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Abstract 
Molecular dynamics simulations of the ballistic Taylor test are 
used to explore correlation between the largest fragment mass and 
the impact energy of a projectile as well as a set of selected state 
variables.  Flat-ended, monocrystalline, nanoscale bars collide with 
a rigid wall with striking velocities ranging from 0.27 km/s to 
60 km/s. The investigation emphasis is on two border regions of 
the emerging nonlinear phenomenological model identified with 
two transitions: the damage-fragmentation transition and the 
shattering transition. In between these two nonlinear regions, the 
maximum fragment mass is largely inversely proportional to the 
impact energy, and the maximum values of the pressure, tempera-
ture, and the square of the effective strain. A reverse-sigmoid 
phenomenological model is proposed to capture the unifying fea-
tures of this nonlinear and saturable dependence. A crystallo-
graphic orientation dependence of the damage-fragmentation tran-
sition parameters is investigated. 
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1 INTRODUCTION 

The high-velocity ballistic Taylor test (Taylor, 1948) is a time-honored procedure of exploration of 
the dynamic response of materials. A series of two-dimensional (2D) traditional MD (molecular 
dynamics) simulations of this classic experiment is performed in this study by using nanoscale pro-
jectiles made of the Lennard-Jones 6-12 (LJ) monocrystalline solid, under a tacit assumption that 
this, admittedly rather simple, model is sufficient to capture some essential features of the investi-
gated phenomenon. An extension and refinement of an earlier analysis (Mastilovic, 2015a) result in 
collision of nanoscale projectiles with a rough rigid wall with impact velocities (v) varying in a wide 
range from 0.27 km/s to 60 km/s that reveal a nonlinear and saturable character of the maximum 
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fragment mass dependence upon selected ballistic parameters. The resulting reverse-sigmoid phe-
nomenological model, suggested in the present article, consists of two nonlinear border regions iden-
tified with two phase transitions: the damage-fragmentation transition (v = v0) and the shattering 
transition (v = v1), with largely linear region in between.  The accompanying hyper-exponential 
fragment mass distribution typical of instantaneous fragmentation of the ductile solids was dis-
cussed earlier (Mastilovic, 2015a) within a narrower striking velocity range. The ultrafast flat-end 
collision of the projectile with the rigid target is an extremely intense loading event belonging to the 
realm of akrology within the study of materials’ physics. The extremely steep gradients of state 
variables (e.g., Mastilovic, 2016a), well documented by shock experiments, may cause phase transi-
tions and lead to sequential fractures that culminate eventually in energetic expulsion of fragment 
debris. Since a shock wave excitation is inherently ultrafast, the present MD method requires a 
femtosecond time resolution to observe the collective dynamics of material on picosecond time 
scales, which renders simulations extremely time-consuming. 

The fundamental principles of dynamic fragmentation of solids were investigated extensively, 
both experimentally and theoretically, and the substantial literature is compiled, among others, by 
Grady (2006), Elek and Jaramaz (2009), Ramesh et al. (2015). Investigations of small-scale frag-
mentation induced by hypervelocity impact are relevant for evaluation of the risk of space debris 
and dust impacts in earth’s orbit. Although perhaps miniscule in size, space debris collisions (with 
striking velocities v > 10 km/s, up to 70 km/s for micrometeoroids) are environmental factors of 
growing concern since they can deliver sufficient impact energy to “compromise or deplete” function-
ality of space assets (Lamberson et al., 2012).  Since the extreme loading rates in conjunction with 
the nonlinear constitutive relationship render an analytical treatment of the problem extremely 
difficult (Alves and Yu, 2005), various computational methods are often employed—in addition to 
experimental techniques—to gain insight into salient features of the impact and dynamic-
fragmentation phenomena. The small-scale 2D-MD simulations were used frequently in the last 
three decades to study these irreversible, nonlinear, nonlocal, and far-from-equilibrium processes. 
Holian and Grady (1988) were first to use MD to explore the fragmentation phenomena by simulat-
ing a homogeneous adiabatic expansion of condensed matter. Similar computation techniques were 
adopted subsequently to explore the 2D explosive fragmentation (Diehl et al., 2000, Astrom, 2000) 
and the fragmentation of grooved target under flyer-plate impact (He et al., 2015). Recently, the 
small-scale 2D-MD simulations were also used by Sator and his collaborators (Sator et al., 2008, 
Sator and Hietala, 2010) to investigate generic behaviors and damage evolution in the instantaneous 
point fragmentation of the LJ brittle solid colliding with a wall. In addition to MD, examples of 
computational techniques utilized recently in the dynamic fracture and fragmentation investigations 
include particle models (Baker and Warner, 2012; Kumar and Ghosh, 2015), discrete element mod-
els (Wittel et al., 2008; Iturrioz et al., 2009; Timar et al., 2010, 2012; Paluszny et al., 2014), finite 
element methods (Levy and Molinari, 2010; Ugrcic, 2013), and meshfree methods (Wu et al., 2014; 
Li et al., 2012, 2015). 

