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Free vibration of thick orthotropic plates using trigonometric
shear deformation theory

Abstract

In this paper a trigonometric shear deformation theory is

presented for the free vibration of thick orthotropic square

and rectangular plates. In this displacement based theory

the in-plane displacement field uses sinusoidal function in

terms of thickness coordinate to include the shear deforma-

tion effect. The cosine function in terms of thickness coordi-

nate is used in transverse displacement to include the effect

of transverse normal strain. The most important feature

of the theory is that the transverse shear stress can be ob-

tained directly from the constitutive relations satisfying the

shear stress free surface conditions on the top and bottom

surfaces of the plate. Hence the theory obviates the need

of shear correction factor. Governing equations and bound-

ary conditions of the theory are obtained using the principle

of virtual work. Results obtained for frequency of bending

mode, shear mode and thickness stretch mode of free vibra-

tion of simply supported orthotropic square and rectangular

plates are compared with those of other refined theories and

exact solution from theory of elasticity wherever applicable.
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1 INTRODUCTION

The use of composite materials has increased steadily during last two decades, particularly

in aerospace, underwater and automotive structures. This is largely because many compos-

ite materials exhibit high strength-to-weight and stiffness-to-weight ratios, which make them

ideally suited for use in weight-sensitive structures.

The study of free vibration dates back to the 1800s. Kirchhoff [9, 10] developed classical

plate theory (CPT) which is based on hypothesis that straight lines normal to the undeformed

midplane remain straight and normal to the deformed midplane. Since the transverse shear

deformation is neglected in Kirchhoff theory, it can not be adequate for the analysis of shear

flexible thick plates wherein shear deformation effects are more significant. Thus, its suitability
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is limited to only thin plates; as a consequence it under predicts deflections and over predicts

natural frequencies.

First order shear deformation theories (FSDTs) can be considered as improvements over

classical plate theory. It is based on the assumption that straight lines normal to undeformed

midplane remain straight but not necessarily normal to the deformed midplane. Mindlin et al.

[18] investigated the free flexural vibration of rectangular plate. Reissner [24] was the first to

develop a theory which incorporates the effect of shear. Reissner’s formulation comes out as a

special case of Librescu’s [14] approach.

Chladni [3] studied the free vibration of a square plate with completely free edges. Rayleigh

[22] presented his well-known general method of solution for the natural frequencies of vibra-

tion. Ritz [25] improved the Rayleigh procedure by assuming a set of admissible trial functions.

Levinson [12] has developed a displacement based theory which does not require shear correc-

tion factor. The governing equations for the motion of a plate obtained by Levinson’s approach

are same as those by Mindlin’s theory, provided that the shear coefficient value associated with

the Mindlin’s theory is taken as 5/6.

Many higher order theories are available in the literature for the static flexure and free

vibration analysis of thick plates e.g., theories by Nelson and Lorch [20] with nine unknowns,

Krishna Murty [19] with 5, 7, 9. . . unknowns, Lo et al. [16, 17] with 11 unknowns, Kant [7]

with six unknowns, Bhimaraddi and Stevens [2] with five unknowns, Reddy [23] with eight

unknowns, Hanna and Leissa [5] with four unknowns. Srinivas et al. [27] used an exact

three dimensional plate theory to study the vibration of simply supported homogenous and

laminated thick rectangular plates.

Levy [13] has developed a refined theory for thick plate for the first time using sinusoidal

functions in the displacement field. Stein [28] has used theory using trigonometric functions for

analysis of laminated beams and plates. A critical review of the plate theories has been given

by Vasil’ev [29] and Noor and Burton [21]. Whereas Liew et al. [15] surveyed plate theories

particularly applied to thick plate vibration problems. A recent review paper is presented by

Ghugal and Shimpi [4]. Shimpi and Patel [26] have developed a two variable refined plate

theory for the free vibration of orthotropic plate; however theory overestimates the results of

bending frequencies compared to those of exact theory. Kim and Reddy [8] have developed

novel mixed finite element models for nonlinear analysis of plates based on the classical and

first order shear deformation theories.

In this paper a displacement based trigonometric shear deformation theory is presented

for the free vibration of orthotropic square and rectangular plates which includes effect of

transverse shear and transverse normal strain.

