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Abstract 
This paper presents effects of shear deformation on flutter instabil-
ity of cantilever beam subject to a concentrated follower force. The 
discrete form of equation of motion is formulated based on the 
Lagrange. In the presented formulation, the beam is modeled using 
Timoshenko beam theory, and constant shear distribution through 
the thickness of the beam is considered. Consistent interpolation 
scheme is adopted to avoid the shear locking for thin beams. Con-
sequently, convergence of the finite element simulation is enhanced. 
The effect of rotary inertial term is considered in the flutter study, 
which has significant influence on the beam behavior as the beam 
thickness increases. The axial degrees of freedom are taken into 
account in energy expressions, to improve the accuracy of the re-
sults. Results presented for different beam geometries. The numeri-
cal results show high efficiency and good convergence characteristic. 
The effect of concentrated mass on the flutter instability of beam is 
considered and results are presented for various locations and val-
ues of concentrated masses. Furthermore, the shear effects are 
highlighted in this study by comparing the results obtained from 
the Euler-Bernoulli with those obtained from the Timoshenko beam 
model. 
 
Keywords 
Follower Force, Flutter Instability, Non-conservative Force, Timo-
shenko Theory, Cantilever Beam, Finite Element Method. 

 
 
Flutter Instability of Timoshenko Cantilever Beam  
Carrying Concentrated Mass on Various Locations 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

1 INTRODUCTION 

Stability of the system under applied non-conservative force has been considered through the work 
of many scientists. A typical problem for this kind is a cantilever beam subjected to a tip concen-
trated follower force, known as Beck's column. The beam considered in this paper is under the ac-
tion of an axial follower force, which its direction remains tangential to the deformed axis of the 
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beam. Forces are conservative if their components are the negative derivatives of a scalar potential 
function, and dependent of spatial coordinate only, such as gravitational force, which is a well-
known sample of conservative forces. In some cases, such as those studied in this paper, some pa-
rameters of force acting on the system are a function of system parameters. In this case, the force is 
dependent on the system parameters and is no longer conservative. The clamped beam under the 
action of tip follower force is known as the mathematical model for special aerospace structures 
(Sugiyama, 1999 and Mallik et al. 2005). In addition, as a suitable model for investigating behaviors 
of pipes conveying fluid has been considered by many researchers. With some modification, this 
model is applicable to the vibration problems of automotive disk and drum-brake systems that in-
volve dry friction (Mottershead et al., 1997 and 1995). For systems consisting of non-conservative 
forces, exact solutions (Beck, 1952 and Bolotin, V. V. 1965) are complicated or do not exist. There-
fore, stability analysis regarding these systems is mostly based on approximate techniques, such as 
finite element method, Galerkin method, etc. Extensive survey of the problem involving non-
conservative forces is presented in Elishakoff (2005) and Langthjem et al. (2000) where the history 
of analysis and controversies about the Beck’s column are presented in a comprehensive manner. 
The dynamic analysis of cantilever beam under follower force and intermediate spring support is 
investigated by Lee (1995) based on the Lagrange approach solved using the assumed modes. In his 
paper, Lee employed the Euler beam theory. The applied mode shapes are the same as vibration 
mode shapes of a cantilever beam, obtained from solution of associated differential equation along 
with boundary conditions (Clough and Penzien, 1975). He also extended the method to the tapered 
cantilever beams on Winkler-type elastic foundation and proposed a method to take in to account 
the effect of viscous damping of foundation on the flutter instability of cantilever beam (Lee, 1996). 
There is a considerable difference between the vibration mode shapes of cantilever beam in flutter 
state and the natural modes of the cantilever beam. Consequently, Lee’s solution shows a substan-
tial error in the vibration analysis of beam under a follower force. The Euler beam theory, which 
assumes zero shear stress through the thickness of the beam, is not applicable for stubby and short 
beams, where transverse shear stress can severely affect the vibration behavior of beam. The Euler 
beam theory underestimates the deflection and overestimates the natural frequencies and buckling 
loads of the thick beams. As a result, in designing thick, beam like structures Timoshenko beam 
theory leads to a more accurate and acceptable results. Dynamic stability of Timoshenko beams are 
studied by Ryu and Sugiyama (1994). They also studied the effect of concentrated tip mass on the 
stability of beams under follower force. Moreover, for investigation of the effects of shear defor-
mation, they introduced a factor that contains parameters such as shear correction factor. The for-
mulations are defined by the out of plane deflection only and axial degrees of freedoms are neglect-
ed. Ignoring these degrees of freedom cause errors in predictions of thick beams behavior and ne-
glects the effect of axial modes. By extending the method, Ryu et al. (1998) studied dynamic stabil-
ity of a vertical cantilever beam under sub-tangential follower force. In their study, the Follower 
force is assumed to be summation of a follower force and a dead load from a rigid body on the end 
of a vertical column. They used finite element method and presented results for different geometries 
and conditions of beam. 

