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Abstract 
This work addresses an accurate and detailed axial static load de-
pendence linearly elastic free vibration analysis of cylindrical helical 
springs based on the theory of spatially curved bars and the transfer 
matrix method. For a continuous system, governing equations com-
prise coupled vibration modes namely transverse vibrations in two 
orthogonal planes, torsional and axial vibrations. The axial and shear 
deformation effects together with the rotatory inertia effects are all 
considered based on the first order shear deformation theory and 
their effects on the frequencies are investigated. The effects of the 
initial stress resultants on the frequencies are also studied. After 
buckling, forward-shifting phenomenon of higher frequencies is no-
ticeably demonstrated. It is also revealed that a free/forced vibration 
analysis with an axial static load should not be performed individu-
ally without checking buckling loads. 
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1 INTRODUCTION 

Although, in practical applications, the springs are installed in their housing by applying initial static 
axial loads, the vibration of helical springs subjected to a static axial load have been paid less attention 
in the literature because of the difficulty and complexity in the problem. Haringx (1949) performed 
analytically the earliest study on the current issue by using a rod-model approximation. He studied 
both buckling and free vibration behavior of cylindrical helical springs with circular sections. As is 
well known, those formulas give acceptable results for small helix pitch angles. Wittrick (1966) inves-
tigated the wave propagation in semi-infinite springs and obtained approximate solutions by taking 
into account the rotatory inertia and shear deformation effects. Farshad (1980) studied wave propa-
gation in prestressed curved rods. By using vector approach and the transfer matrix method, Pearson 
(1982) presented originally the linearized disturbance equation set based on the spatial bar theory to 
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consider the vibration of helical springs with a static axial load. Employing Wittrick’s (1966) differ-
ential equations Mottershead (1982) extended the theory to large displacements through Lagrange–
Green strain equations and derived consistent geometric stiffness matrices. 

Unlüsoy (1983) and Yalçın (1984) studied the free vibration of helical springs subjected to an 
axial static load by employing the finite element procedure. In their study the helix axis was modelled 
as a composition of a number of straight beam elements. Haktanır and Kıral (1992) worked on the 
free vibration of helical springs subjected to a static axial force with the help of the stiffness matrix 
formulation and straight beam elements. 

Tabarrok and Xiong (1992) derived the governing equations for the buckling of spatial rods by 
considering perturbations about the critical state. Xiong and Tabarrok (1992) summarized a compre-
hensive energy formulation for the vibration analysis of spatially curved and twisted rods under var-
ious applied loads. In addition to the initial axial force, this formulation took into account the initial 
moments and shear forces as well as initial deformations. Based on this formulation, a spatially curved 
and twisted rod finite element was developed and used for several examples.  

Becker and Cleghorn (1992) developed a set of dynamic, partial differential equations in canonical 
form for helical compression springs for just axial static force, and they solved them for fixed ends 
and circular cross-section by the transfer matrix method. Chassie et al. (1997) extended the work by 
Becker and Cleghorn (1992) for the buckling of compression springs to include the additional effect 
of torsion about the axis of the spring. Chassie et al. (1997) showed that both Mottershead’s (1982) 
and Pearson’s (1982) buckling equations do not reduce correctly to the well-known equations for 
simple rods. The results obtained in the Chassie et al.’s work (1997) also showed a good agreement 
with those from Tabarrok and Xiong (1992) and Haringx’s (1949) theory. They stated that the gov-
erning equations derived were in fact a special case of the earlier and more comprehensive analysis of 
curved and twisted rods under load. Becker et al (2002) broadened their previous works on the buck-
ling analysis for the free vibration analysis of a helical spring subjected to a static axial compressive 
load by incorporating inertial terms into previous buckling equations. They examined the free vibra-
tion analysis numerically based on the transfer matrix method. As they stated this study represents 
primarily the first detailed examination of the fundamental natural frequencies of helical springs, 
under static axial load with clamped ends, since the pioneering work by Haringx (1949). 

Frikha et al. (2011) proposed a physical analysis of the effect of axial load on the propagation of 
elastic waves in helical beams. The general equations proposed in References (Xiong and Tabarrok, 
1992; Becker and Cleghorn, 1992; Chassie et al., 1997), which govern the small perturbations of a 
helical beam subjected to a static axial load, were employed. An eigen-system was obtained through 
a Fourier transform along the axis of spring with circular section. Frikha et al. (2011) presented 
dispersion curves of both loaded and unloaded springs for different parameters such as helix angle, 
helix index, Poisson coefficient, and axial strain. For high, medium and low-frequency ranges they 
highlighted the effect of load on wave propagation. A branch identification of dispersion curves was 
performed for both propagating and non-propagating modes. The effect of loading was found to be 
significant on the four propagating modes in a low-frequency range. The dispersion curve of the 
flexural mode oscillating in the normal direction shifted to higher frequencies under tensile loads and 
vice-versa for compressive loads.  
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Yıldırım (2012) established governing equations of the helical springs with a static axial load 
based on the Özbek’s work (1966). Using the linearized disturbance dynamic equations derived sys-
tematically in Yıldırım’s study (2012), a few functional works were conducted (Yıldırım, 2009a; İbrikçi 
et al. 2010). In (Yıldırım, 2009a), the numerical buckling analysis of such springs was performed based 
on the dynamical approach. Ibrikçi et al. (2010) proposed the use of artificial neural networks (ANN) 
to predict perfectly the critical buckling loads of cylindrical isotropic and homogeneous helical spring 
with fixed ends and with circular sections, and also having large pitch angles. Then almost perfect 
weight values were obtained to predict the non-dimensional buckling loads. The theory in Yıldırım’s 
study (2012) was extended to the free vibration of composite cylindrical helical springs under com-
pression by Kacar and Yıldırım (2011, 2016). In Kacar and Yıldırım’s study (2016) the stiffness matrix 
method was used for the solution procedure. For a helical element with constant static axial load, the 
element stiffness matrix which has six degrees of freedom at each node was obtained with the help of 
the complementary functions method (Haktanır, 1995). Kacar and Yıldırım (2016) presented natural 
frequencies and buckling loads of barrel, hyperboloidal and conical unidirectional composite helical 
springs with circular and rectangular sections.  