2 PLATE UNDER CONSIDERATION

Consider a plate (of length a, width b, and thickness h) of homogenous material. The plate

occupies (in O – x – y – z right-handed Cartesian coordinate system) a region

0 ≤ x ≤ a; 0 ≤ y ≤ b; −h/2 ≤ z ≤ h/2 (1)
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2.1 Assumptions made in theoretical formulation

1. The displacement components u and v are the inplane displacements in x and y –

directions respectively and w is the transverse displacement in z -direction. These dis-

placements are small in comparison with the plate thickness.

2. The in-plane displacement u in x -direction and v in y -direction each consist of two

parts:

a. a displacement component analogous to displacement in classical plate theory of

bending;

b. displacement component due to shear deformation which is assumed to be sinusoidal

in nature with respect to thickness coordinate.

3. The transverse displacement w in z -direction is assumed to be a function of x, y and z

coordinates.

4. The body forces are ignored in the analysis.

5. The plate is subjected to transverse load only.

2.2 The displacement field

Based upon the before mentioned assumptions, the displacement field of the present plate

theory is given as below:

u (x,y,z, t)=−z ∂w (x,y,t)
∂x

+h
π
sin

πz

h
φ (x,y,t)

v (x,y, z,t)=−z ∂w (x,y,t)
∂y

+h
π
sin

πz

h
ψ (x,y,t)

w (x,y, z,t)=w (x,y,t)+h
π
cos

πz

h
ξ (x,y,t)

(2)

where u and v are the inplane displacements in x and y –directions respectively and w is

transverse displacement in z -direction. The sinusoidal function is assigned according to the

shear stress distribution through the thickness of the plate. The φ, ψ and ξ represent rotations

of the plate at neutral surface, which are unknown functions to be determined.

2.3 Strain displacement relationship

Normal and shear strains are obtained within the framework of linear theory of elasticity using

displacement field given by Eq. (2).
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Normal strains:

εx =
∂u

∂x
= −z ∂

2w

∂x2
+ h
π
sin

πz

h

∂φ

∂x

εy =
∂v

∂y
= −z ∂

2w

∂y2
+ h
π
sin

πz

h

∂ψ

∂y

εz =
∂w

∂z
= −ξ sin πz

h

(3)

Shear strains:

γxy =
∂u

∂x
+ ∂v
∂x
= −2z ∂

2w

∂x∂y
+ h
π
sin

πz

h
(∂φ
∂y
+ ∂ψ
∂x
)

γxz =
∂u

∂z
+ ∂w
∂x
= cos πz

h
(h
π

∂ξ

∂x
+ φ)

γyz =
∂v

∂z
+ ∂w
∂y
= cos πz

h
(h
π

∂ξ

∂y
+ ψ)

(4)

2.4 Stress-strain relationship

The following stress-strain relationships are used to obtain normal and transverse shear stresses.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σx
σy
σz
τxy
τyz
τzx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̄11 Q̄12 Q̄13 0 0 0

Q̄12 Q̄22 Q̄23 0 0 0

Q̄13 Q̄23 Q̄33 0 0 0

0 0 0 Q̄44 0 0

0 0 0 0 Q̄55 0

0 0 0 0 0 Q̄66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx
εy
εz
γxy
γyz
γzx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

where [Q̄ij] are the reduced stiffness coefficients as given by Jones [6] are as follows.

∆ = 1 − µ12µ21 − µ23µ32 − µ31µ13 − 2µ21µ32µ13

Q̄11 =
E1 (1 − µ23µ32)

∆
; Q̄12 =

E1 (µ21 − µ31µ23)
∆

;

Q̄13 =
E1 (µ31 − µ21µ32)

∆
; Q̄22 =

E2 (1 − µ13µ31)
∆

;

Q̄23 =
E2 (µ32 − µ12µ31)

∆
; Q̄33 =

E3 (1 − µ12µ21)
∆

;

Q̄66 = G12; Q̄55 = G13; Q̄44 = G23

Latin American Journal of Solids and Structures 8(2011) 229 – 243



Y.M. Ghugal et al / Free vibration of thick orthotropic plates using trigonometric shear deformation theory 233