The investigation of dependence of the maximum fragment mass upon various state variables is 
extended and considerably refined in the present article in comparison to the preceding investigation 
which resulted in the piecewise-linear approximation (Mastilovic, 2015a). First, the analysis of the 
onset of the damage-fragmentation transition for slender projectiles, based on the maximum and 
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average fragment mass, is refined to identify more transparently this continuous phase transition 
(Kun and Herrmann, 1999; Timar et al., 2012). Second, an attempt is made to capture so-called 
shattering transition (Kun and Herrmann, 1999) – the elusive terminal fragmentation defined by 
the uniformly monatomic debris (mmax ≡ 1) and predicted by the piecewise-linear model to corre-
spond to the impact velocity of approximately 45 km/s. Most importantly, emerging unifying fea-
tures of the nonlinear and saturable dependence of the maximum fragment mass upon the set of 
impact parameters and ballistic state variables are captured by a single reverse-sigmoid phenomeno-
logical model. 
 
2 COMPUTER SIMULATION TECHNIQUE 

The present investigation is based on the traditional MD in which the dynamic state of the atomic 
system is defined by laws of classical mechanics with atomic motions being uniquely determined by 
an empirical potential (Allen and Tildesley, 1996). The model is described in detail in preceding 
studies (Mastilovic, 2015a, 2016a, 2016b), thus, a succinct summary is deemed sufficient herein. A 
monatomic system is comprised of atoms of equal masses mi = m0 that form an ideal defect-free 
triangular lattice (without any quenched disorder) and interact with their nearest neighbors accord-
ing to the LJ potential to mimic a monocrystalline, flat-nosed projectile. The three LJ model pa-
rameters used to match, as close as possible, physical properties of tungsten (74W) are the atomic 
mass m0 = 3.1×10-25 kg (183.85 u), the atomic radius 1.4 Å (≡ r0/2 where r0 is the equilibrium in-
teratomic distance), and the strength of attraction ε = 7.5×10-20 J. The coordination number of 
bulk atoms in the reference configuration is six and the potential energy per atom is –2.96 ε, which 
is slightly in excess of the bulk value (–3 ε) due to the surface effects. Since the shock wave excita-
tion is inherently ultrafast, the Cauchy problem is solved numerically by using the Verlet algorithm 
with the time step of the order of femtoseconds (Mastilovic, 2016a). This extremely small time reso-
lution (required by the ultrahigh power of the simulated event) in conjunction with necessity to 
approach asymptotically steady states of fragment mass distributions, makes the MD simulations 
extremely time-consuming (even for the relatively small model size) and effectively limits the max-
imum achievable striking velocity. 

The slender LJ projectile (D0×L0 = 15×110 nm, mp = 7.0×10-21 kg), prepared at zero tempera-
ture, impacts a rough rigid target represented by a set of immovable atoms. The conversion of sim-
ulation data generated at the nanoscale level (atomic positions and velocities, and interatomic forc-
es) to macroscopic observables (temperature, stress and strain) is firmly established nowadays (e.g., 
Wagner et al., 1992; Allen and Tildesley, 1996; Zhou, 2003; Buehler, 2008; Mastilovic, 2016a). 

The link between two atoms ruptures when their mutual distance exceeds a predetermined crit-
ical value. The cut-off interatomic distance, R ≈ 1.7 r0, is selected herein to be between the first and 
second nearest neighbors in the reference configuration (the perfect crystal prepared at zero temper-
ature). A fragment is defined as a self-bound cluster of atoms with interatomic distance less than 
the cut-off distance (rij ≤ R) in a sequential atom-by-atom search for the nearest neighbors (Masti-
lovic, 2015a, 2016a). 

The fragmentation model proposed herein is generic in the sense that it aims to capture the un-
derlying features of the investigated phenomenon. Its simplicity rests primarily on the 2D geometry, 
LJ potential, and nanoscale projectile dimensions. It is already noticed that the MD fragmentation 
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simulation is a slow process, difficult to reach steady state configuration (Holian and Grady, 1988; 
Astrom et al., 2000; Diehl et al., 2000; Mastilovic, 2015a). Therefore, although the dimensionality of 
the system is known to influence shock physics and the universality classes of fragmentation phe-
nomena (Timar et al., 2010), the 2D choice is necessitated by extremely laborious MD computations 
and justified by a qualitative character of the study.1 Furthermore, it has been recently demon-
strated by a finite size scaling approach (Sator and Hietala, 2010) that—for a similar MD simula-
tion technique—“the fragmentation features of the system are not sensitive to the number of parti-
cles” and that generic behaviors seem to be shared by fragmenting systems regardless of the details 
of their interaction potentials. Nonetheless, the size of the present model exceeds those used in the 
recent point-impact studies (Sator and Hietala, 2010; Timar et al, 2012) that similarly utilize 2D-
MD simulations to investigate universality and generic behavior in the impact fragmentation. Last 
but not least, the plasticity in confined dimensions is a fascinating and rapidly developing research 
area in itself at present (e.g., Kraft et al., 2010; Greer and De Hosson, 2011; Rinaldi, 2011). 
 
