property in the matrix/column

notation, any orthogonal transformation of coordinates in R3 gives rise to orthogonal transfor-

mations of columns (4) and (5) in R6 (cf. [[19];Ch. 2]).

Remark 1.1 The strains (4) and the stresses (5) degenerate on the space of rigid motions,

R = {d(x)c : c ∈ R6} , dimR = 6 , (6)

where

d(x) =

 1 0 0 0 −2−1/2x3 2−1/2x2

0 1 0 2−1/2x3 0 −2−1/2x1

0 0 1 −2−1/2x2 2−1/2x1 0

 . (7)
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This subspace plays a critical role in many questions in the elasticity theory, it appears also in

the so-called polynomial property [26, 27] (see also [21]).

The following equalities can be verified by a direct computation,

D(∇x)D(x)⊤ = I6 , D(∇x)d(x) = O6 , (8)

d(∇x)
⊤D(x)⊤|x=0 = I6 , d(∇x)

⊤d(x)|x=0 = I6 ,

where IN and ON are the unit and null (N ×N)-matrices, respectively.

The boundary load gΩ is supposed to be self equilibrated in order to assure the existence of a

solution to the elasticity problem,∫
∂Ω

d(x)⊤gΩ(x)dsx = 0 ∈ R6 . (9)

2 VIBRATIONS OF ELASTIC BODIES.

Consider inhomogenuous anisotropic elastic body Ω ⊂ R3 with the Lipschitz boundary ∂Ω.

Spectral problems for the body are formulated in a fixed Cartesian coordinate system x =

(x1, x2, x3)
⊤, and in the matrix notation.

We assume that the matrix A of elastic moduli is a matrix function of the spatial variable

x ∈ R3, symmetric and positive definite for x ∈ Ω∪∂Ω. The problem on eigenvibrations of the

body Ω takes the form

L(x,∇x)u(x) := D(−∇x)
⊤A(x)D(∇x)u(x) = λγ(x)u(x) x ∈ Ω, (10)

NΩ(x,∇x)u = D(n)⊤A(x)D(∇x)u(x) = 0, x ∈ Σ, u(x) = 0, x ∈ Γ, (11)

where γ > 0 is the material density, λ is an eigenvalue, the square of eigenfreguency. The part

Γ of the surface ∂Ω is clamped, and the first boundary condition is prescribed on the traction

free remaining part Σ = ∂Ω�Γ of the surface. We denote by
o
H1(Ω; Γ)3 the energy space, i.e.,

the subspace of the Sobolev space H1(Ω)3 with null traces on the subset Γ. The variational

formulation of problem (10)-(11) reads :

Find a non trivial function u ∈
o
H1(Ω; Γ)3 and a number λ such that for all test functions

v ∈
o
H1(Ω; Γ)3 the following integral identity is verified

(ADu,Dv)Ω = λ(γu, v)Ω , (12)

where (, )Ω is the scalar product in the Lebesgue space L2(Ω).

If the stiffness matrix A and the density γ are measurable functions of the spatial variables

x, and in addition uniformly positive definite and bounded, then the variational problem (12)

admits normal positive egenvalues λp, which form the sequence

0 < λ1 ≤ λ2 ≤ · · · ≤ λp ≤ · · · → ∞ (13)
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taking into account its multiplicities, and the corresponding eigenfunctions u(p), the elastic

vibration modes, are subject to the orthogonality and normalization conditions

(γu(p), u(q))Ω = δp,q , p, q ∈ N := {1, 2, . . . } , (14)

where δp,q is the Kronecker symbol.

In the sequel it is assumed that elements of the matrix A and the density γ are smooth

functions in Ω, continuous up to the boundary. In such the case Ω is called a smooth inho-

mogenuous body. For such a body the elastic modes u(p) are smooth functions in the interior of

Ω, and up to the boundary in the case of the smooth surface ∂Ω. We have also the equivalence

between the variational form and the differential form (10)-(11) of the spectral problem. We

require only the interior regularity of elastic modes in the sequel, in any case the elastic modes

have singularities on the collision line Σ∩Γ and therefore, are excluded from the Sobolev space

H2(Ω)3.

Along with the smooth inhomogenuous body Ω let us consider a body Ωh with defects; here

h > 0 stands for a small dimensionless geometrical parameter, which describes the relative

size of defects. Actually, we select in the interior of Ω the points P 1, . . . , P J and denote by

ω1, . . . , ωJ elastic bodies bounded by the Lipschitz surfaces ∂ω1, . . . , ∂ωJ , furthemore, for the

sake of simplicity we assume that the origin O belongs to ωj , j = 1, . . . , J . The body with

defects is defined by

Ξ(h) = Ω(h) ∪ ωh
1 ∪ · · · ∪ ωh

J (15)

where

ωh
j =

{
x : ξj := h−1(x− P j) ∈ ωj

}
, Ω(h) = Ω�

J∪
j=1

ωh
j . (16)

The stiffness matrix and the density of the composite body (15) take the form

Ah(x) =

{
A(x), x ∈ Ω(h);

A(j)(ξ
j), x ∈ ωh

j ;
γh(x) =

{
γ(x), x ∈ Ω(h);

γj(ξ
j), x ∈ ωh

j .
(17)

The matrices A and A(j) as well as the scalars γ and γ(j) are different from each other,

i.e., ωh
j are inhomogenuous inclusions of small diameters. We assume that A(j) and γ(j) are

measurable, bounded and positive definite uniformly on ωj . In particular, for almost all ξ ∈ ωj

the eigenvalues of the matrix A(j)(ξ) are bounded from below by a constant cj > 0. There

is no special assumption on the relation between the properties of the inclusions and of the

matrix (body without inclusions), we assume only that the densities γ, γ(j), and entries of

the matrices A, A(j) are of similar orders, respectively. We point out that in the framework

of our asymptotic analysis, in section 4 there are performed the limit pasages A(j) → 0 and

γ(j) → 0 (a hole) as well as A(j) → ∞ and γ(j) → ∞ (an absolutely rigid inclusion). However,

the passage γ(j) → ∞ with the fixed matrix function A(j) (heavy concentrated masses) can be

analysed with some other ansätze, cf. [4, 36, 39].

In the fracture mechanics, the most intereting case is the weakening of elastic material due

to the crack formation. The cracks are modelled by two-sided, two dimensional surfaces, with
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the first boundary conditions from (11) prescribed on the both crack lips, i.e. the surface is

traction free from both sides. The case of a microcrack is not formally included in our problem

statement, since we assume that the defect ωj is of positive volume and with the Lipschitz

boundary ∂ωj . However, the asymptotic procedure works also for the cracks. Small changes

which are required in the justification part, are given separately (see the end of section 4, proof

of Proposition 5.1 and Remark 5.1). The polarization matrices for the cracks can be found in

[41], [24].

The exchange of γ and A by γh and Ah from (17), respectively, transforms (12) in the

integral identity for the body weakened by the defects ωh
1 , . . . , ω

h
J , this integral identity is

further denoted by (12)h. We observe also, that for smooth stiffness matrix A and the density

γ the differential problem for vibrations of a composite body does not consist only of the system

of equations, denoted in our notation by (10)h, restricted to the union of domains (15), along

with the boundary conditions (11)h, but in addition it contains transmition conditions on the

surface ∂ωh
j where the ideal contact is assumed. Since we use only the variational formulations

of the spectral problems, the transmission conditions are not explicitely written. In a similar

way as for problem (13), there is the sequence of eigenvalues for the problem (12)h

0 < λh
1 ≤ λh

2 ≤ · · · ≤ λh
p ≤ · · · → +∞, (18)

and the corresponding eigenfunctions uh(j) meet the orthogonality and normalization conditions

(γhuh(p), u
h
(q))Ω = δp,q, p, q ∈ N (19)

3 FORMAL CONSTRUCTION OF ASYMPTOTICS

We introduce the following asymptotic ansätze for eigenvalues and eigenfunctions in problem

(12)h

λh
p = λp + h3µp + . . . , (20)

uh(p)(x) = u(p)(x) + h

J∑
j=1

χj(x)
(
w1j

(p)

(
h−1

(
x− P j

))
+ hw2j

(p)

(
h−1

(
x− P j

)))
+ h3v(p) + . . .