2.5 Derivation of governing equations and boundary conditions

Using Eq. (3) through (5) and dynamic version of principle of virtual work, variationally

consistent differential equations and boundary conditions for the plate under consideration are

obtained. The dynamic version of principle of virtual work when applied to the plate leads to:

∫
z=h/2

z=−h/2
∫

y=b

y=0
∫

x=a

x=0
[ σx δεx+σy δεy+σz δεz
+τyz δγyz+τ zx δγzx+τxy δγxy

]dxdy dz − ∫
y=b

y=0
∫

x=a

x=0
q (x, y) δw dxdy

+ρ∫
z=h/2

z=−h/2
∫

y=b

y=0
∫

x=a

x=0
[∂

2u

∂t2
δu + ∂

2v

∂t2
δv + ∂

2w

∂t2
δw] dxdy dz=0

(6)

Employing Green’s theorem in Eq. (6) successively, we obtain the coupled Euler-Lagrange

governing equations of the plate and the associated boundary conditions of the plate in terms

of stress resultants. The governing differential equations are as follows:

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2My

∂y2
+ q = I1

∂2w

∂ t2
− I2 (

∂4w

∂x2∂t2
+ ∂4w

∂y2∂t2
) + Is1 (

∂3φ

∂x∂t2
+ ∂3ψ

∂y∂t2
) + Ic1

∂2ξ

∂t2

∂Msx

∂x
+
∂Vsxy

∂y
− π

h
Vsx = Is2

∂2φ

∂t2
− Is1

∂3w

∂x∂t2

∂Msy

∂y
+
∂Vsxy

∂x
− π
h
Vsy = Is2

∂2ψ

∂t2
− Is1

∂3w

∂y∂t2

∂Vsx
∂x
+
∂Vsy

∂y
− π
h
Vsz = Ic1

∂2w

∂t2
+ Ic2

∂2ξ

∂t2
(7)

The boundary conditions at x = 0 and x = a obtained are of the following form:

Mx=0 or ∂w/∂x is specified

∂Mx/∂x+2∂Mxy/∂y=0 or w is specified

Msx=0 or φ is specified

Vsxy=0 or ψ is specified

Vsx=0 or ξ is specified

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

and along y=0 and y=b edges, the boundary conditions are as follows:

My=0 or ∂w/∂y is specified

∂My/∂y+2∂Mxy/∂x=0 or w is specified

Msy=0 or φ is specified

Vsxy=0 or ψ is specified

Vsy=0 or ξ is specified

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

At corners (x = 0, y = 0), (x = a, y = 0), (x = 0, y = b), (x = a, y = b) boundary condition is:

Mxy = 0 or w is specified (10)
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Here the stress resultants appear in the governing equations and boundary conditions are

defined as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Mx Msx

My Msy

Mxy Vsxy
0 Vsz

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= ∫
h/2

−h/2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σx
σy
τxy
σz

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(z h

π
sin

πz

h
) dz (11)

[ Vsx
Vsy
] = ∫

h/2

−h/2
{ τzx
τzy
} (h

π
cos

πz

h
) dz (12)

where Mx, My, Mxy are moment resultants analogous to classical plate theory, Msx, Msy

are refined moments due to transverse shear deformation effect and Vsz, Vsxy, Vsx, Vsy are

shear force resultants. The inertia terms appeared in the governing equations and boundary

conditions are expressed as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1
I2
Is1
Is2
Ic1
Ic2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ρ∫
h/2

−h/2
{1 z2 z

h

π
sin

πz

h

h2

π2
sin2

πz

h

h

π
cos

πz

h

h2

π2
cos2

πz

h
} dz (13)

3 ILLUSTRATIVE EXAMPLES

Simply supported orthotropic square and rectangular plates occupying the region given by the

Eqn. (1) are considered for numerical study. The governing differential equations (7) and the

associated boundary conditions (8 and 9), in terms of displacement variables, for free vibration

of square and rectangular plates under consideration are as follows:

(D1
∂4w

∂x4
+D2

∂4w

∂x2∂y2
+D3

∂4w

∂y4
) − (D4

∂3φ

∂x3
+D5

∂3ψ

∂y3
) −D6 (

∂3φ

∂x∂y2
+ ∂3ψ

∂x2∂y
) +D7

∂2ξ

∂x2

+D8
∂2ξ

∂y2
+I1

∂2w

∂ t2
− I2 (

∂4w

∂x2∂t2
+ ∂4w

∂y2∂t2
) + Is1 (

∂3φ

∂x∂t2
+ ∂3ψ

∂y∂t2
) + Ic1

∂2ξ

∂t2
= q

(14)

D4
∂3w

∂x3
+D6

∂3w

∂x∂y2
−D9

∂2φ

∂x2
−D10

∂2φ

∂y2
+D11φ −D12

∂2ψ

∂x∂y
+D13

∂ξ

∂x
+Is2

∂2φ

∂t2
− Is1

∂3w

∂x∂t2
= 0

(15)

D5
∂3w

∂y3
+D6

∂3w

∂x2∂y
−D10

∂2ψ

∂x2
−D14

∂2ψ

∂y2
+D15ψ −D12

∂2φ

∂x∂y
+D16

∂ξ

∂y
+Is2

∂2ψ

∂t2
− Is1

∂3w

∂y∂t2
= 0

(16)
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D7
∂2w

∂x2
+D8

∂2w

∂y2
−D13

∂φ

∂x
−D16

∂ψ

∂y
− (D17

∂2ξ

∂x2
+D18

∂2ξ

∂y2
+D19ξ)+Ic1

∂2w

∂t2
+ Ic2

∂2ξ

∂t2
= 0

(17)

The associated boundary conditions on edges x = 0 and x = a are as follows:

w = 0 (18)

D1
∂2w

∂x2
+D21

∂2w

∂y2
−D4

∂φ

∂x
−D22

∂ψ

∂y
+D7ξ = 0 (19)

D4
∂2w

∂x2
+D22

∂2w

∂y2
−D9

∂φ

∂x
−D23

∂ψ

∂y
+D24ξ = 0 (20)

D20
∂2w

∂x∂y
−D10 (

∂φ

∂y
+ ∂ψ
∂x
) = 0 (21)

D25φ +D17
∂ξ

∂x
= 0 (22)

The associated boundary conditions on edges y = 0 and y = b are as follows:

w = 0 (23)

D21
∂2w

∂x2
+D3

∂2w

∂y2
−D22

∂φ

∂x
−D5

∂ψ

∂y
+D8ξ = 0 (24)

D20
∂2w

∂x∂y
+D10 (

∂φ

∂y
+ ∂ψ
∂x
) = 0 (25)

D22
∂2w

∂x2
+D5

∂2w

∂y2
−D23

∂φ

∂x
−D14

∂ψ

∂y
+D26ξ = 0 (26)

D27ψ +D18
∂ξ

∂y
= 0 (27)

where D1 through D27 are the stiffness coeficients as given in Appendix.
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3.1 The solution scheme

The governing equations for free flexural vibration of orthotropic plate can be obtained by

setting the applied transverse load equal to zero in Eq. (14). A solution to resulting governing

equations, when expressed in terms of displacement variables, which satisfies the associated

boundary conditions (time dependent), is of the following form:

w (x, y) =
m=∞
∑
m=1

n=∞
∑
n=1

wmn sin
mπx

a
sin

nπy

b
sinωmnt

φ (x, y) =
m=∞
∑
m=1

n=∞
∑
n=1

φmn cos
mπx

a
sin

nπy

b
sinωmnt

ψ (x, y) =
m=∞
∑
m=1

n=∞
∑
n=1

ψmn sin
mπx

a
cos

nπy

b
sinωmnt

ξ (x, y) =
m=∞
∑
m=1

n=∞
∑
n=1

ξmn sin
mπx

a
sin

nπy

b
sinωmnt

(28)

where wmn is the amplitude of translation and φmn, ψmn and ξmn are the amplitudes of

rotation. ωmn is the natural frequency of mth and nth mode of vibration. Substitution of

solution form given by Eqn. (28) into the governing equations (14-17) of free vibration of

orthotropic plate results in following algebraic equations:

⎡⎢⎢⎢⎢⎣

(D1
m4π4

a4
+D2

m2n2π4

a2b2
+D3

n4π4

b4
)wmn − (D4

m3π3

a3
+D6

mn2π3

ab2
)φmn

− (D5
n3π3

b3
+D6

m2nπ3

a2b
)ψmn − (D7

m2π2

a2
+D8

n2π2

b2
) ξmn

⎤⎥⎥⎥⎥⎦
− ω2

[(I1 + I2
m2π2

a2
+ I2

n2π2

b2
) wmn − Is1

mπ

a
φmn − Is1

nπ

b
ψmn + Ic1ξmn] = 0

(29)

⎡⎢⎢⎢⎢⎣

(D4
m3π3

a3
+D6

mn2π3

ab2
)wmn − (D9

m2π2

a2
+D10

n2π2

b2
+D11)φmn

+D12
mnπ2

ab
ψmn −D13

mπ
a
ξmn

⎤⎥⎥⎥⎥⎦
− ω2

[−Is1
mπ

a
wmn + Is2φmn] = 0

(30)

⎡⎢⎢⎢⎢⎣

(D5
n3π3

b3
+D6

m2nπ3

a2b
)wmn +D12

mnπ2

ab
φmn

− (D10
m2π2

a2
+D14

n2π2

b2
+D15)ψmn −D16

nπ
b
ξmn

⎤⎥⎥⎥⎥⎦
− ω2 [−Is1

nπ

b
wmn + Is2ψmn] = 0 (31)

⎡⎢⎢⎢⎢⎣

(D7
m2π2

a2
+D8

n2π2

a2
)wmn −D13

mπ
a
φmn −D16

nπ
b
ψmn

− (D17
m2π2

a2
+D18

n2π2

a2
+D19) ξmn

⎤⎥⎥⎥⎥⎦
− ω2 [Ic1wmn + Ic2ξmn] = 0 (32)

Latin American Journal of Solids and Structures 8(2011) 229 – 243



Y.M. Ghugal et al / Free vibration of thick orthotropic plates using trigonometric shear deformation theory 237

Equations (29) through (32) can be written in the following matrix form:

⎛
⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

⎤⎥⎥⎥⎥⎥⎥⎥⎦

− ω2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟
⎠

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wmn
φmn
ψmn
ξmn

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

= 0

(33)

Eqn. (33) in more compact form can be written as follows:

([K] − ω2
mn [M]) {∆mn} = 0 (34)

where [K] is the stiffness matrix, [M] is the mass matrix and {∆mn} is the vector of amplitudes

of translation and rotations. The solution of Eqn. (34) is well known (see Bathe [1]), from this

solution lowest natural frequencies for all modes of vibration can be obtained. The orthotropic

plate has following material properties as given by Srinivas et al. [27]:

Q̄11 = 23.2 × 106psi, Q̄22 = 12.6 × 106psi, Q̄33 = 12.3 × 106psi,
Q̄12 = 5.41 × 106psi, Q̄13 = 0.25 × 106psi, Q̄23 = 2.28 × 106psi,
Q̄44 = 6.19 × 106psi, Q̄55 = 3.71 × 106psi, Q̄66 = 6.10 × 106psi.

The density (ρ) of material can be taken as any arbitrary value for calculation of frequencies.

4 NUMERICAL RESULTS

In the present paper free vibration analysis of simply supported square and rectangular or-

thotropic plate for aspect ratio 10 is attempted. The results obtained using present theory are

compared with exact results and those of other higher order theory results available in litera-

ture wherever applicable. Following non-dimensional form is used for the purpose of presenting

the results in this paper.

ω̄ = ωmnh
√

ρ

Q11

The percentage error in the results obtained using a particular model with respect to the

results of exact elasticity solutions is calculated as follows:

%error = value by perticular theory − value by exact elasticity solution

value by exact elasticity solution
× 100

4.1 Discussion of numerical results

Results obtained for frequencies of bending mode, thickness shear mode and thickness stretch

mode are compared and discussed with the corresponding results of classical plate theory

(CPT), first order shear deformation theory, Reddy’s theory and exact theory [27].
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Table 1 Comparison of natural frequencies of orthotropic square plate (b/a = 1) for aspect ratio 10 (h/a = 0.1).