3 OBSERVATIONS AND DISCUSSION 

The knowledge of the maximum fragment mass dependence upon the impact energy (the initial 
kinetic energy) of the projectile (K  v2) is of obvious interest for engineering applications. While 
the mean fragment mass illustrates the average character of the fragmentation process, the maxi-
mum fragment mass, not so frequently encountered in the existing literature, is potentially of con-
siderable importance for structural-survival and risk analyses since it provides a lower bound for 
definition of the secondary-impact design events. The simulation data presented in Figure 1a sug-
gests that, beyond the fragmentation onset velocity (v  vfo),2 the maximum fragment mass is in-
versely proportional to the kinetics energy of the projectile. A piecewise-linear approximation for 
the maximum fragment mass dependence upon the striking velocity is proposed by Mastilovic 
(2015a) for the hypervelocity impact range up to vL  30 km/s. Based on this approximation, the 
terminal fragmentation (mmax ≡ 1) is anticipated to be v = v1 = 45 km/s. The investigation of two 
nonlinear border regions is refined in the present article by a set of additional simulations. A part of 
this effort is directed toward the upper-end of hypervelocity impact range to explore limits of validi-
ty of the linear extrapolation. Notably, the elusive terminal fragmentation is not achieved even for 
the v = 60 km/s. 

In addition to the striking velocity (the impact energy), three macroscopic observables explored 
henceforth in connection to the maximum fragment mass include: the average normal stress, P = 
(σx + σy)/2; the instantaneous kinetic temperature T (Wagner et al., 1992; Mastilovic, 2016a); and 
the effective strain,   2222

yxeff   . The evolutions of these three 2D state variables are recorded 

at twelve evaluation areas mimicking the measurement gages (details are available in Mastilovic, 
2015a, 2015b). The first mechanical stress invariant, P, is a measure of the force interaction be-

                                                 
1 Note that although the impact fragmentation is commonly a 3D phenomenon, experiments were performed with 2D experi-
mental setup as well (Kadono, 1997; Kadono and Arakawa, 2002; Dos Santos et al., 2011). 
2 The fragmentation onset velocity, vfo, defined as the threshold velocity just sufficient to fully fragment the projectile, is deter-
mined within the present simulation framework to be roughly between 2 and 3 km/s (Mastilovic, 2015a). 
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tween material points inside averaging areas while the instantaneous kinetic temperature, T, is a 
measure of the intensity of vibratory motion.  
 

 

Figure 1: Logarithmic plot of the maximum fragment mass dependence upon the striking velocity of the projectile  

in the entire impact range (a) and the maximum values of the three selected state variables: the (square of the)  

effective strain rate (b), the pressure (c), and the instantaneous kinetic temperature (d) in the hypervelocity  

impact range. (The data point depicted by the solid square corresponds to v = 3 km/s, which is slightly  

above the hypervelocity impact threshold, vfo; while the data point at the extreme right corresponds  

to v = 60 km/s. Fortuitously or not, v× ≈ 1.2 km/s (Mastilovic, 2015a) corresponds to the balance  

between the initial impact energy and the potential energy per atom.). 

 
Importantly, the mechanical stress, defined by interatomic forces and atomic positions (Zhou, 

2003), becomes physically ill-defined as a measure for the mean mechanical force between material 
points when the averaging area, in the course of projectile distortion and fragmentation, becomes 
incompletely occupied by atoms. It has been verified by the present simulations that the maximum 
values of the average normal stress (Pmax) reported henceforth were achieved much before this took 
place for every single evaluation area. On the other hand, it should be noted that the definition of 
the instantaneous kinetic temperature (Wagner et al., 1992; Mastilovic, 2016a) is not based intrinsi-
cally on the space averaging over a certain evaluation area but rather on averaging over all atoms 
belonging to the evaluation area; which makes it a state variable less sensitive to distortion and 
fragmentation than the mechanical stress.3 

As an example, the scaling relation of the form 
 

                                                 
3 Additionally, it has been verified that the stress and temperature simulation results are objective with respect to the evalua-
tion area size. 
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  12
maxmax


 m  (1)

 

is obtained with a reasonable confidence based on the simulation results presented in Figure 1b for 
the lower and intermediate part of the hypervelocity impact range (vfo < v < vL). As pointed out by 
Mastilovic (2015a), the scaling relation (1) is in agreement with the prediction of the Grady’s classic 
model of dynamic fragmentation due to shear banding in the shock-compressed ductile materials. 
Similarly to the functional dependence of the maximum fragment mass upon the striking velocity 
(Figure 1a), these simulation data suggest the divergence from linearity at vL  30 km/s. 

The logarithmic plots of the simulation data presented in Figures 1c and 1d also indicate that 
the maximum fragment mass is inversely proportional to the maximum values of the pressure and 
the instantaneous kinetic temperature within the lower and intermediate part of the hypervelocity 
impact range, which implies linearity between pressure and temperature in the ejected plasmatic 
debris in agreement with the classic ideal gas law. (The maximum values of the selected state vari-
ables represent the arithmetic mean of the values evaluated at the evaluation points positioned at 
the projectile centerline.)  

