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Abstract

A coupled continuum/discrete crack model for strain softening materials is implemented
in a meshfree particle code. A coupled damage plasticity constitutive law is applied until a
certain strain based threshold value - this is at the maximum tensile stress of the equivalent
uniaxial stress strain curve - is reached. At this point a discrete crack is introduced and
described as an internal boundary with a traction crack opening relation. Within the frame-
work of meshfree particle methods it is possible to model the transition from the continuum
to the discrete crack since boundaries and particles can easily be added and removed. The
EFG method and an explicit time integration scheme is used. The integrals are evaluated
by nodal integration, an integration with stress points and also a full Gauss quadrature.
Some results are compared to experimental data and show good agreement. Additional
comparisons are made to a pure continuum constitutive law.
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1 Introduction

When modelling materials with strain softening, pure continuum based constitutive laws have
difficulties because the loss of hyperbolicity of the PDE results in localization to a set of measure
zero in rate independent materials, see Bazant and Belytschko [4]. The resulting spurious mesh
dependency requires regularization techniques. Within the framework of meshfree methods, it
is easily possible to treat discrete discontinuities, so that it is not necessary to describe the
softening regime within the constitutive model. Hence, the difficulty mentioned above can be
avoided.

A softening regime is observed in the macroscopic stress strain curve, i.e. the stresses decrease
with increasing strain, when a material undergoes sufficient damage. Detailed studies (see
e.g. [18, 21]) in brittle materials such as concrete and ceramics have shown that microcracks
are initiated and later form macrocracks. The formation of a visible macrocrack is generally
assumed to occur when the stress strain curve reaches its maximum tensile stress. Because of
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the roughness of the crack edges, traction forces still can be transmitted along the crack close
to the crack tip until the material separates completely.

In continuum based material models, plasticity and/or damage models are applied to repro-
duce this constitutive behavior. However, difficulties occur with the onset of softening since the
PDE changes its type. In static problems this leads to the loss of elipticty, in dynamic problems
to the loss of hyperbolicity. Several regularization techniques have been developed to avoid this
shortcoming. In the case of damage models, a viscous damage can be added, so that the hy-
perbolicity is retained as shown in [27]. Viscoplastic models also avoid the loss of hyperbolicity
and mesh dependency, see e.g. Belytschko et al. [11], Needleman [22], Loret et al. [3]. A more
natural way is to treat the macrocrack as a discontinuity. Meshfree particle methods are well
suited for such approaches since boundaries and particles can be added adaptively quite easily.
In this paper we will propose a continuum/discrete crack approach within the framework of
meshfree particle methods based on an adaptive refinement scheme.

The article is arranged as follows. First, the EFG method is briefly reviewed. Then the
weak form of the linear momentum equation will be derived for treating the discontinuity, i.e.
the crack, as an internal boundary. The discrete crack is modelled via the visibility criterion.
Its mechanics is described by a traction crack opening model for concrete materials. In section
3 the combined continuum/discrete crack approaches will be proposed. Implementation details
are discussed. Finally, the approaches are tested and applied to notched concrete beams under
quasistatic and dynamic loading. The beams fail because of a mixed mode (mode I-II) fracture.
Crack patterns and load displacement curves for several beams with different locations of the
notch are compared to experimental data and show good agreement.

2 A discrete crack approach in the element free Galerkin method

2.1 Meshfree approximation

The meshfree MLS-approximation in a Lagrangian description can be written as

u(X, t) = pT (X) a(X, t) (1)

where X are the material coordinates, t is the time and a p are linear basis functions p(X) =
(1 X Y ) ∀X ∈ <2. Minimizing

J =
∑

I∈S

(
pT

I (X) a(X, t)− uI(t)
)2

W (X−XI , h) (2)

with respect to a leads to the approximation

u(X, t) =
∑

I∈S

ΦI(X) uI(t) (3)
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where ΦI(X) is the shape function of particle I, S is the set of neighbor particles for X, uI is
the value at the particle at the position XI , W (X −XJ , h) is a window function and h is the
interpolation radius of the window function. In the EFG-method (see Belytschko et al. [9, 10])
the shape functions are:

ΦJ = pT (X) · A(X)−1 ·B(X) (4)

A(X) =
∑

J∈S

pJ(X) pT
J (X) W (X−XJ , h) (5)

B(X) =
∑

J∈S

pJ(X) W (X−XJ , h) (6)

Lagrangian kernels, i.e. kernels that are functions of material coordinates, are used in the above
because of their improved stability properties, see Belytschko et al. [7, 25].