Kobelev (2014) studied the load dependence of transverse vibrations for helical springs by devel-
oping equations, which were represented by two coupled second order differential equations. Kobelev’s 
(2014) method was based on the concept of an equivalent column. He derived the explicit formulas 
for the fundamental natural frequency of the transverse vibrations of the spring depends on the 
variable length of the spring. The reduction of frequency with the load was demonstrated by Kobelev 
(2014). In this study, similar to the Reference (Yıldırım, 2009a), it was shown that when the frequency 
nullifies the spring buckling occurs. It was also shown that the first vibration modes of helical springs 
correspond to low-frequency motions and they are strongly affected by the presence of applied axial 
loads.  

In the present work, an accurate free vibration frequencies of isotropic and homogeneous cylin-
drical helical springs with circular section are conducted numerically in a detailed manner with the 
help of the equations offered by Yıldırım (2012). The transfer matrix method is employed for the 
numerical analysis. The exact numerical overall transfer matrix is obtained by an effective numerical 
algorithm developed previously for the springs without initial loads (Yıldırım, 1996). Validity of this 
algorithm for even the springs with initial static loads is demonstrated. To determine the geometrical 
configuration of the spring subjected to a static axial force, an analytical expression taking into ac-
count for the whole effect of the stress resultants such as axial and shearing forces, bending and 
torsional moments is used (Yıldırım, 2012, 2016). The present natural frequencies obtained by the 
method described above are then compared with the available literature. A good harmony is observed 
with related benchmark studies. The effects of shear/axial deformations and stress resultants on the 
natural frequencies are investigated. The present work also takes attention to the relationship between 
buckling loads and natural frequencies. Forward-shifting of frequencies in higher modes is made ob-
vious. It is revealed that both free and forced vibration analyses with an axial static load should be 
performed after carrying out corresponding buckling analysis to achieve rational results. 
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2 GOVERNING EQUATIONS OF A SPATIAL BAR SUBJECTED TO STATIC AXIAL LOADS 

Consider a curved spatial bar having the curvilinear position coordinate s, and let t be the time. Let 

),,(),( *
bnt TTTts ***T   be the internal force vector, let ),,(),( ****M bnt MMMts   be the internal mo-

ment vector. Where *
tT  is the axial force; *

nT  and *
bT  are shearing forces; *

tM  is the torsional moment; 
*
nM  and *

bM are the bending moments, respectively. Let ),(* ts = ),,( ***
bnt   be the rotation vec-

tor, and ),,(),( ****U bnt UUUts   be the displacement vector in Frenet coordinates (t,n,b) (Figure 1). 

Initial internal static force and moment vectors are denoted by )(soT  and )(soM , respectively. The 

external distributed force and moment vectors are illustrated by p(s,t) and m(s,t), respectively. 
 

 

Figure 1: Frenet trihedral. 

 
Yıldırım (2012) derived systematically and consistently the following governing equations in a 

vector form for a spatial bar to study the static, buckling and vibration problems in the framework 
of spatial Timoshenko beam theory. 
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where 
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In the above, the undeformed cross-sectional area is denoted by A, the moments of inertia with 

respect to the normal and binormal axes are denoted by nI  and bI , respectively. bJ  is the torsional 

moment of inertia, G is the shear modulus and E is the Young’s modulus. Kn and Kb represent the 
Timoshenko’s k-factors. For doubly symmetric cross sections, Timoshenko’s k-factors are equal to 

each other, bn KK  . In equations (2) tC  is the axial rigidity, nC  and bC are shearing rigidities, tD  

is the torsional rigidity, nD  and bD  are bending rigidities. For the unit length, the inertia force and 

moments in Equation (1) are defined as  
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Here,   is the mass per unit length of the rod, bnt kkk ,,  are the radii of gyration with respect to 

the (t, n, b) axes, respectively. 
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where   is the density of the rod material. 
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3 NON-DIMENSIONAL FREE VIBRATION EQUATIONS OF A CYLINDRICAL HELICAL SPRING 

SUB JECTED TO A STATIC AXIAL FORCE 

 

 

Figure 2: Geometry of a helix subjected to an axial compressive force and a torque. 

 
Let   be the helix pitch angle,   be the angular coordinate, and R=(D/2) be the radius of the 

cylinder. Frenet-Serret relations for cylindrical helical springs are given by (Yıldırım, 1999a) 
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where the curvature and tortuosity are as follows 
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The free axial length of the helix is defined by 
 

 tan0 DnL   (8)
 