The following scaling relation 
 

maxm  (2)
 

captures the elucidated linearity observations within the lower and intermediate part of the hyper-
velocity impact range, with ξ ≈ 1 for the generic state variable Ξ  {K, Pmax, Tmax, 2

max }. Accord-

ing to the simulation results presented in Figure 1, the upper bound for validity of the scaling rela-
tion (2) is vL  30 km/s. 

The dependence of the maximum fragment mass upon the aforementioned state variable Ξ for 
the entire (non-negligible, Ξ  Ξ0) fragmentation range explored in the present study is schematical-
ly depicted in the logarithmic space by the following expression 
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and illustrated by Figure 2. The nonlinear and saturable empirical formula (3) disregards the mi-
nuscule fragmentation below the onset of the damage-fragmentation transition, Ξ < Ξ0 (Figure 1a). 
In (3), the three uppercase alphabetic letters (A,B,C) designate the fitting parameters (for example, 
in Figure 1a, A=2.2, B=7, C=4). The parameters denoted by subscript “0” correspond to the frag-
mentation threshold (Ξ0, mmax0) as illustrated in Figures 1 and 2. The damage-fragmentation tran-
sition is a continuous phase transition discussed recently in literature for the bulky impactors (e.g., 
Kun and Herrmann, 1999; Timar et al., 2012). For a slender projectile of any given aspect ratio, the 
onset of the damage-fragmentation transition is dependent upon its cross sectional dimension. The 
impact fragmentation in confined spatial dimensions is expected to result in increased fragmentation 
thresholds due to the small-scale hardening of the material as indicated, for example, by Rinaldi 
(2011). Timar et al. (2012) and Mastilovic (2016b) proposed recently scaling forms of the critical 
velocity v0 in terms of the system size and determined critical velocities of the infinite system. 
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It is obvious from expression (3) and Figure 2 that the three fitting parameters A-C are not 
mutually independent but need to satisfy the following condition from the approximately linear 
domain 
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The inflection point (42) is uniquely determined from the condition that it corresponds to the 
second derivative of (3) being equal to zero. 

Finally, an alternative form of the nonlinear phenomenological model for the maximum frag-
ment mass 
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can be derived straightforwardly by combining (2) and (4). 
The empirical expressions (3) and (5) cannot formally capture the terminal fragmentation, mmax 

≡ 1, except as the limit case: 
 

  1lim max 

m  (6)

 

defining the horizontal asymptote illustrated in Figure 2. As previously mentioned, the lower bound of 
the shattering-transition threshold is extrapolated to v1 ≈ 45 km/s based on the piecewise-linear ap-
proximation (Mastilovic, 2015a). It has been emphasized in the same article that only a miniscule part 
of the impact energy of the hypervelocity impact is spent on the fracture process, and noted that it is 
not obvious that any impact velocity in the present simulation setup would actually result in the ter-
minal fragmentation (all fragments are the smallest unit size fragments; mmax  = 1 ≡ mmax1). 
 

 

Figure 2: Schematic plot of the maximum fragment mass vs. the generic state variable Ξ   {K,  

Pmax, Tmax, 2
max } in the logarithmic space where the scaling parameter in the approximately linear  

intermediate hypervelocity range is ξ  1. This model disregards the minuscule fragmentation  

below the onset of the damage-fragmentation transition, Ξ < Ξ0 (Fig. 1a). 
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The additional MD simulations performed herein at three ultrahigh striking velocities v = (45, 
50, 60) km/s reach the fragmentation steady state with mmax = (3, 2, 2) > mmax1 ≡ 1, respectively. 
Thus, the elusive terminal fragmentation of 15×110-nm 74W projectile is not achieved even after 
900,000 time steps (90 ps). The nonlinear data fit illustrated in Figure 1a points roughly to v1 > 
150 km/s, but such increase of the striking velocity would require the reduction of the time step 
that precludes the effort to clarify the issue at present. Katsuragi et al. (2004) recognized, in their 
experimental study of 2D flat-impact fragmentation, that although this terminal fragmentation 
state is extremely difficult to achieve it can exist as an ideal limit case that clearly defines the satu-
ration state. 

Furthermore, the simulation-data fitting by (5), illustrated by solid lines in Figure 1, reveals not 
only that the fitting parameters B and C have the same values for all four impact parameters and 
state variables Ξ  {K, Pmax, Tmax, 2

max } but also that 
 

2,ln 0max  CmB  (7)
 

Thus, (5) can be rewritten in a form 
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(Note that based on simulation results presented in Figure 1, D  is estimated to be 0.20 for Ξ and 
0.45 for v K .) Consequently, the nonlinear phenomenological model for the maximum fragment 
mass (8) is captured by the same curve when the argument, ln Ξ, is shifted by A as illustrated by 
Figure 3. 
 