Kim and et al. (2000) investigated the effect of crack on the dynamic stability of a Free-Free 
beam subjected to a follower force.  Wang (2004) studied the effect of the crack intensity and loca-
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tion on the buckling or flutter compressive load of a beam with a single crack. Viola et al. (2007) 
considered the effect of sub- tangential forces on the dynamic stability of a cracked beam. Caddemi 
et al. (2014) investigated the stability of multi-cracked cantilever Euler beam-column subjected to 
conservative or nonconservative axial loads. 

In this paper, the finite element method in context of Timoshenko beam theory is used to pre-
dict dynamic instability behavior of cantilever beam subjected to an end follower force. In current 
studies, non-linear strain terms are used to derive a geometric stiffness matrix, taking in to account 
the axial degrees of freedom effects. The linear interpolation functions are adopted for the axial 
displacements and rotation terms, while the quadratic interpolation functions are employed as trial 
functions for out of plane deflection of the beam. As a result, a consistent interpolation scheme is 
achieved for the transverse shear strains, and the shear locking for thin beams is avoided and con-
vergence of the analysis is enhanced. Details of the present method are described in the following 
sections and the components of finite element procedure are discussed in detail. As stated, Beck’s 
column is considered mostly for analysis of hollow shape structures such as pipes, etc. In the case of 
complicated cross sections, the shear correction factor and other cross sectional parameters are cru-
cial to achieve the accurate analysis. These effects are investigated in the present study. In some of 
the applications, Beck’s column model is applied for analyzing the structures with variable mass 
and changes in location of mass center. For modeling such structures, it is possible to assume a 
concentrated mass on a beam where location and magnitudes of mass changes. The results for flut-
ter instability of beams with concentrated masses are presented and a parameter study on the mass 
value and its location is performed. The results of dynamic analysis are also compared for various 
beam slenderness ratios. 
 
2 THE BEAM CONSTITUTIVE RELATIONS 

The Timoshenko beam theory (TBT) presented in this paper is based on the same assumptions as 
those of the Euler beam theory, except that it no longer assumes that the straight planes normal to 
the neutral axis remain normal after deformation. Instead, it assumes the normal plane rotates with 
respect to normal to the neutral axis before deformation as shown in Figure 1. 
 

(a) 

(b) 

Figure 1: Cross Section of Beam in TBT; (a) before deformation; (b) after deformation (C. M. Wang, et. al, 2000). 
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The displacement fields for the TBT (u; w) in Cartesian coordinates (x; z) where behavior of 
the beam after deformation is defined can be expressed as follows (C. M. Wang, et. al, 2000): 
 

( ) ( ) ( )
( ) ( )

0

0

, , , ,

, , ,  
xu x z t u x t z x t

w x z t w x t

f= +
=

 (1) 

 

where 0u , 0w  and xf  are the unknown functions which define the displacement relations of Timo-

shenko beam. It is possible to convert this equation into the Euler beam theory by a simple substi-
tution. The condition 

,xx wf = -  in equation (1), yields the same displacement field as that of the 

Euler beam theory (EBT). The variational functional of the above displacement field requires the 
satisfaction of C0 continuity of variables. The degree of continuity for parameters must be consid-
ered in choosing interpolation function for each unknown function in finite element formulation. 

Employing the linear strain-displacement relationships of three-dimensional elasticity theory in 
conjunction with equation (1), the five strain components of TBT at a general point can be ex-
pressed in terms of the fundamental neutral axis quantities. Thus, the in-plane direct and shear 
strains of TBT are defined as follows: 
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From the equation (2) where the strains of beam are defined, it can be noticed that normal 
strain of the beam is a linear function of vertical displacement coordinate Z (same as Euler beam, 
theory) and the shear strain is defined as a constant value. The shear strain of the beam from the 
elasticity and equilibrium equation of beam is obtained as a quadratic function of the vertical dis-
placement. To compensate the error caused by assuming the constant variation of shear strain 
through the thickness, shear correction factor is used in this analysis. 