(21)

where χj ∈ C∞
c (Ω), j = 1, . . . , J, are cut-off functions, with non overlaping supports in Ω, and

for each j, χj(x) = 1 for x ∈ ωh
j and χi(P

j) = δi,j .

First, we assume that the egenvalue λ = λp in problem (12) is simple, and for brevity the

subscript p is omitted. The corresponding eigenfunction u = u(p) ∈
o
H1(Ω; Γ)3, normalized by

condition (14), is smooth in the interior of the domain Ω.

Columns of the matrices d(x) and D(x)⊤ form a basis in twelve dimensional space of linear

vector functions in R3. In this way, the Taylor formula takes the form

u(x) = d(x− P j)aj +D(x− P j)⊤εj +O(|x− P j |2) , (22)
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and, by equalities (4), (5) and (8), the columns

aj = d(∇x)
⊤u(P j) , εj = D(∇x)u(P

j) ,

represent the column of rigid motions, and of strains, at the point P j . Since in the vicinity of

the inclusion ωh
j we have

ε(u;x) = εj +O(x) = εj +O(h) ,

the main terms of discrepancies, left by the field u in the problem (12)h for the composite body

Ωh, appear in the system of equations in ωh
j and in the transmition conditions on ∂ωh

j . For the

compensation of the discrepancies are used the special solutions of the elasticity problem in a

homogenuous space with the inclusion ωj of unit size

L0j(∇ξ)W
jk(ξ) := D(−∇ξ)

⊤A(P j)D(∇ξ)W
jk(ξ) = 0, ξ ∈ Θj = R3�ωj ,

Lj(ξ,∇ξ)W
jk(ξ) := D(−∇ξ)

⊤A(j)(ξ)D(∇ξ)W
jk(ξ) = D(∇ξ)A(j)(ξ)ek, ξ ∈ ωj ,

W jk
+ (ξ) = W jk

− (ξ), D(ν(ξ))⊤(A(j)(ξ)D(∇ξ)W
jk
− (ξ)

−A(P j)D(∇ξ)W
jk
+ (ξ)) = D(ν(ξ))⊤(A(P j)−A(j)(ξ))ek, ξ ∈ ∂ωj .

(23)

Here ν is the unit vector of the exterior normal on the boundary ∂ωj of the body ωj , ek =

(δ1,k, . . . , δ6,k)
⊤ is a orthant in the space R6, W+ and W− are limit values of the function W

on the surface ∂ωj evaluated from outside and from inside of the inclusion ωj , respectively.

We denote by Φj the fundamental (3×3)-matrix of the operator L0j(∇ξ) in R3. This matrix

is infinitely differentiable in R3�O and enjoys the following positive homogeneity property

Φ(tξ) = t−1Φ(ξ) , t > 0 . (24)

It is known (see, e.g., [[20], Ch. 6]), that the solutions W jk of problem (23) admit the expansion

W jk(ξ) =

6∑
p=1

M j
kp

3∑
q=1

Dq
p(∇x)Φ

jq(ξ) +O(|ξ|−3), ξ ∈ R3�BR, (25)

where Dp = (D1
p,D2

p,D3
p) is a line of the matrix D (see (3)), Φj1,Φj2,Φj3 are columns of the

matrix Φj , and the radius R of the ball BR = {ξ : |ξ| < R} is chosen such that ωj ⊂ BR.

The coefficients M j
kp in (25) form the (6×6)-matrix M j which is called the polarization matrix

of the elastic inclusion ωj (see[28, 41] and also [[20]; Ch. 6], [5], [21]). Some properties of the

polarization matrix, and some comments on the solvability of problem (23) are given in section

4.

The columnes W j1, . . . ,W j6 compose the (3× 6)-matrix W j and we set

w1j(ξ) = W j(ξ)εj . (26)

In section 5 it is verified, that the right choice of boundary layer is given by formula (26), since

it compensates the main terms of discrepancies. From (25) and (26) it follows that

w1j(ξ) = (M jD(∇ξ)Φ
j(ξ)⊤)⊤εj +O(|ξ|−3) , ξ ∈ R3�BR . (27)
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Relation (27) can be differentiated term by term on the set R3�BR under the rule∇ξO(|ξ|−p) =

O(|ξ|−p−1) for the remainder.

In view of (24) the detached asymptotics term equals

h2(M jD(∇x)Φ
j(x− P j)⊤)⊤εj . (28)

It produces discrepancies of order h3 (we point out that there is the factor h on w1j in (21)),

which should be taken into account when constructing the regular type term h3v. On the other

hand, discrepancies of the same order h3 are left in the problem for v by the subsequent term

h2w(h−1(x− P j)), which solves the transmission problem analoguous to (23)

L0j(∇ξ)w
2j(ξ) = F 0j(ξ), ξ ∈ Θj , Lj(ξ,∇ξ)w

2j(ξ) = F j(ξ), ξ ∈ ωj , (29)

w2j
+ (ξ) = w2j

− (ξ); D(ν(ξ))⊤(A(j)(ξ)D(∇ξ)w
2j
− (ξ) (30)

−A(P j)D(∇ξ)w
2j
+ (ξ)) = Gj(ξ), ξ ∈ ∂ωj ,

and with the decay rate O(|ξ|−1) at |ξ| → ∞, smaller compared to the decay rate of w1j .

Now, we evaluate the right-hand sides of the problems (29), (30). First, by the representa-

tion of the stiffness matrix

A(x) = A(P j) + (x− P j)⊤∇xA(P j) +O(|x− P j |2) (31)

and the corresponding splitting of differential operator with the variable coefficients L0(x,∇x)

from (10), we find that the right-hand side of system (29) is the main term of the expression

−L0(x,∇x)w
1j(h−1(x−P j)) = h−1D(∇ξ)

⊤(ξ⊤∇xA(P j))D(∇ξ)w
1j(ξ)+ · · · =: h−1F 0j(ξ)+ . . .

(32)

We note that L0j(∇x)w
1j(h−1(x − P j)) = 0 in (32), and the dots . . . stand for the terms of

lower order, which are unimportant for our asymptotic analysis. The following discrepancy

appears in the second transmission condition (30) :

Gj(ξ) = D(ν(ξ))⊤(ξ⊤∇xA(P j))(D(∇ξ)w
1j(ξ) + εj) (33)

+D(ν(ξ))⊤(A(P j)−A(j)(ξ))D(∇ξ)U
j(ξ).

The second term comes out from the elaborated Taylor formula (31)

u(x) = d(x− P j)aj +D(x− P j)⊤εj + U j(x− P j) +O(|x− P j |3) (34)

and involves the quadratic vector function

U j(x− P j) =

3∑
p,q=1

(xp − P j
p )(xq − P j

q )U
jpq, U jpq =

1

2

∂2u

∂xp∂xq
(P j). (35)
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Finally, the right-hand side of system (29) takes the form

F j(ξ) = −λγj(ξ)u(P
j) +D(∇ξ)

⊤A(j)(ξ)D(∇ξ)U
j(ξ). (36)

Besides the term obtained from the quadratic vector function (35) in the Taylor formula

(34), the expression (36) contains the discrepancy λγju(P
j) which originates from the inertial

term λhγju
h in accordance to the asymptotic ansätze (35) and (35).

In order to establish properties of solutions to the problem (29), (30), we need some com-

plementary results.