 

 
Figure 3: Logarithmic plot of the maximum fragment mass vs. the state variable Ξ  {K, Pmax, Tmax} shifted by  

A along the abscissa in the hypervelocity impact range (where A  {-35.9, 20.3, 5.0} in respective SI units). 
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3.1 A geometric estimate of the orientation dependence of mmax0 in perfect monocrystals 

The maximum fragment mass corresponding to the fragmentation threshold (mmax0) is the model 
parameter that determines the upper horizontal asymptote defining the baseline fragmentation re-
sponse. Any specific application of empirical relations (3, 5, 8) hinges on the determination of the 
critical point (Ξ0, mmax0), considering the saturable character of the proposed phenomenological 
dependence and the uniquely-defined: (i) the lower horizontal asymptote (ln mmax1 = 0) and (ii) the 
linear intermediate hypervelocity range with slope ξ  1 (Figure 3). 

In the present 2D-MD framework, it is intuitively clear that mmax0 (being the fragmentation 
outcome of the minimum impact energy that is sufficient to brake off a pair of fragments) should be 
highly dependent on the geometry of the problem; most notably: (i) the global symmetry and (ii) 
the crystal orientation of the slender monocrystalline impactor. Figure 4 illustrates schematically 
one typical instance in the time sequence of stress fields generated in the Taylor projectile by inter-
action of the reflected compressive waves (c) and the lateral release tensile waves (t) (adopted from 
Grady and Kipp, 1993; also Mayers, 1994). An outcome of this complex stress field is the lateral 
mass transfer in the process zone inherently related to the damage (d) nucleation and evolution. 
Consequently, the minimum energy sufficient to disconnect a pair of fragments is assumed herein to 
result in the fragment area (the volume of unit thickness) shaded yellow in Figure 4, inspired by the 
damage-evolution boundaries implied by the snapshots such as those presented in Figure 5. These 
snapshots of the highly-distorted projectiles reveal typical features of the ductile fracture with voids 
that nucleate, grow and coalesce by plastic deformation (Grady and Kipp, 1989; Woodward et al., 
1992; Meyers , 1994, p. 490).  
 

 

Figure 4: Schematic representation of the proximal region of the symmetric impact of a slender flat-nose bar on the  

rigid boundary. The bar diameter is designated by D0 and the crystallographic orientation of the monocrystalline  

projectile by λ (the angle of the symmetric directions of the highest linear atomic density with respect to the impact  

direction). The blue dotted contours depict the advancing compression wave (c) enclosing the trailing region of the  

compressed material, the red solid contours depict the tension (t) field generated by lateral release waves bouncing  

off each other at the symmetry line, and the dashed black contours depict the resulting damage (d) field. 

(The relative thickness of contour lines reflect qualitatively the field intensities.). 
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The perfect triangular lattice used in the present investigation, due to its 60° rotational sym-
metry, offers two distinct symmetric directions of the highest linear atomic density on the given 
closed-packed crystallographic directions that are convenient for the following rough geometric es-
timate of mmax0 and its orientation dependence. These two crystal orientations are defined by ±60° 
and ±30° angle of the closed-packed direction with respect to the impact direction (denoted by λ in 
Figure 4 and outlined in Figure 5). 

Thus, based on the projectile geometry and the stress field illustrated in Figure 4, the maximum 
fragment area (volume of unit thickness) at the brake-off moment is 
 

CtgDV 2
00max 8

3
  (9)

 

 

Figure 5: Snapshots of two impact configurations corresponding to: (a) λ = ±60° (v = 357 m/s), (b) λ = ±30°  

(v = 480 m/s). The void alignments in the designated directions imply the typical ductile distortion and fracture 

propagation along inclined separation lines (l60°, l30°) roughly enveloping tension/damage fields. Another  

feature typical of the ductile dynamic fracture is the evident independent void formation at many sites. 

 
Since the area per atom in the perfect triangular lattice is 23 2

0r , the maximum fragment 

mass of the fragmentation threshold is  
 

 00
0max

2
00max 8

3,
4
3

DL

Ctg
mCtgDm

   (10)

 

where 000 rDD  , mmax0 is given in number of atoms (m0) constituting the fragment, 0maxm  is the 

maximum fragment mass normalized by the initial projectile mass, and 00 DL  stands for the pro-

jectile slenderness ratio. It is important to recognize that Eqs. (10) provide a rough estimate of the 
maximum fragment mass immediately after the brake-off; the shock induced process of thermal 
attrition reduces somewhat the fragment until the stable configuration is asymptotically reached. 

Due to the 60° rotational symmetry of the perfect triangular lattice, there are two symmetric 
impact configurations corresponding to λ = (30°, 60°). The diameter of the slender projectile used in 
the present investigation is approximately 530 D  which, based on Eq. (101), results in mmax0 = 

(2100, 700) for to λ = (30°, 60°). The comparison of the maximum fragment masses corresponding 
to the various striking velocities immediately after the damage-fragmentation transition for these 
two crystallographic orientations of the flat-end monocrystalline projectile is presented in Table 1. 
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λ v [km/s] 
 0.357 0.360 0.374 0.408 0.442 0.470 0.490 

60° 717 682 620 729 628 623 815 
30° N/A N/A N/A N/A N/A 1798 2060 

Table 1: The maximum fragment mass, mmax0, for seven striking velocities (v ൒ v0). The 2D-MD results are  
obtained for two symmetric crystallographic orientations of the flat-end monocrystalline projectile, λ = (60°, 30°). 

