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Abstract 
In the present paper, a simplified homogenized beam theory is used 
in the context of a numerical investigation regarding the dynamic 
behavior of a rotating composite hollow shaft. For this aim, a 
horizontal flexible composite shaft and a rigid disc form the 
considered simple supported rotating system. The mathematical 
model of the rotor is derived from the Lagrange’s equation and the 
Rayleigh-Ritz method, which is obtained from the strain and 
kinetic energies of the disc and shaft, and the mass unbalance. In 
this case, a convergence procedure is carried out in terms of the 
vibration modes to obtain a representative model for the rotor 
system. Therefore, the proposed analysis is performed in both 
frequency and time domains, in which the frequency response 
functions, the unbalance responses, the Campbell diagram, and the 
orbits are numerically determined. Additionally, the instability 
threshold of the rotor system is obtained. This study illustrates the 
convenience of the composite hollow shafts for rotor dynamics 
applications. 
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1 INTRODUCTION 

According to Ishida and Yamamoto (2012), research on rotordynamics has over 140 years of 
history. Its beginning was marked by the work of W.J. Macquorn Rankine (Rankine, 1869), in 
which the author mistakenly stated that it is impossible for rotating machines to operate above a 
certain speed. This speed was later called critical speed (Dunkerley, 1894). Simplified basics about 
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the dynamics of rotating machines was studied by Jeffcott (1919). The work of H.H. Jeffcott led to 
the development of other essential studies, such as the Campbell diagram, which was first presented 
by Wilfred Campbell, from General Electric. More effective methods of balancing were proposed 
and the behavior of rotors supported by hydrodynamic bearings was further investigated, leading to 
the design of lighter rotating machines operating at higher speeds.  

The mathematical representation of the specific physical phenomena that involve rotating 
machines requires a reliable design tool. In this context, the finite element (FE) method appears as 
a largely used technique for rotordynamics design. Nelson and MacVaugh (1976) were among the 
first researchers to include the effects of rotational inertia, gyroscopic moment, and axial force in the 
FE models. Before the FE method, the so-called transfer matrix method was used to determine the 
dynamic behavior of rotating machines considering the system as being continuous (Lallement, 
Lecoanet, and Steffen Jr, 1982). In this context, the modern rotating systems currently employed in 
various industrial sectors were developed, such as steam turbines, hydro power units, and aircraft 
engines. These machines present high associated costs and operate under great responsibility and 
some of them have already composite material components. 

Following the growing evolution of the materials used in rotating systems (i.e., materials 
associated with high performance and low weight), investigations on the dynamic behavior of 
composite shafts seems to be an important issue. Mazda Motor Corporation adopts hybrid glass and 
carbon fiber shafts in their cars since 1982. The use of this new technology aims at reducing weight 
of the rotating system, the cost of maintenance, noise, vibration level, and, at the same time, to 
increase efficiency as compared with the same components made with traditional metallic materials. 
Regarding aerospace applications, composite shafts are used in blades and helicopter rotors, and 
more recently in fixed wing aircraft (as shafts of actuation systems to operate control surfaces). 
These drive shafts are already found in various aircrafts such as: Airbus A330, A340, A350, A380 
and A400M, Bombardier C-Series, Boeing 787, and F-35 JSF (Crompton Technology Group 
Limited, 2015). Composite materials have interesting properties with respect to rotordynamics (Sino 
et al., 2008). The following examples can be cited: the high strength to weight ratio, the low 
resulting weight as compared with metal shafts, and the possibility of optimizing the dynamic 
behavior of the system aiming at specific characteristics (i.e., changing the number of plies, fiber 
orientation, material, etc.). 