In equation (8), the total number of active turns is denoted by n. Frenet components of the 
equivalent force-couple system at any section of the spring wire due to the initial static axial force 
and moment vectors will be in the following form of (Figure 2) 
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In order to study the free vibration analysis, the following harmonic solution may be assumed for 
equations (1) 
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without external loads, p(s,t)=0 and m(s,t)=0. Where  (rad/s) is the circular frequency. Substitut-
ing equation (10) into equation (1), employing Frenet-Serret relations given in equation (5), consid-
ering cdds   for helical elements, and then using equation (9), a set of twelve linear differential 
scalar equations in Frenet trihedral, which govern the free vibration of a cylindrical helical springs 
subjected to a static axial load, are achieved as follows (Yıldırım, 2012). 
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These linear equations given above have constant coefficients and valid for isotropic and homo-
geneous cylindrical helical springs with uniform sections having double symmetry axes. The free vi-
bration equations presented by Becker et al. (2002) coincide with the equations presented above in 
the absence of the first terms of Equations (11j), (11k) and (11l). The first terms of Equations (11j), 
(11k) and (11l) represent the shear deformation effects of the static axial load (Yıldırım, 2012). Equa-
tions (11) may be expressed in a matrix notation as 
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where the state vector is given by 
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and ),,,( oo MPD  is the dynamic differential matrix. In the present study Equations (11) are put 

in a non-dimensional form by using the followings 
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Taking 0oM  and using Equations (14) and (15), elements of the dimensionless differential 

matrix to be used in the present study for the free vibration analysis of the spring under a static axial 
force can be attained. 
 
4 DETERMINATION OF THE GLOBAL TIP DEFLECTION OF THE SPRING UNDER A STATIC 

FORCE 

In a true free vibration formulation of helical springs it is necessary to implement the true deflected 
configuration of the spring due to the applied static axial force. Otherwise the numerical free vibration 
studies cannot give satisfactory results according to the specifications of the helix. So a general for-
mulation of the static deflection under an axial force is required for both static and dynamic analyses. 
It may be noted that this is also achieved by a numerical analysis. 

Even today the helical spring formulas derived in 1960s still continue to be used in the spring 
design. These formulas are used in special conditions/sections and do not consider the whole simul-
taneous effect of the stress resultants such as axial and shearing forces, bending and torsional moments 
on the deformations. So they cannot called global. The popular deflection formula for closed coiled 

springs,  10 , proposed by Wahl (1963) is given by 
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This formula may be used for open coiled helices,  10 , by introducing an additional factor of 
cos  as follows 
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Both Equations (16) and (17) account for just the effect of the torsional moment on the tip 
deflection. However, it is obvious from Equation (9) that when even a single static axial force acts on 
the center of the helix then the four different types stress resultants such as an axial force, a shearing 
force, a bending moment and a torsional moment appear at the center of the cross-section of the helix 
wire. One may readily reach the consequence that there must be contributions of all the remaining 
stress resultants omitted in the literature on the global tip deflection of the spring. 

Under a static axial force, for the determination of the vertical tip deflection of cylindrical helical 
compression springs with any closed section having double symmetry axes the following equation is 
proposed by Yıldırım (2012, 2016) and Haktanır (1994). 
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Definitions of the cross sectional rigidities in Equation (18) are given in Equation (2). In the above 
equation, first term represents the effect of the shearing force, the second term is the effect of the 
axial force, the third term corresponds to the effect of bending moment and finally the last term is 
the effect of the torsional moment. Equation (18) implies that even for springs having very small 
angles there is a contribution of each stress resultants on the total deflection. 

While Equation (18), which was obtained based on the Castigliano’s first theorem (Haktanır, 
1994) , is valid for helical springs having doubly symmetric cross-sections such as solid circle, square, 
rectangle, ellipse, and hollow circle etc., both Equations (16) and (17) are valid for just solid circular 
cross sections having the following properties. 
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From the last term of Equation (18), Equation (17) is effortlessly obtained as follows  
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It is very clear that Equation (16) is a special case of Equation (17) with 1cos  . For closed-
coiled springs, the effects of both the shearing force and torsional moment become leading whereas 
the effects of both the axial force and bending moment gain a gradually increasing impact on open 
coiled springs. Wahl (1963) also offered the following formula to consider both the shearing force and 
torsional moment effects on the axial tip deflection. 
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This equation is also achieved by Equation (18)with dRdDC /2/  , 1cos  , and 0sin  . 
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When 1bK , Wahl’s (1963) corrected formula concurs with the present closed coil formulas in 

which 0 . After a quick inspection for o400  , it may be revealed that the maximum effect 
of the axial force is around 1% and of shearing force is around 6%. For large helix angles, while the 
effect of the torsional moment on the tip deflection decreases to around 65%, the effect of the bending 
moment increases to around 35%. Consequently, the computation truly of the tip deflection of the 
spring under static axial load is one of the crucial step of the vibration analysis of such springs. It 
may be noted that those effects gain considerably importance for especially non-circular cross-sections. 

In the following sections of the present study, equations given in (16-18) are all examined to get 
a strong idea about the free vibration response of cylindrical helical springs with solid circle sections. 
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5 NUMERICAL DETERMINATION OF THE OVERALL TRANSFER MATRIX CONSISTING OF A 

SINGLE HELICAL ELEMENT 

As stated above, in the present study, the equations solved numerically based on the transfer matrix 
method with an effective numerical algorithm previously offered by the author (Yıldırım, 1996). This 
algorithm allows to model the whole continuous system by a single helical element without confronting 
any numerical difficulty and any numerical instability even if the effect of the static axial load is 
considered. Since it corresponds to the analytical series solution of the governing equation, the nu-
merical results are assumed to be exact. In this section the transfer matrix method and the numerical 
algorithm for the determination of the element transfer matrix will be described briefly below. 

In the transfer matrix method, the solution to Equation (12) is given by Pestel and Leckie (1963) 
as follows 
 

)0(),,()( 0 SFS P   (23)
 

where S(0) is the state vector at section 0  and )(F  is the overall transfer matrix. Solution of 

Equation (23) is applicable for the helix having either varying or constant cross-sections. The transfer 
matrix also satisfies the following differential equation in all cases. 
 