2.2 The discrete linear momentum equation

Consider a body Ω whose undeformed image is Ω0 with boundary Γ0. The strong form of the
linear momentum equation is:

∇ · P + %0 b = %0 ü in Ω0 (7)

and the boundary conditions are

n0 ·P = t̄0 in Γt
0 (8)

u = ū in Γu
0 (9)

where P is the nominal stress, %0 is the initial density, b are the body forces, u and ü are
the displacements and accelerations, respectively, n0 is the normal to the boundary in the
initial configuration and ū and t̄ denote the applied displacements and tractions, respectively;
Γu

0

⋃
Γt

0 = Γ0; Γu
0

⋂
Γt

0 = 0. The weak form of the linear momentum equation is obtained by
multiplying the momentum equation with the test functions δu and integrating over the domain:

∫

Ω0

∇ ·P · δu dΩ0 +
∫

Ω0

%0 (b− ü) · δu dΩ0 = 0 (10)

The first term on the RHS of the momentum equation can be transformed by integration by
parts ∫

Ω0

∇ ·P · δu dΩ0 =
∫

Ω0

∇ · (P · δu) dΩ0 −
∫

Ω0

(∇⊗ δu)T : P dΩ0 (11)

Using the Gauss theorem, the first term on the RHS of equation (11) can be written as
∫

Ω0

∇· (P · δu) dΩ0 =
∫

Γt
0

n0 ·P · δu dΓ0 +
∫

ΓcA
0

nA
0 ·PA · δuA dΓ0 +

∫

ΓcB
0

nB
0 ·PB · δuB dΓ0 (12)
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where the second and third term on the right hand side represent the traction at the crack
boundary as illustrated in figure 1. The crack can be considered as an internal boundary with
two crack edges as shown in figure 1 with Γc

0 = ΓcA
0

⋃
ΓcB

0 .
With the relation tA

0 = nA
0 ·PA, tB

0 = nB
0 ·PB and under the assumption that nA

0 = −nB
0 ,

the weak Galerkin form of the linear momentum equation including a discontinuity is then:

∫

Ω0

%0 δu · ü dΩ0 +
∫

Ω0

(∇⊗ δu)T : P dΩ0 −
∫

Ω0

%0 δu · b dΩ0

−
∫

Γt
0

δu · t̄0 dΓ−
∫

ΓcA
0

tA
0 · δuA dΓ0 −

∫

ΓcB
0

tB
0 · δuB dΓ0 = 0 (13)

Assuming that the traction tA
0 = −tB

0 , the weak form of the linear momentum equation can be
written as ∫

Ω0

%0 δu · ü dΩ0 +
∫

Ω0

(∇⊗ δu)T : P dΩ0 −
∫

Ω0

%0 δu · b dΩ0

−
∫

Γt
0

δu · t̄0 dΓ−
∫

Γc
0

t0 · [[δu]] dΓ0 = 0 (14)

where δu ∈ V0 are the test functions and u ∈ V1 are the trial functions. The same test and trial
functions are used for δu and u. The spaces V0 and V1 are as follows:

V1 =
(
u|u ∈ H1(Ω), u discontinuous on Γc

0 u = ū on Γu

)
(15)

V0 = V1

⋂
(δu|δu = 0 on Γu) (16)

The test and the trial functions are approximated via the following equations:

δuh(X) =
∑

J

ΦJ(X) δuJ (17)

uh(X, t) =
∑

J

ΨJ(X) uJ(t) (18)

Substituting (17) and (18) into (14) gives
∑

I

∫

Ω0

%0 ΦJ(X) ΦI(X) dΩ0 üI =
∫

Ω0

%0 ΦI b dΩ0 +

∫

Γt
0

ΦI t̄0 dΓ0 +
∫

Γc
0

[[ΦI ]] t̄0 dΓ0 −
∫

Ω0

∇ΦI ·P dΩ0 (19)

The integrals are evaluated numerically by nodal integration, a combination of nodal inte-
gration with stress points or a full Gauss quadrature based on a background mesh, see Rabczuk
et al. [25]. A detailed description how to integrate over the crack domain is given in the following
sections.
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PSfrag replaements tAt tAn
tBt tBn 
0�0 �0