Note that striking velocities 0.357 m/s and 0.470 m/s correspond to the damage-fragmentation transition, respectively  
(i.e., N/A designates the values below the critical striking velocity corresponding to the fragmentation threshold, v < v0). 

 
The MD simulation results presented in Table 1 agree rather well with the rough estimates of 

Eq. (10). All values following immediately the critical striking velocity—v0 = (0.357 km/s, 0.470 
km/s) corresponding respectively to λ = (60°, 30°)—belong to the region close to the upper horizon-
tal asymptote defining the baseline fragmentation response. With reference to the data presented in 
Table 1, it cannot be overemphasized that mmax0 is, due to the shock-induced thermal attrition, 
expected to be somewhat below the rough geometrical estimate of Eq. (10). Nonetheless, based on 
the simulation data, this fragment mass reduction due to the thermal equilibration is well within 
the inherent randomness of the initial fragmentation evident from Table 1 (compare, as an example, 
the striking velocities 0.357 km/s and 0.360 km/s.). Stochasticity of the maximum fragment masses 
in the phase transition region is expected based on the well-known aleatory variability inherent to 
low-energy fracture events (e.g., Mastilovic, 2011). The ratio of mmax0 values for the two orienta-
tions is—under the circumstances—reasonably close to the value Ctg 60°/Ctg 30° = 3 predicted by 
Eq. (101). Also, the second largest fragment masses are typically close to the mmax0 values in agree-
ment with the symmetric-failure assumption of the fragmentation scenario of Figure 4. 

Furthermore, the ratio of the impact energies corresponding to the damage-fragmentation tran-
sition for the two single-crystal orientations scales, fortuitously or not, with the ratio of the inclined 
failure lengths 
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indicating that the failure energy necessary to brake-off the maximum fragment is dominated by 
the inclined-separation term. 

The extreme orientation dependence of the perfect monocrystalline projectiles from the stand-
point of both the critical velocity (v0) and the maximum fragment mass (mmax0), is a consequence of 
the increased ductility of single crystals in the case of more favorably oriented close-packed direc-
tions.  

Finally, an extension of the present concept to an estimate of mmax0 for 3D Taylor impact 
would involve more complex analysis since the projectile fracture under multiaxial dynamic loading 
is a challenging problem. Following severe distortion, the impact surface of the Taylor projectile 
(made of ductile material) eventually petals (e.g., Meyers, 1994). The details of this sunflower-like 
petaling define mmax0 (under highly stochastic circumstances of the critical-impact-energy neighbor-
hood). Based on the present 2D-MD simulation observations (Mastilovic, 2015a, 2016b), it is justi-
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fied to assume that the onset of the damage-fragmentation transition (Ξ0, mmax0) would correspond 
to the minimum impact energy sufficient to cause the non-negligible fragmentation. Thus, the ex-
tension is straightforward but the complexities involved would probably be most efficiently ad-
dressed by experimental determination of the critical point coordinates. 
 
3.2 Validation of the MD Simulation Model 

The 2D simulation model used in the present investigation is based on the time-honored MD tech-
niques and utilizes the most-frequently used empirical potential (LJ 6-12) to explore some general 
trends of the small-scale impact fragmentation of a slender projectile at ultrahigh striking velocities. 
The motivation for the choice of the simulation technique is to study inhomogeneous fragmentation 
with no assumptions made about underlying processes and mechanisms. This reflects favorably on 
the model validation process since the first requirement—the validation of model assumptions—is 
satisfied by definition. It cannot be overstated that this robust MD model requires only three mate-
rial input parameters (the atomic mass and diameter, and the strength of attraction); obviously, 
only a limited quantitative agreement with experimental data could be expected under such circum-
stances. The main limitations of the present model have been already discussed in the preceding 
article (Mastilovic, 2016b).  

One of the most advertised advantages of the computational models of discontinua in general is 
the ability to push exploration of physical phenomena beyond current experimental limits. Unfortu-
nately, this advantage inherently implies scarcity of data available for the model validation, which 
is frequently the reason why attempts to validate such models leave necessarily something to be 
desired (Sargent, 2011). Notably, the present 2D-MD model is developed and used intensively over 
the last tree years and it has been verified that the conceptual ideas have been correctly implement-
ed to the extent that the program modules perform as expected. Thus, from the verification stand-
point the simulation output is deemed acceptable for the investigation purpose.  

Unfortunately, the model validation is adversely affected by lack of the Taylor test data con-
sistent with the simulation results reported throughout this study. Namely, the ballistic Taylor test 
is the most commonly used direct impact experiment originally developed as a method of estimating 
the dynamic compressive strength of ductile materials. More recently, it has been used to verify 
material constitutive relations by comparing numerical predictions with experimental data (Field, 
2004). Notably, the reported Taylor-test experimental data do not include either fragment distribu-
tions or pressure or temperature fields which preclude the direct comparison with the simulation 
results. The following model validation is, therefore, out of necessity, performed—to a certain ex-
tent—in a roundabout way. 