Regarding the research contributions concerning composite shafts, Singh and Gupta (1996) used 
the equivalent modulus and layer wise beam theories associated with the Rayleigh-Ritz method to 
determine the mathematical model of a rotor system. The results indicate that the theory based on 
equivalent modulus beam leads to inaccurate predictions when unsymmetrical stacking sequences 
with bending stretching couplings are considered. A finite element model associated with a simple 
disc-shaft system was considered by Chatelet, Lornage, and Jacquet-Richardet (2002), in which the 
dynamic behavior of the rotating machine was written in terms of its mode shapes. Applications 
based on a multilayered shell element were carried out to illustrate and validate the proposed 
model. The dynamic instability of an internally damped rotating composite shaft was evaluated in 
Sino et al. (2008). The influence of the stacking sequences, fiber orientation, transversal shear effect 
on natural frequencies, and instability thresholds of the shaft were studied by using the equivalent 
modulus beam and layer wise beam theories for modeling purposes. In this work, it was shown that 
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the shaft instability threshold is sensitive to the parameters of the laminate. Particular interest on 
the damping estimation was presented by Alwan et al. (2010). This work analyzed the dynamic 
behavior of different materials such as glass/epoxy, carbon/ epoxy, and boron/epoxy considering 
different rotation speeds. Numerical and experimental analyses were carried out in composite tube-
shafts and solid shafts, focusing on the eigenvalues, damping estimation, and unbalance responses of 
the rotor system. Ren et al. (2014) proposed the mathematical formulation regarding a rotating 
shaft embedded with shape memory alloy wires. Simulations demonstrated the relationship between 
the critical speeds of the rotor system and the configuration adopted for the wires. The model took 
into account the anisotropy of the composite hollow shaft. 

In this context, the present paper is dedicated to a numerical investigation regarding the 
dynamic behavior of a rotating composite shaft. A horizontal flexible composite hollow shaft 
containing a single rigid disc composes the rotating machine used in this work. The mathematical 
model of the rotor is derived from the Lagrange’s equations and the Rayleigh-Ritz method. In this 
case, a convergence procedure is carried out in terms of the vibration modes to obtain a 
representative model for the rotor system. According to Lalanne and Ferraris (1998), the main 
phenomena that occur in rotordynamics can be evaluated by using this kind of model. Regarding 
the Lagrange’s equations, kinetic energy expressions are used to characterize the disc, the hollow 
shaft, and mass unbalance. The flexible hollow shaft is described in terms of its strain energy, using 
the Simplified Homogenized Beam Theory (SHBT) to determine the stiffness (EI). The internal 
damping of the hollow shaft is incorporated on the Lagrange’s equations from its associated virtual 
work (Sino el al., 2008). 
 
2 ROTOR MODEL 

Equation (1) gives the differential equation that represents the dynamic behavior of a flexible rotor 
system operating under steady state condition (Lalanne and Ferraris, 1998). 
 

é ù+ + W + = +ê úë ûδ δ δ 
g u

M D D K W F  (1)

 
where M is the mass matrix, D is the damping matrix (e.g., associated with the bearings), Dg 
represents the gyroscope effect, and K is the stiffness matrix. All these matrices are related to the 
rotating parts of the system, such as couplings, discs, and shaft. The vector δ contains the 
generalized displacements (i.e., the lateral vibrations of the shaft), and Ω is the shaft rotation speed. 
W stands for the weight of the rotating parts and Fu represents the unbalance forces. 

Considering the dissipative effects associated with composite materials (Sino et al., 2006), 
Equation (1) is them modified as shown by Equation (2). 
 

é ù é ù+ + W + + +W = +ê ú ê úë û ë ûδ δ δ 
g i i u

M D D D K K W F  (2)
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in which Di and Ki are the internal damping and the stiffness matrices, respectively, both 
associated with the composite material. Note that Ki is proportional to the rotation speed Ω 
imposed to the rotor system. According to (Sino et al., 2006), the anisotropic properties of 
composite materials and their lightness can be used to optimize composite shafts in order to 
improve their dynamic behavior. However, compared with the shafts designed from metals, the 
composite materials present higher associated damping that can induce a destabilizing effect. 