The constitutive equations for the beam, the geometry is shown in Figure 1, can be obtained 
through the use of equation (2), Hook's law and appropriate integration through the thickness of 
the beam. The constitutive equation which defines the relation between the stress and strain of the 
beam in a matrix form is expressed as: 
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Or 
 

eDmF   (4)
 

where Mx, Nx and Qx are the stress resultants of the beam which is defined by integration through 
the thickness of beam in equation (5) and IIi is described in equation (6): 
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Parameters for inertia moments of cross section which appeared in the constitutive equation of 

the beam are defined as below: 
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In the above equation, d is the width of beam which is a specific height and defined as a func-

tion of vertical coordinate (z). 
Shear correction factor, ks, also appeared in the constitutive equation. The calculated shear 

strain through thickness of the beam by using equilibrium stresses, assumes parabolic distribution of 
stress through the thickness. In contrast, the Timoshenko beam theory assumes the constant state 
of shear stress through the beam height. To take into account the difference of energy due to shear, 
which is predicted by either of these theories, the ks shear correction factor is introduced (C. M. 
Wang, et. al, 2000). This factor is defined using to material and geometry of the beam. For beams 
with rectangular and circular cross sections and isotropic material, it is assumed 5/6 and 9/10, re-
spectively. Detailed formulation for shear correction factor of shallow circular beams will be de-
scribed later in this paper. In constitutive equation of beam, E is the Young module of elasticity 
and G is termed as shear module. Visual descriptions of parameters defining the geometry of the 
beam are given in Figure 2. For small deformations of beam, the angle between the deformed and 
un-deformed neutral axis of the beam configuration at the end is assumed to be identical to the 
rotation φx. 
 
 

 

Figure 2: Geometry of cantilever beam under follower force 
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3 ENERGY EXPRESSION OF A BEAM ELEMENT 

The extended Hamilton’s principle for small motions of the beam under tip follower force is ex-
pressed as follows: 
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In the above equation, U is the strain energy of the beam element, T is the kinetic energy for 
vibration motion of the beam, Vis the loss in potential energy or the potential energy due to con-
servative component of follower force, andWnc is the virtual work, which resulted from the non-
conservative component of tip follower force. The strain energy of a beam element is defined with 
respect to the material properties of the beam and the strain vectors as follows: 
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e and Dm are the strain vector and material matrix of the element respectively. On substituting 
Equations (2) to (3) and then into Eq.(8), it is possible to obtain the strain energy of an element as 
a function of unknown displacement functions: 
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The kinetic energy of beam in this study is defined as a summation of the kinetic energy due to 
vibration of the whole beam and the movements of concentrated mass, CM, which is placed in a 
different arbitrary location of beam as shown in Figure 2. The kinetic energy of a vibrating beam is 
defined as: 
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In the above equation, ρ, is the material density of a beam which is assumed to be constant in 
the beam’s length. Using equation (1) and integrating through the thickness of the beam, the kinet-
ic energy of beam element is defined as: 
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In equation above TCM is dealing with kinetic energy due to the concentrated mass, which can 
be a mathematical model for heavy machinery or any abrupt change in the density of beam. This 
energy is neglected in all elements except one, which contains the concentrated mass. For this ele-
ment, the expression below is added to the kinetic energy of the beam element: 
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In the present formulation and in order to obtain the characteristic matrices, follower force on 
the beam is divided into two separate components; one with constant magnitude whose direction 
always remains parallel to the neutral axis of the un-deformed beam. This component is conserva-
tive and the potential energy due to this conservative force is defined as:  
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By importing the displacement functions of TBT from equation (1) into the equation above the 
potential energy VC is expressed as: 
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It is clear that in this formulation the non-destabilizing effect corresponding to rotational de-
grees of freedom is considered in the loss potential energy for the beam. The direction of the second 
component is normal to the neutral axis of an un-deformed beam and its magnitude changes corre-
sponding to rotation of the normal line. This component of force is a function of the degrees of free-
dom of the beam. Thus, it is non-conservative and no potential energy is defined for it. Indeed, the 
virtual work done by this transverse component can be attained. For small deflections of beam, the 
vertical component of follower force is defined as a product of its magnitude and the rotation of 
beam at the end. Finally, the virtual force is defined by equation below, which is function of degrees 
of freedom at the point on which the load is imposed. 
 