(m, n)
Exact [27] Present

ω̄w ωφ ω̄ψ ω̄w ωφ ω̄ψ ω̄ξ
(1, 1) 0.0474 1.3077 1.6530 0.0474 1.3077 1.6530 5.2662
(1,2) 0.1033 1.3331 1.7160 0.1031 1.3332 1.7145 5.2269
(1, 3) 0.1888 1.3665 1.8115 0.1793 1.3766 1.8044 5.1530
(1, 4) 0.2969 1.4372 1.9306 0.2932 1.4371 1.9121 5.0416
(2, 1) 0.1188 1.4205 1.6805 0.1196 1.4203 1.6817 5.3073
(2, 2) 0.1694 1.4316 1.7509 0.1696 1.4316 1.7513 5.2692
(2, 3) 0.2475 1.4596 1.8523 0.2478 1.4598 1.8458 5.1904
(2, 4) 0.3476 1.5068 1.9749 0.3468 1.5063 1.9524 5.0764
(3, 1) 0.2180 1.5777 1.7334 0.2199 1.5766 1.7373 5.3706
(3, 2) 0.2624 1.5651 1.8195 0.2671 1.5644 1.8255 5.3367
(3, 3) 0.3320 1.5737 1.9289 0.3326 1.5737 1.9301 5.2653
(4, 1) 0.3319 1.7179 1.8458 0.3346 1.7168 1.7163 5.4552
(4, 2) 0.3707 1.6940 1.9447 0.3727 1.6942 1.9568 5.4284

(m, n)
Reddy [23] Mindlin [18] CPT [9, 10]

ω̄w ωφ ω̄ψ ω̄w ωφ ω̄ψ ω̄w
(1, 1) 0.0474 1.3086 1.6550 0.0474 1.3159 1.6647 0.0497
(1,2) 0.1033 1.3339 1.7209 0.1032 1.3410 1.7307 0.1120
(1, 3) 0.1888 1.3772 1.8210 0.1884 1.3841 1.8307 0.2154
(1, 4) 0.2969 1.4379 1.9466 0.2959 1.4445 1.9562 0.3599
(2, 1) 0.1189 1.4216 1.6827 0.1187 1.4285 1.6922 0.1354
(2, 2) 0.1695 1.4323 1.7562 0.1692 1.4393 1.7657 0.1987
(2, 3) 0.2477 1.4603 1.8622 0.2469 1.4671 1.8717 0.3029
(2, 4) 0.3479 1.5076 1.9912 0.3463 1.5142 2.0004 0.4480
(3, 1) 0.2184 1.5789 1.7361 0.2178 1.5857 1.7452 0.2779
(3, 2) 0.2629 1.5658 1.8255 0.2619 1.5727 1.8343 0.3418
(3, 3) 0.3326 1.5744 1.9395 0.3310 1.5812 1.9418 0.4470
(4, 1) 0.3330 1.7189 1.8583 0.3311 1.7265 1.7267 0.4773
(4, 2) 0.3720 1.6947 1.9514 0.3696 1.7022 1.9588 0.5415

A) Bending frequency (ω̄w): Table 1 shows comparison of bending frequencies for all modes

of vibration for square plate (b/a = 1). It can be seen from Table 1 that the present theory

yields excellent values of frequencies for all modes of vibration. The present theory, Reddy’s

theory [23] and Mindlin’s theory [18] predicts exact result of bending frequency for fundamental

mode i.e. m = 1, n = 1. Maximum percentage error predicted by present theory is 5.39 %

when m = 4, n = 2 whereas maximum percentage error in Reddy’s [23] theory is 3.50 % for the

same mode of vibration. The theory of Kirchhoff (CPT) [9, 10] overestimates the fundamental

bending frequency by 4.85 %.

Comparison of bending frequency for the rectangular plate (b/a =
√
2) is shown in Table

2. Because of unavailability of exact results percentage error is not quoted. From Table 2

it can be observed that present theory shows slightly lower values of bending frequency as

compared to those of Reddy’s [23] and Mindlin’s [18] theories. In case of rectangular plate,

CPT overestimates the results of bending frequency as compared to those of other higher order
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Table 2 Comparison of natural frequencies of orthotropic rectangular plate (b / a =
√
2) for aspect ratio 10

(h / a = 0.1).