�A0 �B0
Figure 1: Domain with rak boundarySubstituting (17) and (18) into (14) givesXI Z
0 %0 �J(X) �I(X) d
0 �uI = Z
0 %0 �I b d
0 +Z�t0 �I �t0 d�0 + Z�0 [[�I ℄℄ �t0 d�0 � Z
0 r�I �P d
0 (19)The integrals are evaluated numerially by nodal integration, a ombinationof nodal integration with stress points or a full Gauss quadrature based ona bakground mesh, see Rabzuk et al. [23℄. A detailed desription how tointegrate over the rak domain is given in the following setions.2.3 The disrete rak modelAording to �gure 1 the rak surfae integral is:Z�0 t0 � [[Æu℄℄ d�0 = Z�0 �tA0 � ÆuA + tB0 � ÆuB� d�0 (20)The tration t0 along the boundary �0 depends on the jump in the displaement[[u℄℄. Let tA0 be the tration on �A0 and tB0 the tration on boundary �B0 asshown in �gure 1; note that tA0 = �tB0 . The trations tA0 and tB0 an beexpressed as a funtion of the jump in the displaement:tA0 = �A0 ([[u℄℄) = �A0 (uA � uB) = �tB0 (21)where [[u℄℄ represents the relative displaements between the rak surfaes �A0and �B0 , i.e. the rak opening and is given by[[u℄℄ = u(XA)� u(XB) =XI �I(XA) uI �XI �I (XB) uI (22)5

Figure 1: Domain with crack boundary

2.3 The discrete crack model

According to figure 1 the crack surface integral is:
∫

Γc
0

t0 · [[δu]] dΓ0 =
∫

Γc
0

(
tA
0 · δuA + tB

0 · δuB
)

dΓ0 (20)

The traction t0 along the boundary Γc
0 depends on the jump in the displacement [[u]]. Let

tA
0 be the traction on ΓcA

0 and tB
0 the traction on boundary ΓcB

0 as shown in figure 1; note
that tA

0 = −tB
0 . The tractions tA

0 and tB
0 can be expressed as a function of the jump in the

displacement:
tA
0 = τA

0 ([[u]]) = τA
0 (uA − uB) = −tB

0 (21)

where [[u]] represents the relative displacements between the crack surfaces ΓcA
0 and ΓcB

0 , i.e. the
crack opening and is given by

[[u]] = u(XA)− u(XB) =
∑

I

ΦI(XA) uI −
∑

I

ΦI(XB) uI (22)

2.3.1 Treatment of the discontinuity via the visibility criterion

The discontinuity, i.e. the jump in the displacement, is modelled via the visibility criterion.
Therefore, any node J is excluded from SXI

if the line ¯XIXJ intersects the discontinuity (see
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A

discontinuity

Figure 2: The visibility criterion; shaded area shows the nodes that have no influence on the
approximation at point A

Figure 3: The one dimensional cubic spline and its derivative, left: without discontinuity, right:
with discontinuity at x=1.2
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figure 3 and 2). The LHS of figure 3 shows the continuous one dimensional cubic spline. On the
RHS we assume a discontinuity at x = 1.2, where the cubic spline is cut.

We will briefly describe how to implement the visibility criterion in 2D. Consider the vectors
g from b to e, ḡ from x to b and ĝ from x to x̂ as illustrated in figure 4. For the vectors λ̃g, ḡ
and λ̂ĝ, we can write (23):

ḡ + λ̃ g = λ̂ ĝ (23)

which can also be written as
G λ = ḡ (24)

with

G =
[ −gx ĝx

−gy ĝy

]
λ =

[
λ̃

λ̂

]
ḡ =

[
ḡx

ḡy

]

The straight lines g and ĝ have a common intersection s, if 0 < λ̃ < 1 and 0 < λ̂ < 1. If
det G = 0, the vectors g and ĝ are parallel. For convex discontinuities, the visibility criterion
seems to be suitable. For non convex discontinuities such as kinks and crack edges (end-points
in 2D), Belytschko et al. [6] and Organ et al. [23] proposed other methods such as the diffraction
or transparency method. Since we don’t expect nonconvex discontinuities in our applications,
only the visibility criterion is applied, but the approach can easily be extended to the other two
ones as described in [6] and [23].