)()( 



DF
F


d

d
 (24)

 

with the initial conditions 
 

F(0)=I (25)
 

where I is the unit matrix. Numerical computation of the overall transfer matrix is a crucial step in 
the transfer matrix method. If it is obtained in an accurate manner, then the results should be ac-
ceptable as accurate. The analytical solution of the overall transfer matrix in (25) for constant cross-
sections is (Pestel and Leckie, 1963). 
 

...........
!3!2

)(
3322


DD
DIF D  e  (26)

 

This solution is generally preferred in the literature due to its simplicity (Pearson, 1982; Becker 
et al., 2002). However, it is not possible numerically to take enough terms in the exact solution of 
Equation (26). So this leads to consider lots of helical elements to form the whole helix axis. In this 
case the element transfer matrix is computed for each division. A proper successive multiplication of 
the element transfer matrices renders the overall transfer matrix (Pestel and Leckie, 1963). 

Usually, when applying this series solution it should be necessary to take some numerical preven-
tative measures for especially springs having large helix angles and large active turns. One of this 
precaution is the application of the Cayley-Hamilton theorem to the series solution (26). Based on 
the theorem, Equation (26) may be put in the form of 
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k
k
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  (27)

 

where k( ) are functions of scalar infinite series in  . Utilization of each term of the series k( ) 
of Equation (27) corresponds to twelve terms in (26). The number of terms taken from the infinite 
series k( ) determines the accuracy of the solution. In the present study, 1000 terms are taken in 
each k( ) series of Equation (27) for each    to calculate the overall transfer matrix. This 
number of terms corresponds to the 12000 terms in Equation (27). The number of terms can be 
increased without any trouble to increase the accuracy of solution in the numerical algorithm previ-
ously developed by the author (Yıldırım, 1996). Letting m be the total number of terms to be taken 
in Equation (27), each  series may be put in the following form of 
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where each element )(i
kT  in  series may be computed from the previous element )1( i

kT . 
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where  
 

ii pq 2  and 012 ip   for i=1,2,..,6 (30)
 

and for 0k  for any i, )(i
kT  becomes zero. The coefficients of the characteristic determinant of the 

differential matrix, ID  , are denoted by pi. The first terms of )(i
kT  are defined as follows 
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When the coefficients qk of the characteristic polynomial given by the following equation are 

available, )(i
kT  terms are calculated recursively and then the transfer matrix is obtained in an accurate 

manner. 
 

06
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1
12  qqqqqq   (32)

 
As it is well known, every square matrix satisfies its characteristic equation as shown below 
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The numerical algorithm in (Yıldırım, 1996) is valid for a square matrix D having the following 

property  
 

0)( 12nD Trace  (34)

 
It may be proved simply that the differential transfer matrix formed by Equation (11) satisfies 

this condition for even cylindrical helical springs with a static axial load. Let us change the order of 
elements of the state vector as follows 
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In this case the differential matrix may be subdivided into four parts as in the following form of 
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and 
 



















































b

n

b

n

b

o

b

o

n

onoob

n

nb

bn

o

b

o

GJ

EI

c

R
I

I

c

h
GJ

RhP

c

R

EI

RP

c

h

EI

chP

Ac

I

cEA

RP

cGA

hPK
Ac

I

c

R
GAc

EIK

c

h
GJ

RcP

EI

hcP

c

R

c

h

0000

0000

010

0000

0010

0

22
2

2

2

2





3D  (38) 

 

In this situation, the coefficients of the odd powers of the differential matrix, D , in its charac-
teristic polynomial becomes zero. Due to the fundamental features of the transfer matrix, it is stated 

that the matrices D and D  are similar, and so they and their powers have the same trace and 
determinants. This reveals that the numerical algorithm devised for effectively computation of the 
helical element transfer matrix in the absence of the static axial force may continue to be used for 
successfully estimation of the helical element transfer matrix with a static axial load. 

For a given axial static load and by using the corresponding helix geometry, after computation 
of F , the frequency equation can be obtained from the boundary conditions given at both ends (
=0 and  =2n) using Equation (23). For instance, the eigen value equation for fixed-free ends (=0, 
U=0) is reduced to the following  
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 (39)

 
As seen from Equation (39), the order of determinant is only six for the spring supported at both 

ends. As described, the transfer matrix method offers an exact solution with minimal computation 
memory requirement for dynamic problems if the overall transfer matrix is calculated numerically in 
an accurate manner. In this study, the free vibration frequencies are obtained by the method of 
searching determinant. Accordingly, numerical values are attributed to the natural frequency and the 
corresponding determinant is computed. The values making the determinant zero are assumed to be 
the natural frequencies of the helix. All numerical computations were performed using the double-
precision arithmetic. 
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6 VERIFICATION OF THE RESULTS WITH/WITHOUT A STATIC AXIAL FORCE 

To check the accuracy of the present results a benchmark spring which is not subjected to any static 
axial force is first considered. The material and geometrical properties together with boundary con-
ditions of the spring are as follows: Lo/D=3.6,  /Lo=0, n=7.6, C=D/d=10, d=1mm, 

3/7900 mkg , 3.0 , G=79.269 GPa,  5744.80  , Kn=Kb=1.1, Fixed-Fixed ends. The results 

are presented in Table (1). From Table (1) it is observed that the natural frequencies obtained by 
the transfer matrix method show a good harmony. The minor differences between the present study 
and Reference (Yıldırım, 1999a) probably steam from the number of terms considered in the numerical 
computation of the overall transfer matrix. 
 