Lemma 3.1 Assume that Z(ξ) = D(∇ξ)
⊤Y (ξ) and

Y (ξ) = ρ−2Y(θ), Z(ξ) = ρ−3Z(θ), (37)

where (ρ, θ) are spherical coordinates and Y ∈ C∞(S2)6, Z ∈ C∞(S2)3 are smooth vector

functions on the unit sphere. The model problem

L0j(∇ξ)X(ξ) = Z(ξ), ξ ∈ R3�{0}, (38)

admits a solution X(ξ) = ρ−1X(θ), which is defined up to the term Φj(ξ)c with c ∈ R3, and

becomes unique under the orthogonality condition∫
S2

D(ξ)⊤A0(P j)D(∇ξ)X(ξ)dsξ = 0 ∈ R3. (39)

Proof After separating variables and rewriting the operator L0j(∇ξ) = r−2L(θ,∇θ, r∂/∂r) in

the spherical coordinates, the system (38) takes the form

Lj(θ,∇θ,−1)X(θ) = Z(θ), θ ∈ S2. (40)

Since L(θ,∇θ, 0) is the formally adjoint operator for Lj(θ,∇θ,−1) (see, for example, [[20];

Lemma 3.5.9]), the compability condition for the system of differential equations (40) implies

the equality ∫
S2

Z(θ)dsθ = 0 ∈ R3 . (41)

The equality represents the orthogonality condition in the space L2(S2) of the right-hand side

Z of system (40) to the solutions of the system

Lj(θ,∇θ, 0)V(θ) = 0 θ ∈ S2 , (42)

which are nothing but constant columns. Indeed, after transformation to the Cartesian coor-

dinate system ξ equations (42) take the form L0j(∇ξ)V (ξ) = 0, ξ ∈ R3�O, and any solution
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V (ξ) = ρ0V(θ) is constant. Let b > a > 0 be some numbers, and let Ξ be the annulus

{ξ : a < ρ < b}. We have

ln
b

a

∫
S2

Z(θ)dsθ =

b∫
a

ρ−1dρ

∫
S2

Z(θ)dsθ =

∫
Ξ

ρ−3Z(θ)dξ =

=

∫
Ξ

D(∇ξ)
⊤Y (ξ)dξ =

∫
S2
b

D(ρ−1ξ)⊤Y (ξ)dsξ −
∫
S2
a

D(ρ−1ξ)⊤Y (ξ)dsξ = 0 .

We have used here the Green formula and the fact that the integrands on the spheres of radii

a and b are equal to b−2D(θ)⊤Y and a−2D(θ)⊤Y, respectively, i.e., the integrals cancel one

another.

Therefore, the compability condition (41) is verified and the system (40) has a solution

X ∈ C∞(S2)3. The solution is determined up to a linear combination of traces on S2 of

columns of the fundamental matrix Φ(ξ); recall that the columns of matrix Φ(ξ) are the only

homogenuous solutions of degree −1 of the homogenuous model problem (38).

According to the definition and utility the columns Φq verify the relations

−
∫
S2

D(ξ)⊤A(P j)D(∇ξ)Φ
q(ξ)dsξ =

∫
B1

L0j(∇ξ)Φ
q(ξ)dξ =

∫
B1

δ(ξ)eqdξ = eq (43)

where ξ is the unit outer normal to the sphere S2 = ∂B1, B1 = {ξ : ρ < 1}, δ is the Dirac

mass, eq = (δ1,q, δ2,q, δ3,q)
⊤ is the basis vector of the axis xq, and the last integral over B1 is

understood in the sense of the theory of distributions. Thus, owing to (43), the orthogonality

condition (39) can be satisfied that implies the uniqueness of the solution X to the problem

(38), (39). �
In view of (32) and (27), (28), the right-hand side of (38) takes the form

Z(ξ) = D(∇ξ)
⊤(ξ⊤∇ξA(P j))D(∇ξ)(M

jD(∇ξ)Φ
j(ξ)⊤)⊤εj . (44)

General results of [7] (see also[[20]; §3.5, §6.1, §6.4]) show that there exists a unique decaying

solution of problem (29), (30), which admits the expansion

w2j(ξ) = Xj(ξ) + Φj(ξ)Cj +O(ρ−2(1 + | ln |ρ||)), ξ ∈ R3�BR. (45)

In the same way as in relation (27), the relation (45) can be differentiated term by term under

the rule ∇ξO(|ρ|−p(1 + | ln ρ|)) = O(|ρ|−p−1(1 + | ln ρ|)).
The method [16] is applied in order to evaluate the column Cj .

Lemma 3.2 The equality is valid

Cj = −λ(γj − γ(P j))|ωj |u(P j)− Ij , (46)
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where |ωj | is the volume, and γj = |ωj |−1
∫
ωj

γj(ξ)dξ the mean scaled density of the inclusion

ωj, i.e., its mass is γj |ωj |, and

Ij =

∫
S2

D(ξ)⊤(ξ⊤∇ξA(P j))D(∇ξ)(M
jD(∇ξ)Φ

j(ξ)⊤)⊤dsξε
j . (47)

Proof In the ball BR we apply the Gauss formula and obtain, that for R → ∞,∫
BR�ωj

F 0jdξ +

∫
ωj

F jdξ +

∫
∂ωj

Gjdsξ =

∫
BR�ωj

Lj0w2jdξ

∫
ωj

Ljw2jdξ

+

∫
∂ωj

D(ν)⊤(A(j)(ξ)D(∇ξ)w
2j
− −A(P j)D(∇ξ)w

2j
+ )dsξ

= −
∫

∂BR

D(ρ−1ξ)⊤A(P j)D(∇ξ)w
2j(ξ)dsξ

= −
∫

∂BR

D(R−1ξ)⊤A(P j)D(∇ξ)(X
j(ξ) + Φj(ξ)Cj)dξ + o(1) = Cj + o(1).

(48)

We have also taken into accout equalities (39) and (43). On the other hand, in view of formulae

(36) and (32) it follows that

∫
ωj

F j(ξ)dξ = −λ

∫
ωj

γj(ξ)dξu(P
j) +

∫
ωj

D(∇ξ)
⊤A(j)(ξ)D(∇ξ)U

j(ξ)dξ

= −λγj |ωj |u(P j) +

∫
∂ωj

D(ν(ξ))⊤A(j)(ξ)D(∇ξ)U
j(ξ)dξ,∫

BR�ωj

F 0j(ξ)dξ = −
∫
∂ωj

D(ν(ξ))⊤(ξ⊤∇ξA(P j))D(∇ξ)w
1j(ξ)dsξ

+

∫
∂BR

D(R−1ξ)⊤(ξ⊤∇xA(P j))D(∇ξ)w
1j(ξ)dsξ.

(49)

We turn back to the decomposition (27), and taking into account the homogeneity degree of

the integrand, we see that the integral over the sphere S2
R = ∂BR equals

∫
S2

D(ξ)⊤(ξ⊤∇xA(P j))D(∇ξ)(M
jD(∇ξ)Φ

j(ξ)⊤)⊤dsξε
j +O(R−1). (50)

The integrals over the surfaces ∂ωj in the right-hand sides of (49) cancel with two integrals,
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which according to (33) appear in the formula∫
∂ωj

Gj(ξ)dsξ =

∫
∂ωj

D(ν(ξ))⊤(ξ⊤∇xA(P j))D(∇ξ)w
1j(ξ)dsξ

−
∫
∂ωj

D(ν(ξ))⊤A(j)(ξ)D(∇ξ)U
j(ξ)dξ +

∫
∂ωj

D(ν(ξ))⊤(ξ⊤∇xA(P j))dsξε
j

+
∫

∂ωj

D(ν(ξ))⊤A(P j)D(∇ξ)U
j(ξ)dsξ.

(51)

Finally, by the equality

D(−∇x)
⊤A0(P j)D(−∇x)U

j(ξ) +D(−∇x)
⊤(x⊤∇xA0(P j))εj = λγ0(P j)u(P j) ,

resulting from equation (33) at the point x = P j , the sum of the pair of two last integrals in

(51) takes the form∫
ωj

(D(−∇ξ)
⊤A0(P j)D(∇ξ)U

j(ξ) +D(−∇ξ)
⊤(ξ⊤∇xA0(P j))εj)dξ = λγ0(P j)|ωj |u(P j) .