discontinuity

PSfrag replaements b
s�g gx e

x̂~� g ĝ�̂ ĝ
Figure 4: A rak modelled with the visibility riterionwith G = � �gx ĝx�gy ĝy � � = � ~�̂� � �g = � �gx�gy �The straight lines g and ĝ have a ommon intersetion s, if 0 < ~� < 1 and0 < �̂ < 1. If det G = 0, the vetors g and ĝ are parallel. For onvexdisontinuities, the visibility riterion seems to be suitable. For non onvexdisontinuities suh as kinks and rak edges (end-points in 2D), Belytshko etal. [4℄ and Organ et al. [22℄ proposed other methods suh as the di�ration ortranspareny method. Sine we don't expet nononvex disontinuities in ourappliations, only the visibility riterion is applied, but the approah an easilybe extended to the other two ones as desribed in [4℄ and [22℄.2.3.2 The tration rak opening modelA tration rak opening model aording to the EC2-model [15℄ is hosen. Thetration depends on the rak opening w normal to the rak and the relativedisplaement u tangential to the rak, see �gure 1. The normal tration isgiven by: tn = 8<: ftm(1� 0:85w=w1) 0 � w < w10:15 ftm w�ww�w1 w1 � w � w0 w > w (25)with w1 = 2Gf=ftm� 0:15w and w = �f Gf=ftm, where �f depends on thetype of onrete and an be found in the EC2 [15℄ and ftm is the average ofthe uniaxial tensile strength of onrete aording to the EC2 [15℄. The fratureenergy Gf is de�ned as Gf = Z w0 tn(w) dw (26)

7

Figure 4: A crack modelled with the visibility criterion

2.3.2 The traction crack opening model

A traction crack opening model according to the EC2-model [1] is chosen. The traction depends
on the crack opening w normal to the crack and the relative displacement u tangential to the
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crack, see figure 1. The normal traction is given by:

tn =





fctm(1− 0.85w/w1) 0 ≤ w < w1

0.15 fctm
wc−w
wc−w1

w1 ≤ w ≤ wc

0 w > wc

(25)

with w1 = 2Gf/fctm − 0.15wc and wc = αf Gf/fctm, where αf depends on the type of concrete
and can be found in the EC2 [1] and fctm is the average of the uniaxial tensile strength of
concrete according to the EC2 [1]. The fracture energy Gf is defined as

Gf =
∫ wc

0
tn(w) dw (26)

and is a material parameter corresponding to the type of concrete, see [1]. For the tangential
displacement a simple Coulomb friction model is used:

tτ =
{

βfnu/ua u ≤ ua

βfn u > ua
(27)

where we have chosen ua = 2/3 wc and β = 0.5 since good agreement with some experimental
data was obtained. In the next section the coupled continuum discrete crack model will be
described in detail. A coupled damage plasticity constitutive law as described in Rabczuk and
Eibl [26] is used for the concrete before the transition to the discrete crack model.

3 Continuum/discrete crack model

The continuum discrete crack model is applied to concrete and is implemented in a meshfree
particle code. The integrals can be evaluated by different techniques (nodal integration, inte-
gration with stress points and Gauss quadrature based on a background mesh, see Rabczuk et
al. [25]). Although the general procedure is independent of the integration technique, full Gauss
quadrature creates some difficulties, e.g. the stable time step is reduced if the crack divides
the integration cell into very small subcells (see figure 9). Moreover, full Gauss quadrature is
more expensive and in this particular problem more difficult to implement. In our study we
consider only the propagation of cracks from a given crack, but we will also present an approach
to initiate a crack.

3.1 Criteria for crack propagation and initiation

As mentioned earlier, the main idea of this method is to switch from a continuum based con-
stitutive law (stress strain law) to a discrete crack model (traction crack opening model) when
required by the constitutive law, see figure 6. For the continuum model, a constitutive model
described in [26] is adopted. A crack is initiated or propagated at particles where the PDE

Latin American Journal of Solids and Structures 1 (2003)



Crack approach for meshfree particle methods 149

loses hyperbolicity. Especially in two or three dimensions, the transition point cannot easily be
determined.