   tLwtLPW xnC
,, 

2
1

  (15)

 
4 THE FINITE ELEMENT FORMULATION OF THE PROBLEM 

The unknown parameters in equation (1) are defined as a time dependent function. It is assumed 
that the unknown degrees of freedoms are combined from the time dependent function and dis-
placement degrees of freedom as the following equation: 
 

tedd   (16)
 

Considering the above equation, variation of each of the displacement functions is represented 
spatially as a product of Lagrangian polynomial and degrees of freedom vector. 
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where: 
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M and N are linear and quadratic Lagrange polynomials, respectively. Visual description of these 
functions is shown in Figure 3. Consequently, for the purpose of interpolation, two nodes are needed 
for linear shape function and three nodes for quadratic function. As a result, the beam elements will 
have three node and seven degrees of freedom each.  
 

 
 

Figure 3: Linear and quadratic Lagrangian polynomials. 

 
The description of current beam element and the system of degrees of freedom is shown in Fig-

ure 4. There are two nodes and four degrees of freedom forφxandu0but,w0is interpolated using three 
nodes and 3 degrees of freedom in the element.  
 

 

Figure 4: Element description. 

 
In Figure 4, b corresponds to the length of an element and described as: 
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where, ne is the number of elements for the beam analysis. Approximation for unknown functions in 
equation (18) causes φx and w,x to be the polynomials from the same degree. Consequently, the con-
sistent interpolation (N. Reddy, 2006) is applied in the present study. As a result, shear locking is 
avoided and convergence of method is enhanced, especially for the analysis of thin beams. 

By substituting the element displacement fields given in equation (17) into equations (8)-(15), 
expressions can be derived for the strain energy, kinetic energy, potential energy of the applied load, 
and also virtual work of the non-conservative component of follower force. These expressions are 
quadratic functions of the complete set of displacement degrees of freedom of each element. For 
each element, the column matrix of {d} for total degrees of freedom of beam element is defined as 
below: 
 

   Td
32x2211x1

w,,u,w,w,,u  (20)
 

Finally, the expressions for energy and work will be written as the familiar forms of: 
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In the present study, these expressions are obtained using differentiation with respect to each 

degree of freedom. The matrices are containing polynomials as their elements. Thus, it is possible to 
carry out integrations involved in evaluating the matrices exactly over the length of the element, 
which makes the solution of the problem faster. In addition, it is possible to use methods such as 
gauss integration in finite element formulation. 

Obtaining natural frequencies of structures generally with respect to imposed end force requires 
one to solve an eigenvalue problem as follows: 
 

   02   ˆaMKPeK
G

 (22)

 

where ̂  is the corresponding eigenvector and eK , 
G
K  and aM  are the elastic stiffness matrix, geo-

metric stiffness matrix and mass consistent matrix of the whole beam structure respectively.  
In the present study, 

G
K  is a nonsymmetrical matrix due to non-conservative force and is de-

fined as a combination of a symmetric geometric matrix (due to conservative component of follower 
force) and the non-symmetric matrix according to its non-conservative component as below: 
 

fKgKK
G

 (23)
 

These stiffness matrices can be assembled in the standard fashion by defining a simple connec-
tivity matrix (N. Reddy, 2006). Equation (23) is solved using an appropriate eigenvalue solution 
procedure that will give the beam’s natural vibration mode shapes and frequencies at the applied 
follower force (Bathe, K. J. 1982). 
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5 NUMERICAL STUDY 

Ryu et al. (1994) investigated the effect of shear deformation on flutter stability of the beam 
through introducing the shear deformation parameters which are defined as a function of beam ge-
ometry as below: 
 

2

2

IIE

AGLks
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To validate the obtained result from the current method they are compared with those of Ryu 
et al. (1994), for different values of shear deformation parameters and the results are shown in Ta-
ble 1. The results are obtained for rectangular cross section with ks=5/6 for different shear defor-
mation factors and corresponding slenderness ratios. 
 