Modes 

Motter-
shead 
(1980) 
(EXP) 

Mottershead 
(1980) 
(FEM) 

Pearson 
(1982) 
(TMM) 

Xiong and 
Tabarrok (1992) 

(FEM) 

Yıldırım 
(1999a) 
(TMM) 

Busool and 
Eisenberger 

(2002) 

1 391 396.0 394.9 395.0 393.5 393.411 
2 391 397.0 397.6 398.0 395.9 395.991 
3 459 469.0 456.4 464.0 462.8 462.751 
4 528 532.0 518.3 528.0 525.5 525.571 
5 878 887.0 859.7 868.0 864.0 863.601 
6 878 900.0 874.7 881.0 876.8 876.775 
7 906 937.0 -- -- 914.3 -- 
8 -- 1067.0 -- -- 1037.0 -- 
9 1282 1348.0 -- -- 1310.5 -- 
10 1386 1409.0 -- -- 1363.8 -- 

Modes 
Becker et al 

(2002) 
(TMM) 

Girgin et al 
(2006) 
(FEM) 

Lee 
(2007) 

Yu et al 
(2010) 
(TMM) 

Present 
Study 

(TMM) 

1 393.5 392.5 393.5 393.5 393.4 
2 396.1 395.0 396.1 396.1 396.0 
3 462.8 462.8 462.9 462.9 462.7 
4 525.7 525.9 525.7 525.7 525.6 
5 863.8 862.2 863.8 863.8 863.6 
6 876.9 875.0 877.0 877.0 876.8 
7 913.7 -- 913.8 913.8 913.5 
8 1037.5 -- 1037.5 1037.5 1037.3 
9 1310.6 -- 1310.7 1310.7 1310.4 
10 1364.6 -- 1364.6 1364.6 1364.3 
11 -- -- -- 1395.8 1395.4 
12 -- -- -- -- 1522.1 
13 -- -- -- -- 1677.5 
14 -- -- -- -- 1778.6 
15 -- -- -- -- 1841.3 
16 -- -- -- -- 1935.1 

Table 1: Natural frequencies (in rad/s) for the benchmark spring (TMM: Transfer matrix method,  
FEM: Finite element method, EXP: Experimental). 
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The widely held formula for the fundamental frequency in axial mode, axialf  (in Hz), in the 

literature (Haringx, 1949) is given by 
 




 2
2

8
1 axial

axial
G

nCR
f   (40)

 

In the second example a cylindrical helical spring under an axial static load compressed to half of 
its free axial length is considered. Material and geometric properties of the spring having clamped 

supports at two ends are: Lo/D=5,  /Lo=0.5, n=30, C=10, d=1mm, 3/7900 mkg , 3.0  

G=79.269 GPa. Those properties correspond to 0 3.036789 (in degrees),  1.517861 (in de-

grees), axialf 118.80Hz ( axial 746.44rad/s) by considering equations 00 tan/ nDL   and 

 tan/ nDL   (where LL  0 ). In this example, since the helix pitch angle is very small (<<5o), 

the effects of the axial force and bending moment on the tip deflection may be negligible. However, 
the shearing effect should be considered. 

The corresponding axial static load to the prescribed deflection is to be found as Po=8.2532 
Newton by using Equation (18). This value was found as 8.242 by Becker et al. (2002). Now, Let’s 
check whether the applied axial force, 0P , is equal to critical buckling load, crP , by using Figure (3). 

As shown from this figure NPcr 12  for this example. This verifies that the first frequency will be 

found is certainly to be the fundamental frequency of the spring loaded by a static axial load. 
 

 

Figure 3: Critical buckling loads obtained in a static manner (Yıldırım, 2009b). 

 
For the sake of the comparison, by using Equations (16) and (18), the first 16 natural dimensionless 

frequencies of the spring considered are presented in Table (2) in a comparative manner with benchmark 
results. Since the helix pitch angle is small, the additional terms considered in the present study will be 
gained an importance. As shown from Table (2) those terms affect just symmetric and asymmetric 
bending modes. As expected, for small helix angles, the analytical theory may give acceptable results. 
Again a good accordance between Becker et al’s (2002) and present results is observed. It may be noted 
that Becker et al. (2002) computed those frequencies by employing Equation (17). 
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By using Equation (18) which considers the whole effect of the resultant force on the tip deflection 
of the spring, the present first 16 natural frequencies for a cylindrical helical spring considered are 
tabulated in Table (3) based on the Timoshenko and Bernoulli-Euler hypotheses. As shown from the 
table, the differences between two theories become visible for 00 P . 

 
 

Mode No 
Mode Types 

(Becker et al., 
2002) 

Becker  
et al 

(2002) 

Haringx 
(1949) 

Kacar 
and 

Yıldırım 
(2016) 

PRESENT STUDY 
with 

additional 
terms 

without 
additional 

terms 

with  
additional 

terms 

Eqn. (16) Eqn. (18) 

1 Symmetric 0.4727 0.4742 0.4684 0.4722 0.4740 0.47042 

2 Symmetric 0.4732 0.4742 0.4686 0.4723 0.4742 0.47059 

3 Axial 0.9955 1.000 0.9970 0.9950 0.9950 0.99503 

4 Torsional 1.140 1.140 1.137 1.139 1.139 1.13899 

5 Asymmetric 1.574 1.582 1.576 1.572 1.5739 1.57102 

6 Asymmetric 1.574 1.582 1.578 1.573 1.5743 1.57148 

7 Axial 1.989 2.000  1.988 1.988 1.98833 

8 Torsional 2.275 2.280  2.274 2.274 2.27431 

9 Symmetric 2.875 2.898  2.872 2.873 2.87093 

10 Symmetric 2.875 2.898  2.874 2.875 2.87286 

11 Axial 2.983 3.000  2.982 2.982 2.98192 

12 Torsional 3.405 3.421  3.403 3.403 3.40288 

13 Axial 3.953 4.000  3.952 3.952 3.95162 

14 Asymmetric 3.980 4.025  3.980 3.980 3.97940 

15 Asymmetric 3.999 4.025  3.996 3.996 3.99601 

16 Torsional 4.527 4.561  4.525 4.525 4.52468 

Table 2: The first 16 natural dimensionless frequencies ( axialff / ) for a cylindrical helical  

spring under a static axial load compressed to half of its free axial length. 