First, the abovementioned LJ model parameters (m0 = 3.1×10-25 kg, r0 = 2.8 Å, ε = 7.5×10-20 
J) are selected to match as close as possible elastic constants of tungsten (74W). Consequently, the 
value of the modulus of elasticity is captured in the MD simulation with excellent accuracy (within 
1%). On the other hand, the velocity of longitudinal wave propagation, estimated by the present 
MD model to be C0MD = 4.35 km/s (Mastilovic, 2016a), is 8% higher than the reported experi-
mental value for tungsten, C0exp = 4.03 km/s (e.g., Hixson and Fritz, 1992; Mayers, 1994). The 
discrepancy between C0  values is related to the inherent inability of the triangular MD lattice to 
model completely accurately any crystalline plane of the BCC lattice. Consequently, the geometry 
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of the MD hexagonal unit cell results in mass density    33
00 16300332 mkgrmMD   that by	

15% underestimates the experimental value ρexp = 19250 kg/m3 (Mayers, 1994). Note that the accu-
racy of the modulus of elasticity estimate can be indirectly verified by rearranging the well-known 
expression for	the velocity of longitudinal wave propagation,	EMD/Eexp	ൌ	ሺρMD	/ρexpሻሺ C0MD /C0exp ሻ2	ൌ	
0.99. 

Further, the experimentally-verifiable simulation results include the fragmentation onset veloci-
ty (vfo), whose knowledge is of great practical importance in ballistics for the design of both the 
target and the projectile. Within the framework of the present simulation technique, vfo is deter-
mined to be roughly in the striking velocity range 2 km/s < v  < 3 km/s (Mastilovic, 2015a), which 
agrees well with observations reported by Livingstone et al. (2001). Note that the above MD esti-
mate could be further refined with, practically, arbitrary precision by performing iterative computa-
tions at additional striking velocities, which was not necessary for the objective of the study. 

Next, the present MD model applied to low-velocity rigid-anvil simulations by Mastilovic and 
Krajcinovic (1999) reproduced the Taylor’s experimental observations (1948) showing that the rela-
tive shortening of the slender projectile (L1/L0) is independent of the slenderness ratio (L0/D0). 
Also, these MD simulation results are in agreement with the classic analysis, originated by Taylor 
(and refined by Wilkins and Guinan; e.g., Meyers, 1994), which suggested the scaling relation be-
tween the relative projectile shortening and the impact energy , L1/L0 ∝ exp (K). 

Due to the scarcity of quantitative Taylor test data available for direct comparison, it is neces-
sary to rely on semi-quantitative and qualitative observations for the purpose of model validation. 
For example, the 2D-MD simulation results (Mastilovic, 2015a, 2016a, 2016b) confirm that frag-
ment mass distributions are generally of the Poisson hyper-exponential type as experimentally veri-
fied for ductile materials (e.g., Mayers, 1994). As far as the strain rate effect on the fragment mass 
is concerned, the MD simulation result presented by Eq. (1), as already mentioned, agree well with 
the classic theoretical estimates. Succinctly, the Grady’s classic model (1982) of dynamic fragmenta-
tion of ductile materials during shock compression determines the shear band spacing to be inverse-
ly proportional to the strain rate. Since the mean fragment mass, for 2D fragmentation, is propor-
tional to the square of the shear band spacing, it follows that the mean fragment mass is expected 
to be, approximately, inversely proportional to the square of strain rate, which is a scaling relation 
of the same form as (1) (Mastilovic, 2015a). Moreover, the deformed projectile configurations (such 
as those of Figure 5) are in qualitative agreement with experimental observations of large number of 
void nucleation, growth and aggregation near the impact interface of the ductile-material projectile 
(e.g., Grady and Kipp, 1989; Woodward et al. 1992). 

Finally, MD simulation results for various striking velocities are used to perform a detailed pro-
gram of statistical-hypothesis testing to verify that the shock-induced vibrational velocities, used in 
the temperature calculation, belong to the Maxwell-Boltzmann distribution, which defines the local 
thermal equilibrium (Mastilovic, 2015b). The null hypothesis that the vibrational velocity is dis-
tributed according to the Maxwell-Boltzmann distribution is rejected at the 5 percent level (based 
on the Cramér-von Mises test) if the parameter presented in Table 2 is less than 0.05. A statistical 
testing results indicate that the Maxwell-Boltzmann distribution is established well before the 
steady state is reached.  
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t [ps] M1 M2 M3 
6 0.000 0.116 0.001 
11 0.165 0.805 0.119 
13 0.660 0.394 0.210 
17 0.377 0.198 0.955 

Table 2: Results of the Cramér-von Mises statistical hypothesis testing with null hypothesis being that the  
vibrational velocity is distributed according to the Maxwell-Boltzmann distribution. The time instances  

presented correspond to v = 7 km/s. The designators M1, M2 and M3 mark three averaging (measurement)  
areas selected along the centerline of the projectile (for more details refer to Mastilovic, 2015a, 2015b). 