It remains to pass to the limit R → +∞. �
Now, we are in position to determine the terms v and µ in the ansätze (21) and (20), which

are given by solutions of the problem

L(x,∇x)v(x) = λγ(x)v(x) + µγ(x)u(x) + f(x), x ∈ Ω�{P 1, . . . , P J}, (52)

D(ν(x))⊤A(x)D(∇x)v(x) = 0, x ∈ Σ, v(x) = 0, x ∈ Γ. (53)

The weak formulation of (52)-(53) is given below by (59) in the subspace
o
H1(Ω; Γ)3 of the

Sobolev space H1(Ω). The right-hand side f includes the discrepancies, which results from the

terms of boundary layer type and of the order h3. By decompositions (27) and (45) we obtain

f(x) =

J∑
j=1

(L(x,∇x)− λγ(x)I3)χj(x){(M jD(∇x)Φ
j(x− P j)⊤)⊤εj +Xj(x) + Φj(x− P j)Cj}.

(54)

The terms in the curly braces enjoy the singularities O(|x − P j |−2) and O(|x − P j |−1),

respectively, therefore, it should be clarified in what sense the differential problem (52), (53)

is considered. Equation (52) is posed in the punctured domain Ω, thus the Dirac mass and its

derivatives, which are obtained by the action of the operator L on the fundamental matrix,

are not taken into account. Beside that, by virtue of the definition of the term Xj implying

a solution to the model problem (38) with the right-hand side (44), and according to the

estimates of remainders in the expansions (27), (45), the following relations are valid

f(x) = O(r−2
j (1 + ln rj)), rj := |x− P j | → 0, j = 1, . . . , J, (55)
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which accept the differentation according to the standard rule

∇xO(r−p
j (1 + | ln rj |))) = O(r−p−1

j (1 + | ln rj |))) .

In other words, expression (54) should be written in the combersome way

f(x) =

J∑
j=1

{
([L, χj ]− λγχjI3)(Sj1 + Sj2)+ (56)

+χjD(∇x)
⊤((A−A(P j)− (x− P j)⊤∇xA(P j))D(∇x)S

j1 + (A−A(P j))D(∇x)S
j2
}

.

Here, [A,B] = AB−BA is the commutator of operators A and B, and Sj1, Sj2 = Sj1 +Xj +

ΦjCj are expressions in curly braces in (54).

Lemma 3.3 Let λ be a simple eigenvalue in the problem (10), (11), and u the corresponding

vector eigenfunction normalized by the condition (14). Problem (52), (53) admits a solution

v ∈ H1(Ω)3 if and only if

µ = − lim
δ→0

∫
Ωδ

u(x)⊤f(x)dx , (57)

where Ωδ = Ω�(B1
δ ∪ · · · ∪ BJ

δ ) and Bj
δ = {x : rj < δ}.

Proof The variant of the one dimensional Hardy’s inequality

1∫
0

|U(r)|2dr ≤ c

 1∫
0

r2

∣∣∣∣dUdr (r)
∣∣∣∣2 dr +

1∫
1/2

|U(r)|2dr


provides the estimate

∥r−1
j V ;L2(Ω)∥ ≤ c∥V ;H1(Ω)∥. (58)

In this way, the last term in the integral identity serving for problem (52), (53)

(A∇xv,∇xV )Ω − λ(γv, V )Ω = µ(ρu, V )Ω + (f, V )Ω, V ∈
o
H

1(Ω; Γ)3, (59)

is a continuous functional over the Sobolev space H1(Ω)3, owing to the inequalities

|(f, V )Ω| ≤ c

∥V ;L2(Ω)∥+
J∑

j=1

∫
Bj

δ

r2
j |f(x)|2dx


1/2 ∫

Bj
δ

r−2
j |V (x)|2dx


1/2

 ≤ c∥V ;H1(Ω)∥,

∫
Bj

δ

r2
j |f(x)|2dx ≤ c

δ∫
0

r2
j r

−2
j (1 + | ln rj |)2drj < +∞.

Thus, Lemma follows from the Riesz representation theorem and Fredholm alternative, in

addition, formula (57) is valid because the integrand is a smooth function in Ω�{P 1, . . . , P J},
with absolutely integrable singularities at the points P 1, . . . , P J . �
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Remark 3.1 If the points P j are considered as tips of the complete cones R3�P j, the elliptic

theory in domains with conical points (see the fundamental contributions [7, 16, 17] and also

e.g., monograph [20]) provides estimates in weighted norms of the solution v to problem (52),

(53). Indeed, owing to relation (55) for any τ > 1/2 the inclusions rτj f ∈ L2(U j)3 are valid,

where U j stands for a neighbourhood of the point P j, in addition U j ∩ Uk = ∅ for j ̸= k,

therefore, the terms rτ−2
j v, rτ−1

j ∇xv and rτj∇2
xv are square integrable in U j. �

We evaluate the limit in the right-hand side of (57) for δ → +0. By the Green formula and
representation (54), the limit is equal to the sum of the surface integrals∫
∂Bj

δ

(
Sj(x)⊤D(δ−1(x− P J))⊤A(x)D(∇x)u(x)− u(x)⊤D(δ−1(x− P j))⊤A(x)D(∇x)S

j1(x) + Sj2
)
dsx .

(60)

We apply the Taylor formulae (31) and (22) to the matrix A and the vector u, and take into

account relations (8) for the matrices d and D. We also introduce the stretched coordinates

ξ = δ−1(x− P j). As a result, up to an infinitesimal term as δ → +0, integral (60) equals to

−δ−1I0 + I1 + I2 + I3 + I4 + o(1)

= −δ−1

∫
S2

u(P j)⊤D(ξ)⊤A(P i)D(∇ξ)S
j1(ξ)dsξ

−
∫
S2

(d(ξ)aj − u(P j))⊤D(ξ)⊤A(P j)D(∇ξ)S
j1(ξ)dsξ

−
∫
S2

u(P j)⊤D(ξ)⊤(ξ⊤∇xA(P j))D(∇ξ)S
j1(ξ)dsξ

−
∫
S2

u(P j)⊤D(ξ)⊤A(P j)D(∇ξ)(X
j(ξ) + Φj(ξ)Cj)dsξ

+

∫
S2

(Sj0(ξ)⊤D(ξ)⊤A(P j)D(∇ξ)D(ξ)⊤εj

−(D(ξ)⊤εj)⊤D(ξ)⊤A(P j)D(∇ξ)S
j1(ξ))dsξ + o(1).

(61)

The integrals I0 and I1 vanish. Indeed, due to the second equality in (8) we have

R6 ∋
∫
S2

d(ξ)⊤D(ξ)⊤A(P j)D(∇ξ)S
j1(ξ)dsξ

= −
∫
B1

d(ξ)⊤D(ξ)⊤A(P j)D(∇ξ)(M
jD(∇ξ)Φ

j(ξ)⊤)⊤εjdξ

= −
∫
B1

d(ξ)⊤D(ξ)⊤δ(ξ)dξM jεj = −(D(∇ξ)d(ξ))
⊤|ξ=0M

jεj = 0.

(62)

These equalities are understood in the sense of distributions. By formula (47), we obtain

I2 = −u(P j)⊤Ij .
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Relations (39) and (43) yield

I3 = u(P j)⊤Cj .

Finally, in the same way as in (62), we obtain

I4 =

∫
B1

(D(ξ)⊤εj)⊤D(∇ξ)
⊤A(P j)D(∇ξ)S

j1(ξ)dξ

= −(εj)⊤
∫
B1

D(ξ)D(∇xi)
⊤M jεjδ(ξ)dξ = (εj)⊤M jεj .

(63)

Now, we could apply the derived formulae. We insert the obtained expressions for Iq into

(61) → (60) → (57) and in view of equation (46) for the column Cj , we conclude that

µ =

J∑
j=1

(
(εj)⊤M jεj + λ(γ(P j)− γj)|ωj ||u(P j)|2

)
. (64)

If equality (64) holds, then problem (52), (53) admits a solution v ∈ H1(Ω)3. The construction

of the detached terms in the asymptotic ansätze (20) and (21) is completed.