(m, n)
Present Reddy [23]

ω̄w ωφ ω̄ψ ω̄ξ ω̄w ωφ ω̄ψ
(1, 1) 0.0376 1.3036 1.6420 5.2701 0.0378 1.3045 1.6437
(1,2) 0.0653 1.3162 1.6738 5.2577 0.0676 1.3169 1.6786
(1, 3) 0.1066 1.3376 1.7224 5.2208 0.1142 1.3382 1.7336
(1, 4) 0.1768 1.3680 1.7835 5.1582 0.1750 1.3686 1.8054
(2, 1) 0.1104 1.4194 1.6683 5.3106 0.1104 1.4206 1.6696
(2, 2) 0.1371 1.4235 1.7054 5.2989 0.1377 1.4243 1.7094
(2, 3) 0.1728 1.4344 1.7583 5.2614 0.1804 1.4348 1.7696
(2, 4) 0.2136 1.4540 1.8209 5.1955 0.2366 1.4543 1.8456
(3, 1) 0.2114 1.5831 1.7171 5.3729 0.2110 1.5852 1.7172
(3, 2) 0.2365 1.5697 1.7691 5.3634 0.2352 1.5713 1.7704
(3, 3) 0.2701 1.5650 1.8326 5.3277 0.2735 1.5658 1.8400
(4, 1) 0.3269 1.8376 1.7267 5.4560 0.3262 1.8370 1.7289
(4, 2) 0.3500 1.8967 1.7047 5.4500 0.3475 1.8947 1.7066

(m, n)
Mindlin [18] CPT [9, 10]

ω̄w ωφ ω̄ψ ω̄w
(1, 1) 0.0377 1.3118 1.6533 0.0390
(1,2) 0.0669 1.3242 1.6882 0.0701
(1, 3) 0.1132 1.3453 1.7433 0.1210
(1, 4) 0.1739 1.3755 1.8151 0.1903
(2, 1) 0.1100 1.4276 1.6790 0.1225
(2, 2) 0.1362 1.4313 1.7188 0.1533
(2, 3) 0.1779 1.4417 1.7790 0.2032
(2, 4) 0.2333 1.4611 1.8550 0.2711
(3, 1) 0.2102 1.5920 1.7262 0.2575
(3, 2) 0.2329 1.5782 1.7792 0.2870
(3, 3) 0.2695 1.5728 1.8488 0.3352
(4, 1) 0.3246 1.8439 1.7371 0.4381
(4, 2) 0.3442 1.9020 1.7143 0.4661

theories due to the neglect of transverse shear deformation and transverse normal stress effects

in the classical theory.

B) Thickness shear mode frequency (ω̄φ): From the examination of Table 1 it can be

observed that, for square plate (b/a = 1) the present theory gives exact values of thickness

shear mode frequency for fundamental mode of vibration i.e. m = 1, n = 1 whereas theories

of Reddy [23] and Mindlin [18] overestimates the same by 0.069 % and 0.63 % respectively

for the same mode of vibration as compared to that of exact theory. The present theory

yield excellent results for the thickness shear mode frequency for all higher modes of vibration.

The theories of Reddy [23] and Mindlin [18] show higher values for the thickness shear mode

frequency for all modes of vibration as compared to those of exact and present theory. The

comparison of thickness shear mode frequency for rectangular plate (b/a =
√
2) as shown in

Table 2. The frequencies obtained by present theory and theory of Reddy [23] of this plate are
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more or less identical with each other. However, Mindlin’s [18] theory predicts higher values

of this frequency.

Dynamic shear correction factor is the most important parameter in the dynamic analysis

of plates. The exact value of this factor is given by Lamb [11]. Present theory yields the exact

value of dynamic shear correction factor (π2/12) from the circular frequency of thickness shear

motion (m = 0, n = 0) for infinitely long thin rectangular plate.

C) Thickness shear mode frequency (ω̄ψ): From Table 1 it is observed that, for square plate

(b/a = 1) present theory predicts exact result of this frequency for fundamental mode whereas

Reddy [23] and Mindlin [18] theories overestimate the same. The theories of Reddy [23] and

Mindlin [18] shows less accuracy of results for higher modes as compared to those of present

and exact theories. The comparison of frequency of thickness shear mode for rectangular plate

(b/a =
√
2) is shown in Table 2.