Shear Parameter Corresponding L/h 
Pn 

Ryuet al. (1994), Present Method 

102 5.1640 15.30 14.5187 

103 16.3299 19.45 19.2830 

104 51.6398 20.00 19.9755 

105 163.2993 20.05 20.0480 

106 516.3978 20.05 20.0553 

Table 1: Effect of shear deformation parameters on critical follower force Pn = Pcr E II2/L2 
 

It should be noted that in a comparison between results there exists a small difference in the re-
sults from the present method and those reported in Ryuet al. (1994). Destabilizing effect of shear 
degrees of freedom (equations (13)-(14)) was not considered in Ryuet al. (1994),and analysis was 
based only upon the lateral deflections. It is clear that neglecting these degrees of freedoms in geo-
metric matrix of a beam results in a slight error of the analysis, especially for stubby beams. 
The values of critical flutter load for different slenderness ratios are presented in Table 2. 
 

L/h 
Present Method  

Timoshenko 
Present Method  

Euler 
(Lee, 1996) 

Analytical Solution  
(Bolotin, 1965)  

1000 20.0559 20.0509 17.6(13.93%) 20.51(2.24%) 

100 20.0345 20.0458 - - 

50 19.9701 20.0304 - - 

20 19.5328 19.9233 - - 

10 18.1386 19.5502 - - 

5 14.2682 18.19258 - - 

Table 2: Effect of slenderness ratio on critical follower force. 
 

Analysis is based upon both the Euler-Bernoulli and the Timoshenko beam theories. Results are 
compared with those reported by Lee (Lee, 1996) obtained using assumed modes method and the 
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exact solution of differential equation of Euler-Bernoulli beam under follower force, by applying 
dynamic instability criteria (Beck et. al 1952, Bolotin, V. V., 1965). It is worth to note that differ-
ence percentage of these result are presented in bracket in Table 2. As expected from these analysis, 
by increasing the beam thickness, the effect of shear deformation increases and there is more differ-
ence between the results from the Euler formulation and the present formulation, which accounts 
for shear deformations. As one may notice for beams with higher slenderness, the results are identi-
cal to those of Euler beam theory, as expected. 

The effect of slenderness ratio on variation of natural frequencies due to follower force is shown 
in Figure 5 where the changes in first and second natural frequencies of cantilever beam are shown 
for thin and thick beams. The non dimensional parameters are defined as Pb = (PEII2)/L2 and 
Wb=ω(ρAL4/EII2)1/2. By increasing the follower force to the specific value, the paths for frequency 
alteration due to the follower force coalesce and the beam flutter occurs.  
 

 

Figure 5: Variation of first and second natural frequency with respect  

to applied follower force for different slenderness ratios. 

 
Effect of follower force on first and second mode shapes of a cantilever beam is shown in Figure 

6. It is clear that by increasing the magnitude of follower force, mode shapes are merging to each 
other and reach or coalesce into one mode shape after critical follower force.  

As seen from equation (11), (kinetic energy of beam element), the presence of rotary inertia ef-
fect cause to increase the kinetic energy of system, as expected. It is clear that the natural frequen-
cies of beam decreases with increasing of kinetic energy. Consequently, reducing natural frequencies 
of system causes flutter boundary is moved left, i.e., the beam flutter occurs quickly. Figure 5 and 
results of reference (Park, 1987) show the correctness of the above content. 

Beams with circular cross sections or pipe shape structures are more popular in various indus-
tries. As a result studying of these types of cross sections is of paramount importance in predicting 
behavior of pipes and aerospace structures (Curtis Petrus, 2006). 
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(a) (b) 

 

(c) (d) 

Figure 6: Mode shapes of a cantilever beam under follower force for different values of follower force. 

 
The effect of a cross section on flutter stability is considered in Table 3, where values of a criti-

cal flutter load are presented with respect to the changes in the cross section type. Shear correction 
factor in circular cross section is a function of inner and outer radius of hollow beam (Cowper, 
1966): 
 

222

22

)S12(20)S)(16(7

)S)(16(1
ks







  (25)
 

where S is the radius ratio and defined as ratio of inner Ri radius to outer radius Ro of hollow beam: 
 

Ro

Ri
S  (26)
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S 
 

L/Ro 
0 3/4 7/8 9/10 

1000 20.0555 20.0548 20.0546 20.0545 

100 19.9946 19.9252 19.9011 19.8958 

50 19.8128 19.5443 19.4521 19.4320 

20 18.6419 17.2816 16.8554 16.7647 

10 15.5058 12.4391 11.6502 11.4909 

5 9.6109 6.2044 5.5450 5.4198 

Table 3: Effect of radius ratio on critical follower force of stubby and slender beams. 
 