In the forthcoming sections the formal asymptotic analysis is confirmed and generalized

into the following result.

Theorem 3.2 Let λp be an eigenvalue in problem (12) with multiplicity κp, i.e., in the se-

quence (13)

λp−1 < λp = · · · = λp+κp−1 < λp+κp
. (65)

There exist hp > 0 and cp > 0 such that for h ∈ (0, hp] the eigenvalues λh
p , · · · , λh

p+κp−1 of the

singularly perturbed problem (12)h, and only the listed eigenvalues, verify the estimates

|λp+q−1 − λp − h3µ(p)
q | ≤ cp(α)h

3+α , q = 1, . . . ,κp , (66)

where cp(α) is a multiplier depending on the number p and the exponent α ∈ (0, 1/2) but

independent of h ∈ (0, hp], while µ
(p)
1 , · · · , µ(p)

κp stand for eigenvalues of symmetric (κp × κp)-

matrix Mp with the entries

Mp
km =

J∑
j=1

(
ε(up+k−1;P

j)⊤M jε(up+k−1;P
j)− λp(γj − γ(P j))|ωj |up+k−1(P

j)⊤up+k−1(P
j)
)

,

(67)

M j is the polarization matrix of the scaled inclusion (see (25) and (27)), u(p), · · · , u(p+κp−1)

are vector eigenfunctions in the problem (12) corresponding to the eigenvalue λp and orthonor-

malized by condition (14), finally the quantities γj and |ωj | are defined in Lemma 3.2.

We explain which changes are necessary in the asymptotic ansätze (20), (21) and in the asymp-

totic procedure in order to construct asymptotics in the case of a multiple eigenvalue λp. First,
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for µp and u(p) in (20) and (21) should be selected unknown number µ
(p)
q and the linear com-

bination

u
(q)
(p) = b

(q)
1 u(p) + · · ·+ b(q)

κp
u(p+κp−1) (68)

of vector eigenfunctions; the column b(q) = (b
(q)
1 , · · · , b(q)

κp )
⊤ ∈ Rκp is of the unit norm. After

the indicated changes the formulae for the boundary layers w1jq and w2jq remain unchanged.

The same applies to problem (52), (53) for the correction term v
(q)
(p) of regular type. However,

the compability conditions are modified, and turn into the κp relations

µ(p)
q (γu

(q)
(p), up+m−1)Ω = lim

δ→+0

∫
Ωδ

up+m−1(x)
⊤f(x)dx , m = 1, . . . ,κp . (69)

The left-hand side of (69) equals to µ
(p)
q b

(q)
m by (14) and (68). It can be evaluated by the same

method as for formula (57), that (69) becomes the system of algebraic equations

µ(p)
q b(q)

m =

κp∑
k=1

M(p)
mkb

(q)
k , m = 1, . . . ,κp . (70)

with coefficients from (67). In this way, the eigenvalues of the matrix M(p) and its eigenvectors

b(q) ∈ Rκp furnish the explicit values for the terms of the asymptotic ansätze (20) and (21).

We emphasise that by the orthogonality and normalization conditions (b(q))⊤b(k) = δq,k for the

eigenvectors of the symmetric matrix M(p), it follows that the vector eigenfunctions u(p) =(
u

(1)
(p), . . . , u

(κp)
(p)

)
, p = 1, · · · ,κp, in problem (12), which are given by formulae (68), are as well

orthonormalized by the conditions (14).

If we have good luck, and from the beginning the eigenvectors u(p), · · · , u(p+κp−1) have

the required form (68), then the matrix M(p) is diagonal and the system of equations (70) is

decomposed into a collection of κp independent relations, fully analoguous to relations (64)

in the case of a simple eigenvalue. Such an observation is the key ingredient of the algorithm

of defects identification which will be described in a forthcoming paper, and it makes the

identification method insensitive to the multiplicity of eigenvalues in the limit problem.

4 REMARKS ON POLARIZATION MATRICES

The results presented in this section are borrowed from [28], and paper [24].

Variational formulation of problem (23) for the special fieldsW jk, which define the elements

of the polarization matrix M j in decomposition (25), are of the form

2Ej(W jk,W) := (A(P j)D(∇ξ)W
jk,D(∇ξ)W)Θj

+ (A(j)D(∇ξ)W
jk,D(∇ξ)W)ωj

= (R(j)ek,D(∇ξ)W)ωj
,W ∈ V 1

0 (R3)3,
(71)

where V 1
0 (R3) is the Kondratiev space [7], which is the completion of the linear space C∞

c (R3)

(infinitely differentiable functions with compact supports) in the weighted norm

∥W ;V 1
0 (R3)∥ = (∥∇ξW ;L2(R3)∥2 + ∥(1 + ρ)−1W ;L2(R3)∥2)1/2 (72)
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The following result, established in [24, 28] can be shown by using transformations analoguous

to (62) and (63) operating with the fields W jk and Wjm = D(ξ)⊤ek +W jm.

Proposition 4.1 The equalities hold true

M j
km = −2Ej(W jk,W jm)−

∫
ωj

(Akm(P j)− (A(j))km(ξ))dξ . (73)

From the above representation it is clear that the matrix M j is symmetric, the property

follows by the symmetry of the stiffness matrices A0, Aj and of the energy quadratic form Ej .

In addition, the representation allows us to deduce if the matrix M j is negative or positive

definite. We write M1 < M2 for the symmetric matrices M1 and M2 provided all eigenvalues

of M2 −M1 are positive.

Proposition 4.2 (see [24]) 1◦ If A(j)(ξ) < A(P j) for ξ ∈ ωj (the inclusion is softer compared

to the matrix material), then M j is a negative definite matrix.

2◦ If the matrix A(j) is constant and A−1
(j) < A(P j)−1 (the homogenuous inclusion is rigid

compared to the matrix), then M j is a positive definite matrix.

It is also possible to consider the limit cases, either of a cavity with Aj = 0, or of an absolutely

stiff inclusion with A(j) = ∞. For the case of a cavity the diifferential problem takes the form

L0j(∇ξ)W
jk(ξ) = 0, ξ ∈ Θj = R3�ωj , (74)

D(ν(ξ))⊤A(P j)D(∇ξ)W
jk(ξ) = −D(ν(ξ))⊤A(P 1)ek, ξ ∈ ∂ωj .

For an absolutely rigid inclusion the integral-differential equations occur as follows

L0j(∇ξ)W
jk(ξ) = 0, ξ ∈ Θj , W jk(ξ) = d(ξ)cjk −D(ξ)⊤ek, ξ ∈ ∂ωj , (75)∫

∂ωj

d(ξ)⊤D(ν(ξ))⊤A(P j)(D(∇ξ)W
jk(ξ)− ek)dsξ = 0 ∈ R6 ,

where the matrices D and d are introduced in (3) and (7), respectively.

The Dirichlet conditions in (75) contains an arbitrary column cjk ∈ R6, which permits

for rigid motion of ωj and can be determined by the integral conditions which annulate the

principal vector and moment of forces applied to the body ωj . The variational formulation

of problems (74) and (75) can be established in the Kondratiev space V 1
0 (Θj)

3 (see [7], and

e.g., [20]) normed by the weighted norm (72) (cf. the right-hand side of (76)) and in its

linear subspace {W ∈ V 1
0 (Θj)

3 : W
∣∣
∂ωj

∈ R}, respectively, where R is the linear space of rigid

motions (6). The asymptotic procedures of derivation of problems (74) and (75) from problems

(23) and (71) can be found in [11, 36]. The required estimates can be extracted from these

references as well.

In accordance with Proposition 4.2 the polarization matrix for a cavity is always negative

definite, and that for an absolutely rigid inclusion, it is always positive definite. Theorem
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3.2 gives an asymptotic formula, which can be combined with the indicated facts and the

information from Proposition 4.2, and it makes possible to deduce the sign of the variation of

a given eigenvalue in terms of the defect properties. For example, in the case of a defect-crack,

with the null volume and negative polarization matrix, the eigenvalues of the weakened body

are smaller compared to the initial body. Such an observation is already employed in the bone

China porcelane shops by the qualified personel.