D) Thickness stretch mode frequency (ω̄ξ): In Table 1 and 2 results of frequency of thickness

stretch mode of vibration are given for square and rectangular plates. The results of this

frequency by other higher order theories are not available in the literature due to the neglect

of transverse normal strain effect in these theories. The lowest natural frequency for this mode

occurs at m = 1 and n = 4 and the highest natural frequency occurs at m = 4 and n = 1.

5 CONCLUSIONS

Following conclusions are drawn from the free vibration analysis thick orthotropic plates using

variationally consistent trigonometric shear deformation theory.

1. The frequencies obtained by the present theory for bending and thickness shear modes

of vibration for all modes of vibration are in excellent agreement with the exact values

of frequencies for the square plate (b/a = 1).

2. The frequencies of bending and thickness shear modes of vibration according to present

theory are in good agreement with those of higher order shear deformation theory for

rectangular plate (b/a =
√
2) and these results are rarely available in the literature.

3. The present theory is capable to produce frequencies of thickness stretch mode of vibra-

tion.

4. The present theory yields the exact value of dynamic shear correction factor from the

thickness shear motion of vibration.
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APPENDIX

The stiffness coefficients D1 through D27 appeared in governing equations (14-17) and bound-

ary conditions (18-27) are as follows.

D1 = Q̄11h
3

12
;D2 = 2 (Q̄12 + 2Q̄66) h

3

12
;D3 = Q̄22h

3

12
;D4 = Q̄112h

3

π3 ;D5 = Q̄222h
3

π3 ;

D6 = 2 (Q̄12 + 2Q̄66) h
3

π3 ;D7 = Q̄132h
2

π2 ;D8 = Q̄232h
2

π2 ;D9 = Q̄11h
3

2π2 ;D10 = Q̄66h
3

2π2 ;

D11 = Q̄55h
2

;D12 = (Q̄12 + Q̄66) h3

2π2 ;D13 = (Q̄13 + Q̄55) h
2

2π
;D14 = Q̄22h

3

2π2 ;D15 = Q̄44h
2

;

D16 = (Q̄23 + Q̄44) h
2

2π
;D17 = Q̄55h

3

2π2 ;D18 = Q̄44h
3

2π2 ;D19 = Q̄33h
2

;D20 = 4Q̄66h
3

π3 ;

D21 = Q̄12h
3

12
;D22 = Q̄122h

3

π3 ;D23 = Q̄12h
3

2π2 ;D24 = Q̄13h
2

2π
;D25 = Q̄55h

2

2π
;D26 = Q̄23h

2

2π
;

D27 = Q̄44h
2

2π
.

The elements of stiffness matrix [K] are as under:

K11 = (D1
m4π4

a4
+D2

m2n2π4

a2b2
+D3

n4π4

b4
) ; K12 = (D4

m3π3

a3
+D6

mn2π3

ab2
) ;

K13 = − (D5
n3π3

b3
+D6

m2nπ3

a2b
) ; K14 = − (D7

m2π2

a2
+D8

n2π2

b2
) ;

K21 =K12; K22 = −(D9
m2π2

a2
+D10

n2π2

b2
+D11) ; K23 =D12

mnπ2

ab
; K24 = −D13

mπ

a
;

K31 =K13; K32 =K23; K33 = −(D10
m2π2

a2
+D14

n2π2

b2
+D15) ;K34 = −D16

nπ

b
;

K41 =K14; K42 =K24; K43 =K34; K44 = (D17
m2π2

a2
+D18

n2π2

a2
+D19)

The elements of mass matrix [M] are as under:

M11 = (I1 + I2m
2π2

a2
+ I2 n

2π2

b2
) ; M12 = −Is1mπa ; M13 = −Is1 nπb ; M14 = Ic1;

M21 = M12; M22 = Is2; M23 = 0.0; M24 = 0.0; M31 = M13; M32 = M23;

M33 = Is2; M34 = 0.0; M41 = M14; M42 = M24; M43 = M34; M44 = Ic2.

The vector {∆mn} in Eqn. (34) is defined as:

{∆mn} =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wmn
φmn
ψmn
ξmn

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

.
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