As mentioned, the mathematical model of the rotor system used in this work is derived from 
the Lagrange’s equations and the Rayleigh-Ritz method. The rotor is assumed to be simply 
supported at both ends. Therefore, the displacements along the x and z directions (i.e., u and w, 
respectively), considering any y location along the shaft (0 ≤y≤L, in which L is the length of the 
shaft; see Figure 1), are given by Equation (3). 
 

 

Figure 1: Schematic representation of the rotor. 
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in which q1r(t) and q2r(t) are the generalized independent coordinates and fr(y) are the so-called 
displacement functions that represent the first n vibration modes associated with each lateral 
direction of the simple supported rotor system(i.e., assumed-modes method; Lalanne and Ferraris, 
1998; Sino et al., 2006; Craig and Kurdila, 2006); t is the simulation time. 

Equation (4) presents the considered displacement functions and Figure 2 shows the schematic 
representation of the first two vibration modes of the simple supported rotor system. 
 

( ) p
= sinr

r y
f y

L
 (4)

 

Ω

L
l1 

m

x

y 

z

A B 



A.A. Cavalini Jr et al. / Analysis of the Dynamic Behavior of a Rotating Composite Hollow Shaft     5 

Latin American Journal of Solids and Structures 14 (2017) 1-16 

  

a) f1(y) = sin πy/L. b) f2(y) = sin 2πy/L. 

Figure 2: Schematic representation of the two first displacement functions. 

 
The angular rotations θu and θw around the directions x and z, respectively (see Figure 1), are 
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The geometric properties of the composite hollow shaft are considered constant along they 
direction (see Figure 1). Therefore, the strain energy Us of the shaft can be expressed in terms of the 
homogenized mechanical characteristics as given by Equation (6) (Lalanne and Ferraris, 1998). 
 

2 2

0

1

2

L
u w

s x z
U EI EI dy

y y

                    
  (6)

 

where EI is the homogenized flexural stiffness determined by using the SHBT theory (i.e., 
symmetric composite shaft leading to EI = EIx = EIz). 

The kinetic energy of the composite shaft Ts is presented by Equation (7) (Lalanne and 
Ferraris, 1998). 
 

( ) ( )r r q q r r q q= + + + + W +ò ò ò  2 2 2 2 2
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in which ρ is the volumetric density of the composite material, S is the cross-sectional area of the 
hollow shaft, and I is the area moment of inertia of the shaft around the directions x and z (see 
Figure 1). 

The kinetic energy of the disc TD and the mass unbalance Tu are given by (Lalanne and 
Ferraris, 1998): 
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where MD is the mass of the disc, IDx and IDy are the mass moments of inertia of the disc around 
the directions x and y, respectively, mu is the unbalanced mass, and d is the distance between the 
mass mu to the geometric center of the shaft C, as shows the Figure 3. 

The differential equations that represent the dynamic behavior of the rotor system are obtained 
applying first Equation (3) and Equation (5) in the equations of the given strain and kinetic 
energies. The resulting equations (i.e., the formulated strain and kinetic energies are written by 
considering the generalized independent coordinates) are applied to the Lagrange’s equations (see 
Equation (9)) (Lalanne and Ferraris, 1998), leading to the mathematical model presented by (see 
Equation (2)): 
 

Figure 3: Unbalanced mass (C is the center of the deflected hollow shaft). 
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where Qir is the generalized force obtained from the virtual work δWs (see Equation (16); i = 1, 2 as 
showed in Equation (3)), [.]q stands for matrices and vectors described in the generalized 
coordinates, and q is the generalized displacement vector which is given by (see Equation (3)): 
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In appendix A, the MATLAB® code used to obtain the matrices and vectors of Equation (9) is 
presented considering the n first vibration modes of the rotor system, for the sake of clarity. The 
formulation adopted to obtain the matrices Di
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q associated with the composite hollow shaft 

tis presented in the next section. Appendix B presents the numerical evaluation of the Rayleigh-
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Ritz model adopted in this work, considering the first natural frequency and the instability 
threshold of different composite hollow shafts analyzed by Sino et al. (2008). 