The change in the cross section leads to the variation of shear correction factor, which is defined 
as a function of radius and Poisson ratio in equation (25). As noted before, the effect of shear de-
formation effect is not negligible in analysis of thick beams. As a result, the changes in the values of 
critical follower force due to change in cross section (in Table 3) is more apparent for thick beams.  

Effect of tip mass on flutter stability is presented in Table 4. The effect of tip force on flutter 
stability in the present method is compared with Ryu et al. (1994) and a good agreement between 
the results is achieved. The results are presented for different values of mass ratio M*which is de-
fined as ratio of tip mass to the mass of beam. This study is for analyzing a beam response with 

concentrated mass (CM), in which xCM is equal to the length of the beam. 
 

Shear Deformation Parameters=106 

M* 0 0.1 0.3 0.5 1 2 5 100 

(Ryuet al., 1994)0 20.05 17.57 16.28 15.99 16.19 16.68 17.47 19.44 

Present Method 20.0553 17.5986 16.2917 16.0642 16.2146 16.7193 17.5652 19.4574 

Shear Deformation Parameters=105 

(Ryuet al., 1994) 20.05 17.57 16.28 15.99 16.19 16.68 17.47 19.44 

Present Method 20.0480 17.5931 16.2873 16.0600 16.2106 16.7152 17.5609 19.4525 

Shear Deformation Parameters=104 

(Ryuet al., 1994) 20 17.47 16.19 15.99 16.09 16.68 17.47 19.34 

Present Method 19.9755 17.5387 16.2429 16.0183 16.1703 16.6744 17.5181 19.4036 

Shear Deformation Parameters=103 

(Ryuet al., 1994) 19.45 17.07 15.89 15.69 15.79 16.28 17.17 18.95 

Present Method 19.2830 17.0159 15.8141 15.6149 15.7797 16.2789 17.1031 18.9300 

Shear Deformation Parameters=102 

(Ryuet al., 1994) 15.3 13.92 13.13 13.03 13.32 13.72 14.41 15.99 

Present Method 14.5187 13.2530 12.6250 12.5787 12.8096 13.2569 13.9294 14.8044 

Table 4: Effect of tip mass and shear deformation factor on flutter instability (M*=CM/(ρLA)). 
 

The effect of position of concentrated mass on natural frequencies of cantilever beam is depicted 
in Figure 7 where results from the present method are compared with the results from Dunkerley’s 
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approximation technique (Tse et al., 1978) and good agreement can be observed. It is clear from the 
results that the natural frequency of a cantilever beam decreases with increase of μ.  
 

 

CM=0.1 CM=0.3 

 

CM=0.5 CM=1 

 

CM=2 CM=5 

Figure 7: Effect of μ on first natural frequency of cantilever beam with concentrated mass (μ=xCM/L). 

 
Figure 8 shows the critical follower force of a cantilever beam (Flutter point) with concentrated 

mass for different values and location of mass. It is clear from the results that the concentrated 
mass on the middle of cantilever beam increases the flutter force of a beam for all shear deformation 
parameters. Moreover, concentrated mass on the first or last quarter of a beam has a destabilizing 
effect on the beam in case of flutter. 
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S=103 

 

S=102 

 

Figure 8: Critical follower force of cantilever beam for different values and locations of concentrated mass. 

 
6 CONCLUSIONS 

In this paper, the finite element method is applied to flutter analysis of a cantilever Timoshenko 
beam under non-conservative follower force. The effect of shear deformation and rotational kinetic 
energy are taken into account. Results are compared with those reported elsewhere, and comparison 
among the results is presented. The effect of concentrated mass on flutter instability of cantilever 
mass is inspected and has been shown that the concentrated mass increases or decreases the critical 
flutter force of beam depending to its location on the beam. The effect of axial and rotational de-
grees of freedom inertias in Timoshenko beam is considered in the present study. It is concluded 
from the results that including the inertia of these degrees of freedom causes a changes in the result 
for critical follower force. In addition, it can be concluded from the obtained results that the effect 
of shear deformation in the critical follower force cannot be disregarded specially in the case of 
stubby beam cases.  
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