 
 

For this example, effects of the axial and shear deformations on the first 16 natural dimensionless 
frequencies are also studied and presented in Table (4). In Bernoulli-Euler results of Becker et al 
(2002), rotational inertia effects are also neglected together with axial and shear deformation effects. 
As is well known, those effects will become more clear for small spring indices, C<10 and some types 
of cross sections such as rectangular shapes. 
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Modes  Po=0 Po=8.2532 N {with eqn. (18)} 

TIMOSHENKO BERNOULLI TIMOSHENKO BERNOULLI 

 f (Hz) 
axialff /

 
f (Hz) 

axialff /
 

f (Hz) 
axialff /

 
f (Hz) 

axialff /
 

1 79.6940  0.67082 79.7693 0.67146  55.8861 0.47042 56.2129  0.47317  
2 79.7155  0.67100 79.7907 0.67164  55.9066 0.47059 56.2335  0.47335  
3 118.363  0.99632 118.687 0.99905  118.209 0.99503 118.531  0.99773  
4 135.010  1.13645 135.180 1.13787  135.313 1.13899 135.486  1.14045  
5 191.610  1.61287 191.939 1.61565  186.638 1.57102 187.458  1.57793  
6 191.703  1.61366 192.033 1.61643  186.692 1.57148 187.512  1.57838  
7 236.538  1.99106 237.186 1.99651  236.215 1.98833 236.858  1.99375  
8 269.569  2.26910 269.909 2.27196  270.189 2.27431 270.536  2.27723  
9 327.402  2.75591 328.147 2.76217  341.067 2.87093 342.431  2.88241  
10 327.713  2.75852 328.455 2.76477  341.296 2.87286 342.686  2.88456  
11 354.446  2.98355 355.415 2.99170  354.253 2.98192 355.254  2.99034  
12 403.364 3.39532 403.874 3.39961  404.263 3.40288 404.788  3.40730  
13 467.859  3.93820 469.101 3.94865  469.453 3.95162 470.759  3.96261  
14 473.721  3.98755 474.990 3.99822  472.753 3.97940 475.060  3.99881  
15 477.471  4.01911 478.798 4.03028  474.727 3.99601 477.070  4.01573  
16 536.179 4.51328 536.859 4.51901 537.533 4.52468 538.239 4.53063 

Table 3: The present first 16 natural frequencies for a cylindrical helical spring based on the  
Timoshenko and Bernoulli-Euler hypotheses by using Equation (18). 

 

Modes 

Becker et al 
(2002) 

(Bernoulli  
Euler) 

Present Study 
(Everything is 

included) 
{eqn. (16)} 

Present Study 
(Rotatory inertia effects are included){eqn. (16)} 

Just axial  
deformations are 

neglected 

Just shear  
deformations are 

neglected 

Both axial and shear 
deformations are  

neglected 
1 0.4754 0.472166 0.4723 0.4746 0.4747 
2 0.4758 0.472339 0.4725 0.4747 0.4749 
3 0.9982 0.995032 0.9950 0.9977 0.9977 
4 1.141 1.13899 1.139 1.139 1.139 
5 1.580 1.57235 1.573 1.5769 1.5779 
6 1.580 1.57280 1.574 1.5773 1.5784 
7 1.995 1.98835 1.988 1.994 1.994 
8 2.278 2.27431 2.274 2.274 2.274 
9 2.885 2.87201 2.874 2.879 2.881 
10 2.885 2.87399 2.876 2.881 2.883 
11 2.992 2.98200 2.982 2.990 2.990 
12 3.409 3.40287 3.403 3.403 3.403 
13 3.964 3.95170 3.952 3.962 3.962 
14 3.996 3.97984 3.983 3.988 3.991 
15 4.017 3.99638 3.999 4.005 4.008 
16 4.533 4.52468 4.525 4.525 4.525 

Table 4: Effects of the axial and shear deformations on the first 16 natural dimensionless frequencies (Po=8.242 N). 
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00   1 < 0  2 < 1  3 < 2   

Figure 4: Relation between frequencies and static axial load for the same spring. 

 
7 NUMERICAL EXAMPLE FOR BUCKLING AND FREE VIBRATION WITH A STATIC AXIAL 

FORCE 

As it is well known, the critical buckling loads may also be determined in a dynamic manner (Yıldırım, 
2012; Kobelev, 2014). In this method, for a given static axial load, from 0P  to crP  at which the 

fundamental frequency of the spring becomes zero, the fundamental frequencies of the spring are 
searched.  

The effect of especially bending moment on the tip deflection increases with increasing helix pitch 
angle. Increasing the helix pitch angle results in an increase in Lo/D ratios while the number of active 
turns remain constant. To see the effect of bending moment on both the critical buckling load and 
the free vibration frequencies of a compressed spring, here a cylindrical helical spring having the same 
properties of the spring in the previous example, except n=5 and Lo/D=10, is studied. Those prop-
erties are in contact with 0 32.4816366o and axialf 712.8014 Hz ( axial 4478.663 rad/s). 