5 JUSTIFICATION OF ASYMPTOTICS

We proceed with the following statements, which are fairly known for the entire body (see

[6, 32]) but should be verified for a body with small cavities (see (16)). We emphasize that

a body with small inclusions is to be regarded in some sense as an intermediate case. In this

way, some of given below axiliary results for the intact body are fit for the body with foreign

inclusions, however, in some situations it is much simpler to compare the latter with the body

with small voids. On the other hand, the whole justification procedure works for any sort of

defects.

Proposition 5.1 For a vector function u ∈
o
H1(Ω; Γ)3 the inequality

∥r−1
j u;L2(Ω)∥+ ∥∇xu;L

2(Ω)∥ ≤ c∥D(∇x)u;L
2(Ω)∥ (76)

holds true. The above inequality remains valid with a constant independent of h ∈ (0, h0], if

the domain Ω is replaced by the domain Ω(h) with defects.

Proof For analysis of displacement fields in the domain Ω(h) with cavities (in particular, with

cracks) we apply the method described in review papier [[31]; §2.3] - in this framework the

body with elastic inclusions is considered as intact or entire. Let us consider the restriction

û of u to the set Ωh = Ω�
∪J

j=1 B
j
hR, where Bj

hR = {x : |x − P j | < hR} and radius hR of

the balls is selected in such a way that ωh
j ⊂ Bj

hR. We construct an extension ũ to Ω of the

field û. To this end, we introduce the annulae Ξj
h = Bj

2hR�Bj
hR and perform the stretching of

coordinates x 7→ ξj = h−1(x−P j). The vector functions û and u written in the ξj-coordinates

are denoted by ûj and uj , respectively. It is evident that

h∥D(∇ξ)û
j ;L2(Ξ)∥2 = ∥D(∇ξ)û;L

2(Ξj
h)∥

2 ≤ ∥D(∇x)u;L
2(Ω(h))∥2; (77)

where Ξ = B2R�BR. Let

ûj(ξj) = ûj⊥(ξ
j) + d(ξj)aj , (78)

where d is the matrix (7), and the column aj ∈ R6 is selected in such a way that∫
Ξ

d(ξj)⊤ûj⊥(ξ
j)dξj = 0 ∈ R6, (79)
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where the matrix d is given by (7). By the orthogonality condition (79), the Korn inequality

is valid

∥ûj⊥;H
1(Ξ)∥ ≤ cR∥D(∇ξ)û

j
⊥;L

2(Ξ)∥ = cR∥D(∇ξ)û
j ;L2(Ξ)∥ (80)

(see, e.g., [6], [[31]; §2] and [[19]; Thm 2.3.3]), and the last equality follows from the second

formula (8) since the rigid motion daj generates null strains (4). Let ũj⊥ denote an extension

in the Sobolev class H1 of the vector function ûj⊥ from Ξ onto BR, such that

∥ûj⊥;H
1(B2R)∥ ≤ cR∥ûj⊥;H

1(Ξ)∥. (81)

Now, the required extension of the field u onto the entire domain Ω is given by the formula

ũ(x) =

{
û(x), x ∈ Ωh ,

d(ξj)aj + ũj⊥(ξ
j), x ∈ Bj

hR, j = 1, . . . , J.
(82)

In addition, according to (78) and (77), (80), (81) we have

∥D(∇x)ũ;L
2(Ω)∥ ≤ c∥D(∇x)u;L

2(Ω(h))∥. (83)

Applying the Korn’s inequality (80) in Ω, we obtain

∥r−1
j u;L2(Ωh)∥+ ∥∇xu;L

2(Ωh)∥ ≤ ∥r−1
j ũ;L2(Ω)∥+ ∥∇xû;LΩ∥ ≤ c∥D(∇x)ũ;L

2(Ω)∥. (84)

We turn back to the function ûj and find

h∥ûj ;H1(Ξ)∥2 ≤ c(∥r−1
j ũ;L2(Ω)∥2 + ∥∇xũ;L

2(Ω)∥2). (85)

The other variant of the Korn’s inequality

∥uj ;H1(B2R�ωj)∥2 ≤ c(∥D(∇x)u
j ;L2(Ξ�ωj)∥2 + ∥uj ;L2(Ξ)∥2) (86)

(see e.g., [6], [[31]; §2] or [[19]; §3.1]), after returning to the x-coordinates leads to the relations

h−2∥u;L2(B2hR�ωh
j )∥2 ≤ c∥∇xu;L

2(B2hR�ωh
j )∥2

≤ c(∥D(∇x)u;L
2(B2hR�ωh

j )∥2 + h−2∥u;L2(Ξj
hR)∥

2)
(87)

By virtue of Ch ≥ rj ≥ ch > 0 for x ∈ B2hR�ωh
j ⊃ Ξj

hR, the multiplier h−1 can be inserted

into the norm, and transformed to r−1
j , but the norm ∥r−1

j u;L2(Ξj
hR)∥ is already estimated in

(84), owing to ũ = u on Ξj
hR. Estimates (87), j = 1, . . . , J, modified in the indicated way along

with relation (84) imply the Korn inequality in the domain Ω(h). �

Remark 5.1 If ωj is a domain, then in the proof of Proposition 5.1 we do not need to restrict

û to Ωh, but operate directly with the sets Ω(h) and B2R�ωj since there is a bounded extension

operator in the class H1 over the Lipschitz boundary ∂ωj with the estimate of type (81). The

presence of cracks ωh
j makes the existence of such an extension impossible. However, the Korn’s

inequality (87) is still valid in this case, since to maintain the validility the union of Lipschitz

domains is only required (see [6]). �

Latin American Journal of Solids and Structures 8(2011) 27 – 54



46 S.A. Nazarov et al / On asymptotic analysis of spectral problems in elasticity

The bilinear form

⟨u, v⟩ = (AhD(∇x)u,D(∇x)v)Ω (88)

can be taken as a scalar product in the Hilbert space
o
H1(Ω; Γ)3. In this way, the integral

identity (12)h can be rewritten as the abstract spectral equation

Khuh = mhuh , (89)

where mh = (λh)−1 is the new spectral parameter, and Kh is a compact, symmetric, and

continuous operator, thus selfadjoint,

⟨Khu, v⟩ = (γhu, v)Ω , u, v ∈ H . (90)

Eigenvalues of the operator Kh constitute the sequence

mh
1 ≥ mh

2 ≥ · · · ≥ mh
p ≥ · · · → +0 , (91)

with the elements related to the sequence in (18) by the first formula in (90).

The following statement is known as Lemma on almost eigenvalues and eigenvectors (see,

e.g., [40]).

Proposition 5.2 Let m and u ∈ H be such that

∥u∥H = 1 , ∥Khu−mu∥H = δ . (92)

Then there exists an eigenvalue mh
p of the operator Kh, which satisfies the inequality

|m−mh
p | ≤ δ. (93)

Moreover, for any δ• > δ the following inequality holds

∥u− u•∥H ≤ 2δ/δ• (94)

where u• is a linear combination of eigenfunctions of the operator Kh, associated to the eigen-

values from the segment [m− δ•,m+ δ•], and ∥u•∥H = 1.