 
 

 

Figure 6: Histogram and corresponding probability density function of the Maxwell-Boltzmann distribution obtained  

by the simulation data fit of atomic vibratory velocities in the averaging area M3 for v = 7 km/s at t = 17 ps. 

 
Admittedly, the abovementioned examples of experimentally verifiable simulation results fall 

short of the verification objective since they do not include quantitative estimates of thermodynam-
ic state parameters. Thus, an attempt is made to validate the conversion of simulation data gener-
ated at the nanoscale level (atomic positions and velocities, and interatomic forces) to macroscopic 
observables (stress and temperature) reported herein by devising an additional MD simulation 
model, which allows direct comparison with experimental observations for tungsten (Hixson and 
Fritz, 1992).  This model mimics a plate impact by simulating a laterally-confined Taylor test 
(CTT) with the entire length of the slender projectile loosely fitted into a rigid hole at the moment 
of collision. 

In the CTT configuration the projectile diameter matches that of the hole (i.e., it is ideally-
loosely fitted with minimal clearance) and the projectile motion is friction-free along the lateral 
boundary mimicking a perfect lubrication. (It is illustrative to dubbed it “the worm in the hole” 
configuration, inspired by the de Gennes’ memorable “the ant in the labyrinth” of statistical me-
chanics.) Thus, six additional CTT simulations are performed for verification purpose and the mean 
stress (the first stress invariant) values are compared with the corresponding shock pressures in 
Table 3. The experimental and computational peak pressure values are in a very good agreement, 
especially keeping in mind that the rigid-anvil simulations are two-dimensional. Unfortunately, the 
velocity range of the experimental study is relatively narrow, up ∈ (2.07, 3.91) km/s. (Note that the 
more recent laser-based experiments resulting in terapascal pressure levels (e.g., Crowhurst et al, 
2011) are not available for tungsten.) 
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up [km/s] 
Pmax [GPa] 

Relative Difference [%] 
simulation experiment 

2.07 258. 263.88 2.2 
2.34 316. 315.87 0.0 
2.82 422. 408.33 3.3 
3.19 525. 499.50 5.1 
3.60 645. 603.44 6.9 
3.91 742. 675.93 9.7 

Table 3: Comparison of the experimental shock pressures obtained by Hixon and Fritz (1992) for tungsten with a 
two-stage light-gas gun with the CTT simulation results. (up is the initial particle velocity.) Note that lateral motion 

of the lateral boundary atoms is constrained by rigid walls in the CTT configuration to mimic the plate impact. 
 

The verified pressure agreement is important not only in itself but also since it provides a 
means necessary to verify (alas, roughly and indirectly) the temperature simulation output. Namely, 
while the pressure is commonly reported in shock experiments the corresponding temperature data 
is not available. Thus, it should be noted that the linearity between pressure and temperature (im-
plied by Figures 1 and 3) is in agreement with the classic ideal gas law, which is indicative keeping 
in mind the LJ-solid phase transition accompanying ultrahigh-velocity impact (Mastilovic, 2016a). 
 
4 CONCLUSIONS 

The simple 2D-MD model of the Taylor experiment aims to provide a phenomenological picture 
depicting influence of various ballistic state variables on the maximum fragment mass resulting 
from the inhomogeneous fragmentation. The variables include the impact energy and the maximum 
values of pressure, temperature and (square of) effective strain. The nonlinear and saturable charac-
ter of the revealed functional dependences is described by a single reverse-sigmoid empirical relation 
that covers the complete fragmentation range from the damage-fragmentation transition (v = v0) to 
the shattering transition (v = v1). The simulation results suggest that, within the low and interme-
diate hypervelocity range (vfo < v < vL), the rigid-anvil impact is characterized by the maximum 
fragment mass approximately inversely proportional to the aforementioned state variables. For the 
present simulation setup, this linearity breaks down at the striking velocity vL  30 km/s. The uni-
fied phenomenological model offered in this article clearly outlines the limit of validity of the previ-
ously formulated piecewise-linear approximation by capturing the divergence from linearity at the 
high-energy end, corresponding to the asymptotic approach to the terminal (shattering) fragmenta-
tion. An estimate of the maximum fragment mass corresponding to the damage-fragmentation tran-
sition, mmax0, is offered based on geometrical considerations. Since the simulation data suggest a 
common slope (ξ ≈ 1) for all four state variables identified in this article (K, Pmax, Tmax, 2

max ), once 

mmax0 is determined, this nonlinear model requires only one fitting constant per variable to capture 
functional dependence of the maximum fragment mass within the entire fragmentation range. The 
critical-point location (e.g., (v0, mmax0)) is, obviously, expected to be sensitive to both the projectile 
geometry and the textural features on the spatial scale that dominates the dynamic response of the 
particular ductile material (e.g., the grain morphology, various inhomogeneities, cavities...). On the 
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other hand, the extremely high strain rates, inherent to the hypervelocity impact, render the mate-
rial response increasingly insensitive to the subtle microstructural features and the phenomenologi-
cal observations obtained from the nanoscale MD simulations may become increasingly indicative of 
the macroscale response.  
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