Several approaches such as the hoop stress criterion or the loss of hyperbolicity criterion
were developed, see Belytschko et al. [5]. A sufficient condition of a hyperbolic PDE is a positive
definite tangent modulus of the stress-strain relation. If the acoustic tensor Q = n0 ·C · n0 is
positive definite, hyperbolicity of the PDE is guaranteed. Belytschko et al. [5] obtained from
the loss of hyperbolicity criterion also the direction and the length of the crack, i.e. crack speed.
The hyperbolicity criterion requires that

e = minn0 h0 (n0 ⊗ h0 : C : n0 ⊗ h0) ≥ 0 (28)

where C is the tangent modulus of the stress-strain curve and n0 and h0 are two arbitrary unit
vectors. The unit vector n0 and h0 are determined by a minimization procedure. The crack is
propagated perpendicular to the unit vectors n0. Sometimes problems may occur, e.g. when
the crack branches, since there may exist more than one solution in the minimization procedure.
Other criteria can be used, e.g. e = σ̄ − ft where σ̄ is the equivalent stress of the stress tensor
and ft is the tensile stress.

We have chosen a simpler approach for crack initiation and propagation as well as the
direction and length of the crack. There is a major difference between the approach here and
the approach in [13]. While in [13], the crack is propagated arbitrary through an element, hence
no remeshing is necessary, we have to refine around the crack.

The transition from the continuum model to the discrete crack model takes place after
exceeding a given strain value of the equivalent uniaxial stress strain curve as shown in figure 6.
According to experimental data, this is the case when the equivalent uniaxial stress strain curve
reaches its maximum tensile stress. At the beginning of the traction crack opening relation,
the relative displacements between the crack edges are zero. At this time, the traction has a
maximum tmax

0 = n · Pmax and is decreasing to zero during the course of the load history.
Actually, this is not remarkable, but it is mentioned because it is a major difference to other
models (see e.g. Haeusler [16]), which don’t treat the crack as an internal boundary and where
tmax
0 6= n0 · Pmax since the relative displacements are nonzero at the beginning of the discrete

crack approach.
As just mentioned, a crack is initiated or propagated if a strain threshold is exceeded. First,

imagine a given crack as shown in figure 5. Suppose the strain threshold is exceeded for particle
B close to the crack tip. The crack will propagate in the direction of this particle. We treat the
crack by two adjacent surfaces as illustrated in figure 6. Hence, particle B is split into two new
particles. The particle split requires the recomputation of the new particle masses. They might
be computed according to a Voronoi diagram where the new crack boundary has to be taken
into account, see figure (7). More simply, the masses can be halved when a particle is split.
Since an adaptive refinement is used to obtain good resolution near the crack, the masses of all
affected particles have to be recomputed. Therefore, we compute the consistent mass matrix

Latin American Journal of Solids and Structures 1 (2003)
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crack propagation

given crack

particle split
B

Figure 5: Scheme of crack propagation and particle split

εswitch
ε

σ
t

w

A

Figure 6: Switch from the continuum model to discrete crack model
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crack

Figure 7: Voronoi cells for a particle arrangement with a crack

after every adaptation step. The diagonal mass matrix is obtained by a row sum technique as
described in Belytschko et al. [8]. All other data are kept from the original particle.

The strain based criteria can also be used for crack initiation. For a mode I crack, the crack
is initiated perpendicular to the direction of the principal tensile stress for the corresponding
particle. Besides of the direction, a crack length has to be chosen. For simplicity, we have kept
the crack length constant for a given time step but other approaches are possible, too. A crack
length of α δx, where δx =

√
dx2 + dy2 and 0 < α < 1, seems to be reasonable. The distance

between two adjacent particles in the x-direction and y-direction is hereby denoted as dx and
dy, respectively.

It has to be mentioned, that several problems occur if the integrals are evaluated by Gauss
quadrature. One disadvantage is that the stable time step is significantly reduced if the crack
divides a background cell into a very small cell as shown in figure 9. Implicit-explicit time
integration has to be used, see Belytschko et al. [12] or Hughes et al. [19]. The second point is
the high computational cost of full quadrature. Hence, we have chosen stress point integration
so that we benefit from the truly meshfree character. An approach for a crack propagation using
Gauss quadrature is proposed by Haeusler et al. [16] and will be used for comparison.

3.2 Determination of the crack direction and length

To obtain good resolution near the crack and to insure that the crack is propagated in the
correct direction, high particle resolution near the crack, particularly the crack tip, is necessary.
Therefore, an adaptive refinement is used at locations with high strain gradients, that is along
the crack. The adaptive approach is explained in detail in Rabczuk et al. [24] and the description
will be omitted here. The particles are added in a rectangular pattern. However, adaptation
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particle
Gauss point

crack
crack

particle
Gauss point

Figure 8: Crack propagation scheme and triangulation using an integration scheme based on a
background mesh

triangular background cell

crack

Figure 9: Stable time step for an element cut by a crack
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x x
x

crack

x

x x

x

x

x

x

x x

x

x

x
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dx

Figure 10: Scheme for the circular refinement

in only a rectangular pattern entails some drawbacks since the crack is then constrained by the
rectangular pattern and a zigzag pattern in the path of the crack can sometimes be observed, see
figure 17. If only straight cracks are considered, adequate results can be obtained when using a
high particle resolution around the crack.