For the asymptotic approximations m and u of solutions to the abstract equation (89) we take

m = (λp + h3µp)
−1 , u = ∥U ;H∥−1U , (95)

where U stands for the sum of terms separated in the asymptotic ansatz (21). Let us evaluate

the quantity δ from formula (92). By virtue of λp > 0, for h ∈ (0, hp] and hp > 0 small enough,

we have

δ = ∥Khu−mu;H∥ = (λp + h3µp)
−1∥U ;H∥−1 sup

v∈S
|(λp + h3µp)⟨KhU, V ⟩ − ⟨U, V ⟩| (96)

≤ c sup
v∈S

|(AhD(∇x)U ;D(∇x)V )Ω − (λp + h3µp)(ρ
hUh, V )Ω|;
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where S = {V ∈ H : ∥V ;H∥ = 1} is the unit sphere in the space H. In addition, to estimate

the norm ∥U ;H∥ the following relations are used

∥u(p);H∥2 = (AhD(∇x)u(p),D(∇x)u(p))Ω ≥ c > 0, (97)

∥hiχjw
ij
(p);H∥ ≤ chi+1/2, i = 1, 2, ∥h3v(p);H∥2 ≤ ch3,

where the first relation follows from the continuity at the points P j of the second order deriva-

tives of the vector function u(p) combined with the integral identity (12) and the normalization

condition (19). We transform the expression under the sign sup in (96). Substituting into the

expression the sum of terms in ansatz (21), we have

I0 = (AhD(∇x)u(p),D(∇x)V )Ω − (λp + h3µp)(γ
hu(p), V )Ω

=
∑J

j=1

{
((A(j) −A)D(∇x)V )ωh

j
− λp((γ

h − γ)u(p), V )ωh
j

}
−h3µp(γ

hu(p), V )Ω =:
∑J

j=1 I
j
0 − I0

0,

(98)

Iji = hi(AD(∇x)χjw
ij
(p),D(∇x)V )Ω − hi(λp + h3µp)(γ

hχjw
ij
(p)V )Ω = Ij0i − Ij0i , i = 1, 2, (99)

I4 = h3((AD(∇x)v(p)D(∇x)V )Ω − λp(γv(p), V )Ω)− h6µp(γ
hv, V )Ω

+h3
∑J

j=1

{
((A(j) −A)D(∇x)v(p),D(∇x)V )ωh

j
− λp((γj − γ)v(p), V )ωh

j

}
= h3I0

4 + h6I01
4 + h3

∑J
j=1 I

j
4.

(100)

In (98) we used that u(p) and λp verify the integral identity (12). Furthermore, by the Taylor

formulae (34) and (31), we obtain

|Ij0 − Ij10 − Ij20 | ≤ c(h2∥D(∇x)V ;L1(ω)hj ∥+ h∥V ;L1(ωh
j )∥

+

∫
ωh

j

|V − V
j |dx) ≤ ch2h3/2∥D(∇x)V ;L2(Ω)∥ = ch7/2,

Ij10 = ((A(j) −A(P j))εj ,D(∇x)V )ωj
h
,

Ij20 = ((A(j) −A(P j))D(∇x)U
j
(p),D(∇x)V )ωj

h
+ ((x− P j)⊤∇xA(P j)εj(p)D(∇x)V )ωj

h

−λp((γj − γ(P j))u(p)(P
j), V )ωh

j
.

(101)

Let explain the derivation of above formulae. The following substitutions are performed

D(∇x)u(p)(x) 7→ εj(p) +D(∇x)U(p)(x),

A(x) 7→ A(P j) + (x− P j)⊤∇xA(P j),

u(p)(x) 7→ u(p)(P
j),

with pointwise estimates for remainders of orders h2, h2, and h, respectively. These gave rise

to the following multipliers in the majorants

∥D(∇x)V ;L1(ωj
h)∥ ≤ ch3/2∥D(∇x)V ;L2(Ω)∥,

∥V ;L1(ωj
h)∥ ≤ ch3/2∥r−1

j V ;L2(Ω)∥ .
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Note that the factor h3/2 is proportional to (mes3ω
h
j )

1/2, and h−1rj does not exceed a constant

on the inclusion ωh
j . Beside that, the Poincaré inequality∫

ωh
j

|V (x)− V
j |dx ≤ ch3/2

∫
ωh

j

|V (x)− V
2|2dx ≤ ch3/2h2

∫
ωh

j

|∇xV (x)|2dx, (102)

is employed together with the relation∫
ωj

(γj(x)− γj)u(p)(P
j)⊤V (x)dx =

∫
ωj

(γj(x)− γj)u(p)(P
j)⊤(V (x)− V

j
)dx. (103)

Here V
j
stands for the mean value of V over ωh

j . Finally, all the norms of the test function V

are estimated by Proposition 5.1.

In similar but much simpler way, by virtue of Remark 3.1, the term Ij4 from (100) satisfies

h3|Ij4| ≤ ch3(h1−τ∥rτ−1
j ∇xv(p);L

2(ωh
j )∥+ h2−τ∥rτ−2

j v(p);L
2(ωh

j )∥)∥V ;H∥ ≤ ch4−τ , (104)

where τ > 1/2 is arbitrary. It is clear that h6|I01
4 | ≤ Ch6. The integral h3I0

4 cancels the integral

−h3I0
0 in (98) and some parts of the integrals Iji from (99), which we are going to consider.

In the notation of formula (56) we have

Iji = hi
{
(A(j)D(∇x)w

ij
(p),D(∇x)V )ωh

j
+ (A(P j)D(∇x)w

ij
(p),D(∇x)χjV )Ω�ωh

j

+h−1δi,2((x− P j)⊤∇xA(P j)D(∇x)w
1j
(p),D(∇x)χjV )Ω�ωh

j

}
+
{
(A[D(∇x), χj ]w

ij
(p),D(∇x)V )Ω − (AD(∇x)w

ij
(p), [D(∇x), χj ]V )Ω

}
+((A−A(P j)− δi,1(x− P j)⊤∇xA(P j))D(∇x)w

ij
(p),D(∇x)χjV )Ω�ωh

j

=: hiIj0i + Ij1i + Ij2i .

(105)

Furthermore, the integrals hiIj0i and Ijii cancel each other according to the integral identities

2Ej(w1j , χjV ) = ((A(P j)−A(j))ε
j
p,D(∇ξ)χjV )ωj

,

2E2(w2j , χjV ) = (F 0j , χjV )R3�ωj
+ (F j , V )ωj

+ (Gj , V )∂ωj
.

(106)

The latter formulae are provided by (71), (26) and (29), (30), (32), (33), (36). We point out

that the test function ξ 7→ χj(hξ + P j)V(hξ + P j) in (106) has a compact support, i.e., the

function belongs to the Kondratiev space V 1
0 (R3), and in the analysed integrals the stretching

of coordinates x 7→ ξ = h−1(x− P j) has to be performed.

The expressions including asymptotic terms Sji
(p)(h

−1(x − P j)) = h3−iSji
(p)(x − P j) are

detached from the integrals Ij1i and Ij2i ,

Ij1i0 = h3
{
(A[D(∇x), χj ]S

ji
(p),D(∇x)V )Ω − (AD(∇x)S

ji
(p)[D(∇x), χj ]V )Ω

}
= h3([L, χj ]S

ji, V )Ω,

Ij2i0 = h3((A−A(P j)− δi,1(x− P j)⊤∇xA(P j))D(∇x)S
ji
(p),D(∇x)χjV )Ω�ωh

j
,

(107)
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and the remainders are estimated by virtue of the decompositions (27) and (45), namely,

|Ij11 − Ij110| ≤ ch∥V ;H∥

 ∫
sup |∇xχj |

((1 + h−1rj)
−6 + h−2(1 + h−1rj)

−8)dx


1/2

≤ ch4,

|Ij21 − Ij210| ≤ ch2∥V ;H∥

 ∫
sup |∇xχj |

((1 + h−1rj)
−4 + h−2(1 + h−1rj)

−6)(1 + | ln(h−1rj)|)2dx


1/2

≤ ch4(1 + | lnh|),

|Ij12 − Ij120| ≤ ch∥V ;H∥

 ∫
Ω�ωh

j

r4
j (1 + h−1rj)

−6dx


1/2

≤ ch4,

|Ij22 − Ij220| ≤ ch2∥V ;H∥

 ∫
Ω�ωh

j

r2
j (1 + h−1rj)

−4(1 + | ln(h−1rj)|)2dx


1/2

≤ ch4(1 + | lnh|).