By using Equation (18), it is almost impossible to distinguish directly of the initial force which 
corresponds to a given 0/ L  ratio. This may be done by numerically as shown in Table (5). 

 

0P (N) 100).(
0L
tT

 
100).(

0L
bT 100).(

0L
bM 100).(

0L
tM

 

100).(
0L

Total

 
1 0,002 0,0004 0,133 0,426 0,561 

5 0,012 0,0017 0,664 2,129 2,807 

10 0,023 0,0033 1,328 4,259 5,613 

15 0,035 0,0050 1,992 6,388 8,420 

20 0,047 0,0066 2,655 8,518 11,23 

23,5 0,055 0,0078 3,120 10,01 13,19 

Table 5: Percent effects of the each stress resultants on the relative compression for some applied axial forces. 

 
From the Table (5), for cm10 , it is stated that while the percent contribution of the bending 

moment on the total tip deflection is about 24%, this value is about 76% for the torsional moment. 

0cr
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For this example present free vibration frequencies and critical buckling load which are both 
obtained by using Equation (18) are presented in Table (6). The critical buckling load corresponds 

crP =21.283 (N) at which the fundamental frequency is 1  1.31086 (Hz), critical helix pitch angle 

is cr =29.287 (o), and the relative compression is 0/ L = 0.11897. 

From the Table (6) it is shown that after determining the critical buckling load, the fundamental 
frequency is lost and replaced by the lowest second frequency. This means that buckling occurred. 
For the spring with a static axial force, natural frequencies higher than the first are all shifted forward. 
The numerical free vibration analysis continues to produce natural frequencies for the post buckling 
case. 
 

 (o) 32.48 31.01 30.25 29.49 29.33 29.30 29.29 29.29 29.29 29.28 

)(0 NP  0 10 15 20 21 21.2 21.28 21.285 21.29 21.3 

0/ L  0 0.056 0.084 0.112 0.117 0.119 0.119 0.119 0.119 0.119 

Modes           

1 222.642  169.226 129.217 59.7461  28.2138 15.3332 3.18760 10.7438  10.0724  8.57331  

2 222.894  169.362 129.272  60.5366  30.1637 18.7829 11.3754 458.462  458.428  458.360  

3 563.766  523.956 497.573  467.041  460.392 459.039 458.496 465.656  465.622  465.554  

4 579.415  532.768 505.281  474.283  467.595 466.236 465.690 574.289 574.285  574.276  

5 599.363  585.097 580.029  575.431  574.541 574.364 574.294 718.852  718.860  718.876  

6 684.590  700.701 708.774  716.801  718.397 718.716 718.844 949.949  949.934  949.904  

7 1005.47  981.556 968.123  953.776  950.802 950.204 949.964 974.033  974.018  973.987  

8 1033.48  1006.84 992.637  977.901  974.893 974.290 974.048 1054.26  1054.25  1054.24  

9 1083.05  1068.97 1062.30  1055.87  1054.61 1054.36 1054.26 1357.64  1357.63  1357.61  

10 1351.43  1377.39 1368.61  1359.87  1358.14 1357.79 1357.65 1368.61  1368.60  1368.58  

11 1394.88  1380.08 1378.87  1370.76  1369.09 1368.75 1368.62 1416.67  1416.68  1416.71  

12 1405.88  1390.37 1398.13  1412.82  1415.81 1416.41 1416.65 1442.35  1442.35  1442.35  

13 1442.43  1442.24 1442.23  1442.31  1442.34 1442.35 1442.35 1936.80  1936.82  1936.84  

14 1886.91  1909.39 1921.25  1933.56  1936.08 1936.59 1936.79 2091.97  2091.99  2092.03  

15 2004.48  2045.51 2066.10  2086.69  2090.80 2091.62 2091.95 2609.91  2609.94  2609.99  

16 2505.54 2552.70 2577.50 2603.17 2608.41 2609.46 2609.89 2743.34 2743.36 2743.40 

Table 6: Free vibration frequencies and critical buckling load which are both obtained by using Equation (18). 

 
As stated above, Equation (17), consider the deflection due to just torsional moment for large 

helix angles. Using this equation, the present free vibration frequencies and critical buckling load are 
also computed and presented in Table (7). In this case natural frequencies are found smaller than 
frequencies given in Table (6). From table (7), it is again observed the forward-shifting phenomenon 
of the frequencies in higher modes. 
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 (o) 32.48 30.25 30.79 30.56 30.33 30.27 30.22 30.17 30.16 30.10 