To obtain better crack paths, an additional technique similar to the one of Hao et al. [17] is
applied. In addition to the ’usual’ adaptive refinement, particles are added adaptively in a half
circle around the crack tip as illustrated in figure 10. They are distinguished from the other
particles by a superimposed x. All data is interpolated from the neighbor particles which are
denoted by a superimposed o. The stresses and strains for such particles are:

Fx =
∑

J

∇Φ(Xx −Xo
J , h) uo

J ,Px,t+dt = Px,t + Ex
t : Fx (29)

The stresses Px,t are interpolated from the original particles. The stresses Px,t+dt can be ob-
tained directly from the total deformation tensor F or by interpolation.

A crucial point is the choice of the radius r of the half circle. It is chosen as the minimum
particle distance δx =

√
dx2 + dy2 to r = α min δx, with 0.25 < α < 1. Some results using

this technique are shown in section 4. Figure 17c and figure 17d show two results obtained with
this approach and for two values of α (α = 0.95 and α = 0.5) compared to the ’usual’ adaptive
refinement. For these examples, 37 and 73 additional particles are added on the half circle,
respectively. The particle at x, the previous crack tip, is kept and split. All other particles
associated with this point are removed in the next step. This is necessary since with such
excessive refinement, very small particle masses and volumes would be obtained. A small value
r also destroys the stable time step. The distance between the new (adaptively added) particles
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and the old particles is checked, too. If the distance undershoots a given value, the corresponding
old particle is deleted. This ensures a larger stable time step.

For quasistatic behavior, r plays a secondary role. For dynamic behavior, r has to be chosen
carefully, since the crack speed might be influenced. To obtain an appropriate crack speed, we
divided the time step by a factor of three. Difficulties might occur for highly dynamic problems
when a structure subjected to high loads such as in an explosion.

3.3 Implementation

In this subsection, the implementation of the discrete crack model will be described. With the
introduction of the crack boundary and the particle split, it is possible to compute the relative
displacement of the crack edges. The relative displacements are computed in a local coordinate
system denoted by ξ and by a subscript l as shown in figure 11. The boundary particles are
assigned to a coordinate system according to their corresponding crack segment. Since we use
a total Lagrangian formulation (with a Lagrangian kernel), the coordinates of a point and the
orientation of the coordinate system stay fixed once it is computed. It is not necessary to rotate
the coordinate system as in some rotating crack models.

x

y

crack segment 1

crack segment 2

crack segment 3

PSfrag replaements
��� ���
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Figure 11: Relation between local crack coordinate system and global coordinate system

The relative displacements δl = [w u]T , where w is the normal relative displacement of the
crack edges, the crackwidth, and u is the tangential relative displacement according to the local
coordinate system, are

δl = uA
l − uB

l (30)

where the superscripts A and B indicate the ’left’ and the ’right’ hand side of the crack (see
figure 1) and ul is the displacement in the local coordinate system.
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Figure 12: Discrete crack model

The traction crack opening model is expressed in terms of the relative displacements in a
local coordinate system

(
e0
1, e

0
2

)
with e0

1 tangent to the image of the crack in the undeformed
configuration and e0

2 normal to the image of the crack in the undeformed configuration. Therefore
the displacements or relative displacements δg = uA

g − uB
g in the global coordinate system have

to be rotated in the local one. This can be done with the transformation matrix T:

T =
[

cos γ sin γ

−sin γ cos γ

]

The traction crack opening model can now be applied. The tractions in the local coordinate
system have to be transformed by T into the global coordinate system where they are applied
as external forces. In the unloading case, the traction will return to the origin of the traction
crack opening curve as shown in figure 12a.