(108)

Inequalities for the integrals Ij0i from (99) are obtained in a similar way and look as follows :

|Ij0i − Ij0i0 | ≤ c∥r−1
j V ;L2(Ω)∥hih4−i(1 + δi,2| lnh|) ≤ ch4(1 + δi,2| lnh|),

Ij0i0 = h3λ(p)(ρχjS
ji
(p), V )Ω .

(109)

According to formula (56) for the right-hand side f of the problem (52), (53) and the associated

integral identity (59), the sum of the expressions h3I0
4 from (100) and Iiqi0 from (107), (109)

(the latter is summed over j = 1, . . . , J and q = 0, 1, 2) turns out to vanish. As a result,

collecting the obtained estimates, we conclude that the quantity δ from formula (95) (see also

(92)) satisfies the estimate

δ ≤ cαh
3+α (110)

for any α ∈ (0, 1/2).

Now we are in position to prove the main theorem on asymptotics of solutions of singularly

perturbed problem.

Proof of Theorem 3.2 From the columns b(1), . . . , b(κp) of matrix M(p) with elements (67)

can be constructed linear combinations (68) of vector eigenfunctions u(p), . . . , u(p+κp−1) as well

as the subsequent terms of asymptotic ansatz (21). As a result, for q = p, . . . , p + κp − 1

the approximate solutions
{
(λp + h3µp)

−1 , ∥U (q)
(p) ;H∥

−1U
(q)
(p)

}
of the abstract equation (89) are

obtained, such that the quantity δ from relations (92) verifies the inequality (110). We apply

the second part of Proposition 5.2 with

δ• = c•h
3+α• , α• ∈ (0, α) . (111)

Let the list

mh
n = (λh

n)
−1, · · · ,mh

n+N−1 = (λh
n+N−1)

−1 (112)
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include all eigenvalues of the operator Kh, located in the segment

[(λp)
−1 − c•h

3+α• , (λp)
−1 + c•h

3+α• ] , (113)

for sufficiently small h• > 0, such that (λp+h3µp)
−1 with h ∈ (0, h•] belongs to segment (113).

Our immediate objective becomes to show that

n = p, N = κp . (114)

The quantities mh
n for m ≥ n+N − 1 are uniformly bounded in h ∈ (0, h•]. By Proposition

5.1, the same assumptions provide the uniform boundedness of the norm ∥ũh(m);
o
H1(Ω; Γ)3∥ of

the vector functions ũh(m) ∈ Hh constructed for the vector eigenfunctions uh(m) in (12)h according

to (86). Hence, there exists an infinitesimal sequence {hi}, such that the limit passage hi → +0

leads to the convergences

mh
m → m0

m = (λ0
m)−1 , ũh(m) → ũ0

(m) weakly in H1(Ω)3 and strongly in L2(Ω)3 . (115)

We substitute into the integral identity (12)h the test function v ∈ C∞
c (Ω�(Γ∪{P 1, · · · , P J}))3.

According to definition (17) and for sufficiently small h > 0, the stiffness matrix Ah and the

density γh coincide on the support of v with A and γ, respectively. Therefore, the limit passage

hi → +0 in the integral identity (12)h leads to the equality

(AD ũ0
(m),Dv)Ω = λ0

m(γ ũ0
(m), v)Ω . (116)

Since C∞
c (Ω�(Γ∪{P 1, · · · , P J}))3 is dense in

o
H1(Ω; Γ)3, the integral identity (116) holds true

for all test functions v ∈
o
H1(Ω; Γ)3. We observe that the weighted norms ∥r−1

j ũh(m);L
2(Ω)∥ are

uniformly bounded by virtue of inequality (76), thus

(γh ũh(m), ũ
h
(l))Ω − (γ ũh(m), ũ

h
(l))Ω = o(1) for h → +0 .

In this way, taking into account formulae (19) and (115), we find out that

(γ ũ0
(m), ũ

0
(l))Ω = δm,l . (117)

Hence, λ0
m is an eigenvalue, and ũ0

(m) is a normalized vector eigenfunction of the limit problem

(12). This implies that p+κp ≥ n+N . Considering consenquently the eigenvalues λp, . . . , λ1,

we conclude that

p ≥ n , κp ≥ N . (118)

In order to establish the inequalities p ≤ n and κp ≤ N we select the factor c• in (111) such

that for µ
(k)
p ̸= µ

(q)
p the number (λp + h3µ

(k)
p )−1 is excluded from the segment

[(λp + h3µ(q)
p )−1 − c•h

3+α• , (λp + h3µ(q)
p )−1 + c•h

3+α• ] . (119)
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Let κ
(q)
p be the multiplicity of the eigenvalue µ

(q)
p of matrix M(p). By Proposition 5.1 and esti-

mate (120) there are, not necessarily distinct, eigenvalues mh
l(q), . . . ,m

h
l(q+κq−1) of the operator

Kh such that

|mh
l(k) − (λp + h3µ(q)

p )−1| ≤ cαpqh
3+α . (120)

In addition, Proposition 5.1 furnishes the normalized columns a(k) = (a
(k)
n• , · · · , a

(k)
n•+N•−1)

⊤,

such that ∥∥∥∥∥U (k)
(p) − ∥U (k)

(p) ;H∥
n•+N•−1∑

i=1

a
(k)
i u

(h)
i ;H

∥∥∥∥∥ ≤ δ

δ•
≤ c

c•
hα−α• , (121)

where uhn•
, · · · , uhn•+N•−1 are normalized in H vector eigenfunctions of the operator Kh corre-

sponding to all eigenvalues from segment (119). By formulae (97), and (12), (14),

|⟨U (k)
(p) , U

(l)
(p)⟩ − λpδk,l| = o(1) for h → +0 .

Furthermore, owing to formula (121), we have

|⟨U (k)
(p) , U

(l)
(p)⟩ − λp(a

(k))⊤a(l)| = o(1) for h → +0 .

Thus, for sufficiently small h the number N• cannot be smaller than κ
(q)
p . Hence, there are

eigenvalues mh
l , · · · ,mh

l+κ
(q)
p −1

which verify inequality (120) with the majorant cα•
pq h

3+α• (since

the exponent α ∈ (0, 1/2) is arbitrary, we can choose α• < α without loosing of the precision

in the final estimate (66)). Selecting all eigenvalues of the matrix M(p), and subsequently

the numbers λp−1, · · · , λ1, it turns out that necesserily the equality in (118) occurs, and also

N• = κ
(q)
p .

The proof of Theorem 3.2 is completed. �

Remark 5.2 Theorem 3.2 provides inequality (121), which allows for derivation of some

asymptotic formulae for vector eigenfunctions uh(p) of the problem (12)h. We emphasise that,

first, the estimates of remainder are not as good as in the case of eigenvalues, and, second,

for multiple eigenvalues of matrix M(p) even the initial approximation for uh(p) is not available.

And this is not a lack of the obtained estimates but just the matter of asymptotic procedures;

we refer the reader to the chapter 7 of book [19] and to papers [11, 29], where is discussed the

notion of individual and collective asymptotics of solutions to spectral problems. We present

one variant of the estimates proved above.

If µ
(q)
p is a simple eigenvalue of the matrix M(p) (for example, λp is a simple eigenvalue of

problem (12)) and b(q) the corresponding normalized eigenvector, then there is an eigenvalue

λh
q in problem (12)) (if λp is simple than p = q), which is simple, and together with the

corresponding vector eigenfunction verifies the estimates

|λh
q − λp − h3µ(q)

p | ≤ cp(α)h
3+α ,

∥uh(p) − (b
(q)
1 u(p) + · · ·+ b(q)

κp
u(p+κp−1));H

1(Ω)∥ ≤ Cp(α)h
α ,
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where α ∈ (0, 1/2) is arbitrary, and the factors cp(α), Cp(α) are independent of parameter

h ∈ (0, hp].
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gestörten gebieten. page 432, 1991. English transl.: Maz’ya V., Nazarov S., Plamenevskij B. Asymptotic theory of
elliptic boundary value problems in singularly perturbed domains. Vol. 1. Basel: Birkhäuser Verlag, 2000. 436 p.
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