)(0 NP  0 10 15 17 19 19.5 20 20.4 20.5 21 

0/ L  0 0.043 0.064 0.073 0.081 0.083 0.085 0.087 0.087 0.089 

Modes           
1 222.642 165.142 121.753 97.7279 64.1083 52.1781 36.3886 14.0473 4.70327 438.639
2 222.894 165.283 121.817 97.9632 64.7290 53.0238 37.7138 17.4083 442.687 445.634
3 563.766 515.256 483.458 469.384 454.468 450.600 446.673 443.489 449.692 568.302
4 579.415 523.687 490.866 476.579 461.529 457.638 453.693 450.497 568.906 712.619
5 599.363 582.060 575.610 573.149 570.718 570.113 569.509 569.026 711.965 919.762
6 684.590 697.987 704.689 707.351 709.996 710.654 711.310 711.835 922.131 945.238
7 1005.47 968.179 947.128 938.261 929.140 926.820 924.483 922.603 947.550 1041.01
8 1033.48 993.714 972.302 963.447 954.425 952.143 949.852 948.011 1041.99 1333.96
9 1083.05 1062.67 1052.76 1048.83 1044.92 1043.94 1042.96 1042.18 1335.47 1340.81
10 1351.43 1366.59 1351.94 1345.99 1340.00 1338.49 1336.98 1335.77 1342.38 1405.03
11 1394.88 1370.82 1359.18 1353.19 1347.05 1345.50 1343.94 1342.69 1403.80 1408.38
12 1405.88 1381.77 1390.55 1395.29 1400.14 1401.36 1402.58 1403.56 1409.26 1888.77
13 1442.43 1426.98 1418.73 1415.34 1411.89 1411.02 1410.14 1409.44 1888.76 2075.31
14 1886.91 1888.13 1888.50 1888.61 1888.70 1888.72 1888.74 1888.75 2073.62 2547.47
15 2004.48 2038.12 2055.01 2061.78 2068.54 2070.24 2071.93 2073.28 2546.44 2729.88
16 2505.54 2525.26 2535.28 2539.32 2543.38 2544.40 2545.42 2546.24 2727.99 3336.15

Table 7: Free vibration frequencies and critical buckling load which are both obtained by using Equation (17). 

 
 (o) 32.48 31.15 29.78 29.74 29.70 29.66 29.65 29.64 

)(0 NP  0 10 20 20.3 20.6 20.9 20.95 21 

0/ L  0 0.050 0.101 0.102 0.104 0.106 0.106 0.106 

Modes         

1 222.642 167.554 51.2411 42.3180 30.8474 10.3869 9.00528 451.454 
2 222.894 167.693 52.1726 43.5052 32.5441 14.8720 451.820 458.566 
3 563.766 520.406 458.675 456.531 454.368 452.185 458.934 572.004 
4 579.415 529.054 465.820 463.665 461.492 459.300 572.054 716.061 
5 599.363 583.855 573.021 572.715 572.410 572.105 715.987 938.074 
6 684.590 699.598 714.580 715.025 715.469 715.913 938.259  62.721 
7 1005.47 976.097 941.769 940.665 939.557 938.445 962.906 1049.08 
8 1033.48 1001.48 966.394 965.295 964.194 963.090 1049.16 1348.39 
9 1083.05 1066.40 1050.62 1050.16 1049.70 1049.23 1348.50 1357.55 
10 1351.43 1373.01 1350.64 1349.96 1349.29 1348.61 1357.66 1411.45 
11 1394.88 1376.67 1359.82 1359.14 1358.46 1357.77 1411.31 1428.33 
12 1405.88 1386.51 1408.67 1409.50 1410.34 1411.17 1428.36 1916.67 
13 1442.43 1435.99 1429.04 1428.83 1428.61 1428.40 1916.59 2084.62 
14 1886.91 1900.71 1915.18 1915.62 1916.07 1916.52 2084.43 2583.34 
15 2004.48 2042.53 2080.79 2081.94 2083.09 2084.24 2583.15 2737.34 
16 2505.54 2541.48 2579.43 2580.60 2581.77 2582.95 2737.14 3361.80 

Table 8: Free vibration frequencies and critical buckling load which are both obtained by using Equation (16). 
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As it is well known, the common equation numbered by (16) consider the deflection due to the 
just torsional moment for small helix angles. Finally, to see the effect of Equation (16), Let’s consider 
Table (8). In this situation, natural frequencies have the numerical values between Table (6) and 
Table (7). 

Figure (5) shows the critical buckling loads obtained in a static manner for this example. The 
numerical values of the critical buckling loads calculated by both static and dynamic manners are 
exhibited in Table (9) in a concise way. From this table, it may be concluded that critical buckling 
loads obtained by using Equation (18) gives the higher values. This means that critical buckling loads 
found by Equations (16) and (17) fell in a safe region in design for this example. 
 

 

Figure 5: Critical buckling loads obtained in a static manner for C=10 and n=5 (Yıldırım, 2009b). 

 

 
Equation 

used 
)(NPcr  cr (degree) 

0L
cr

 (%) 

Present Study 

19 21.283 29.287 11.9 

18 20.4 30.17 8.7 

17 20.9 29.66 10.6 

Yıldırım (2009b) -- 21.299 29.271 11.96 

Table 9: Critical buckling loads and corresponding deformations of the spring. 

 
8 CONCLUSIONS AND DISCUSSIONS 

Vibration analysis of the springs under axial static loads requires a precise study to understand the 
real behavior of the springs. To accomplish such an accurate analysis first the most comprehensive 
differential equations which comprise some additional terms for taking into account for the axial and 
shear deformation terms on the buckling and vibration were used, second the exact total tip defor-
mation for a spring subjected to an axial force is calculated by using a global analytical formula 

C=10, n=5 
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considering the whole effect of the resultant forces on the tip deflection, third the overall exact transfer 
matrix is numerically calculated by using an effective numerical algorithm. As a result, those choices 
render an accurate numerical free vibration analysis of cylindrical helical springs under a static axial 
force based on the transfer matrix method. 

The vibration modes correspond to low-frequency motions are strongly affected by the presence 
of applied static axial loads as Kobelev stated (2014). In the present study the forward-shifting phe-
nomenon of the natural frequencies in higher modes are observed after buckling. That is with a small 
increment of the value of the applied static load, one may get the next natural frequency after buckling 
occurs. Before determining the natural frequencies subjected to a certain static axial force, the axial 
force considered should be tested for the critical buckling load. The author offers that a free and/or 
forced vibration analysis with an axial static load should not be performed individually without 
checking buckling loads. 
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