The transition from the tensile to the compressive regime and vice versa in a pure continuum
mechanical description is handled easily as described in Rabczuk et al. [26]. Once a discrete
crack with a crack boundary is introduced, we have to deal with contact if the crack closes.
Consider the crack as illustrated in figure 13. The crack line is formed by the neighboring
(crack boundary) particles of the corresponding crack side (left or right). We check if the crack
boundary particle on the crack line of the opposite side penetrates the two corresponding crack
lines (on the other side), e.g. contact for particle 3 is checked for segment 1 and 2 as illustrated
in figure 13. If particle 3 penetrates e.g. segment 1, contact forces to the corresponding neighbor
particles normal to the crack line are applied as shown on the RHS of figure 13, so that the
penetrating particle stays on the appropriate side at the end of the time step. F1, F2 and F3 in
figure 13 denote the contact forces, d is the penetration depth and l3 is the length of segment 1.

In our examples, no numerical instabilities were observed.
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Figure 13: Imposing contact conditions on the crack boundary particles for a crack closing

4 Numerical results

4.1 The Arrea/Ingraffea beam
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Figure 14: The tensile/shear beam from Arrea Ingraffea

The first example is the tensile/shear beam of Arrea and Ingraffea [2]. The notched beam
is loaded at two points (A and B, see figure 14). The initial elastic modulus is 28,000 MPa.
The beam fails due to a mixed tensile/shear failure. This problem is commonly used to test
constitutive laws with respect to combined failure modes.

The load displacement (on the RHS of the notch) curve is shown in figure 15a. In addition
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Figure 15: a) Load displacement curve, b) Crack pattern around the notch for the model dcm2

to the results obtained with our discrete crack model (dcm), results with a complete contin-
uum damage plasticity model (cdm) (see Rabczuk et al. [26]) and experimental data are given.
Particularly the post peak behavior is modelled better by the discrete crack model than by the
continuum damage model.

Three different approaches are used for the discrete crack model. Model dcm1 uses the dis-
crete crack model described in Section 3 where the integrals are evaluated by a nodal integration
with stress points. No circular refinement around the crack tip is made. Model dcm2 uses also a
nodal integration and stress points for the computation of the integrals. An additional circular
refinement around the crack tip is used where the radius of the circle is chosen to be r = 0.95 δx,
where δx is the minimum distance between particles. Additionally, the radius is decreased to
r = 0.5 δx. Since the load displacement curve differs minimally for the two different radii, the
results for r = 0.5 δx are illustrated in figure 15a. For comparisons we have implemented a mixed
discrete crack/smeared crack model dcm3 as described in [16]. Model dcm3 uses a background
mesh for the integration. 25 Gauss points are used in the cells. It can be seen, that the discrete
crack models agree pretty well in the experiment.

The crack pattern of the beam is illustrated in figure 16a for the full continuum model and
in figures 16b and 16c for the discrete crack model dcm1 and dcm2, respectively. First, it can
be seen, that with the discrete crack model, the crack resolution is much finer although fewer
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b)

c)

a)

Figure 16: Crack pattern of the Arrea Ingraffea beam for a) a complete continuum model (see
[25]), b) Model dcm1, c) Model dcm2
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a) b) c)

Figure 17: Crack pattern for a cutout of the beam for a) without circular refinement, b) with
circular refinement for a refinement radius of r = 0.95 δx, c) with circular refinement with
r = 0.5 δx

particles were needed with the adaptive refinement. While approximately 280,000 particles were
used in the cdm-model, we started with 30,000 particles in our discrete crack models. The
difference in the crack pattern between model dcm1 and dcm2 is small. However, for the dcm1

model the number of particles increased by a factor of 2.5 while for the dcm2 model the number
of particles were increased by a factor of 1.8. Not only the higher number of particles but also
the smaller particle separation in the dcm2 model, which diminishes the time step, increases the
computation time significantly. For this quasistatic problem, the differences between the two
discrete crack models (dcm1 and dcm2) are not very obvious, but it will become so in dynamic
problems.

With the discrete crack model, the crack widths can also be computed, which are comparable
to experimental data. In figure 15b, the beam around the notch is illustrated for the dcm2 model.

Cross sections for the different models are shown in figure 17. Figure 17a shows the crack
for the dcm1 model, in figure 17b, the results of the dcm2 model with a refinement radius of
r = 0.95δx are illustrated. The red particles show the crack path. A zigzag pattern can be
observed for the dcm1 model . In the complete illustration, both computations give similar
results (see figure 16b and 16c), but more particles were necessary to obtain the appropriate
crack path when using no circular refinement. In figures 17b and 17c, the influence of the
different radii (r = 0.95 min δx and r = 0.5 min δx) for the circular refinement are illustrated.
The influence of the size of the circle seems to be small in this application; this is true also for
nearly straight crack paths and quasistatic loading conditions.
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Figure 18: Test setup for the John and Shah beam

Table 1: Location of the notch
Number Location x [cm]

1 2.38
2 2.85
3 3.02
4 5.08

4.2 John and Shah beam

John and Shah [20] performed a series of static and dynamic experiments on notched concrete
beams. Figure 18 shows the test set up. Table 1 lists the different locations of the notch. They
varied the load rate and the location of the notch. The rate of loading ranged from a slow strain
rate of 10−6/s for the quasistatic experiments to a dynamic load with strain rates of 0.5/s. Two
different failure modes were observed in the experiments as illustrated in figure 19. The first
one is a pure mode I failure in the middle of the beam, the second one is a mixed mode failure
where the crack started to propagate from the notch. The transition from the mode I to mixed
mode failure depends on the location of the notch and differs for the dynamic and the static
loading conditions (see figure 19). For the same location of the notch, the slope of the crack (for
the mixed mode failure) for the quasistatic and dynamic loading is almost equal. We study here
both dynamic and quasistatic loading. The load is applied via a boundary velocity condition
given by John and Shah [20].

First, we focus on the notched beam number 4 (x = 5.08 cm, see table 1) under dynamic
loading. EFG with stress point integration is applied. Two simulations were performed, one
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Figure 19: Crack patterns of the John and Shah [20] beam for different locations of the notch
for quasistatic and impact loading
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a)

b)

Figure 20: Crack pattern of the John and Shah beam under impact loading for a location of
the notch: x=5.08cm, a) for the dcm2 model (with circular refinement), b) for the dcm1 model
(without circular refinement)

with circular refinement (model dcm2, see figure 20a) and one without (model dcm1, see figure
20b). The radius for the circular refinement was r = 0.5 min δx. The crack has an angle of 23o

against the y-axis for the first computation (see figure 20a), which matches the experimental
data pretty well, see figure 19. Without the circular refinement, an angle of 26o with the global y-
axis is obtained, but the number of particles was two times higher than in the computation with
circular refinement. At this point it should be mentioned that the experiments also exhibit some
scatter. The crack path for the quasistatic computation with the circular refinement is similar
to that in the dynamic loading. In figure 21 the crack path from the numerical computation is
compared to the corresponding experiment. The agreement is very good.

Finally, we tried to reproduce the transition point of the beam failure modes as illustrated
in figure 19. For the quasistatic loading, the transition point was computed quite well for a
notch with a distance of 3 cm to the support, see figure 22a. In the experiments this transition
point was observed for a notch with x = 3.02cm. In the dynamic loading the transition took
place for x = 2.29cm which is 10% closer to the support than observed in the experiments, see
figure 19 and 22b. This maybe due to neglecting time-dependent effects in our discrete crack
traction law. It can be seen that the the slope of the crack path from the notch gets steeper
with decreasing distance of the notch to the support.
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Figure 21: Comparison of the computed and observed crack pattern of the John and Shah beam
under quasistatic loading

5 Conclusion

A meshfree method that allows a transition from continuum to discrete cracks with arbitrary
paths and adaptivity has been described. The discrete crack is treated as an internal boundary.
The model is integrated in a meshfree particle code since meshfree particle methods are well
suited for arbitrary crack propagation problems. It is easy possible to introduce boundaries and
add particles adaptively. The particles were added in a rectangular pattern. Since a zigzag
pattern was observed in the computation with only rectangular refinement, additional particles
were added in a half circle around the crack tip; these were deleted after the crack advanced. The
choice of the refinement radius r of this half circle was studied. With increasing r, an increasing
crack speed was observed. Decreasing the stable time step with a factor of three was able to over-
come this dependency. However, the choice of a constant r is a critical point in the computation.

The model is applied to concrete materials and mixed mode fracture problems, the Arrea and
Ingraffea beam and the John and Shah beam. We were able to reproduce the crack patterns and
their dependence on the notch and the load displacement curves quite well. Some discrepancies
occur when the beam is loaded dynamically. One reason may be that rate effects in the traction
crack opening model are not considered. These may play a significant role under high loading
velocities as shown by Eibl et al. [14, 15].
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a)

b)

Figure 22: Computed crack pattern of the John and Shah beam near the transition in the failure
mode, a) under quasistatic loading, b) under dynamic loading
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