It is worth mentioning that the Newton-Raphson method in conjunction with the Newmark-
type trapezoidal rule integration algorithm was used in this work to determine the vector q and, 
consequently, the lateral displacements of the shaft along the x and z directions by using Equation 
(3) (i.e., u and w, respectively). 
 
3 COMPOSITE HOLLOW SHAFT 

The composite hollow shaft studied in this work is a roll wrapped carbon fiber tube provided by 
Easy Composites Ltd. The shaft is manufactured from a special high-modulus Toray T700 pre-
impregnated carbon fiber ply. Figure 4 illustrates the analyzed composite hollow shaft. 
 

 

Figure 4: Composite hollow shaft provided by Easy Composites Ltd. 

 
The analyzed composite material has five layers with the following stacking sequence: [0°, 90°, 

0°, 90°, 0°]. Table 1 summarizes the physical and geometric properties of the Composite hollow shaft 
provided by Easy Composites Ltd and presented in Figure 4. Table 2 shows the mechanical 
properties of the analyzed composite material in comparison with two metals, namely the commonly 
used steel and aluminum materials. 
 

Inner diameter Wall thickness Outer diameter Stiffness(EI) 
14.0 mm 1.35 mm 16.7 mm 120.0 Nm2 

Table 1: Physical and geometric properties of the composite hollow shaft. 

 
Property Composite hollow shaft Steel Aluminum 

Volumetric density (kg/m3) 1600.0 7800.0 2700.0 
Young’s modulus at 0° (GPa) 90.0 207.0 72.0 
Young’s modulus at 90° (GPa) 19.0 207.0 72.0 
In-plane shear modulus (GPa) 4.6 - - 

Major Poisson’s ratio 0.14 - - 

Table 2: Mechanical properties of the composite hollow shaft in comparison with other materials. 
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Figure 5 shows a schematic representation regarding the directions of the fibers related to the 
Cartesian system, which follows the inertial directions defined for the analyzed rotor system (see the 
inertial directions defined in Figure 1). In this case, 1, 2, and 3 are orthotropic axes associated with 
the fiber direction, the transversal direction to the fibers in the ply, and the perpendicular direction 
to the ply, respectively; φ is the angular direction of the fibers (Sino et al., 2008). 
 

Figure 5: Schematic representation regarding the directions of the fibers with respect to the Cartesian system. 

 
The homogenized flexural stiffness EI of the composite hollow shaft is determined following the 

SHBT theory, as is given by Equation (11). 
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where Ip represents the inertia moment of area, Rp-1 is the inner radius, and Rp is the outer radius; 
all of then associated with the ply p. The Young’s modulus p

yE of each ply is obtained by using 

Equation (12). 
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where s and c stands for sin(φ) and cos(φ), respectively. El and Et are the longitudinal and 
transversal Young’s modulus associated with each ply p. The shear modulus is given by Glt and υlt 
is the Poisson’s ratio. 

The parameters given by Table 1 and Table 2 were used to obtain the stiffness EI of the hollow 
shaft by using Equation (11) and Equation (12). The values were compared, resulting a difference of 
0.6464% (EISHBT = 119.2293 Nm2; see the provided stiffness in Table 1). Therefore, the SHBT 
theory is able to represent the dynamic behavior of the hollow shaft used in this work. 
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In order to determine the damping and stiffness matrices associated with the composite hollow 
shaft (i.e., Di

q and Ki
q, respectively; see Equation (9)), the Kelvin-Voigt model (Sino, 2007) was 

used as shows Equation (13).  
 

s e b e= + E E  (13)
 

where σ and ε are the stress and strain fields, respectively, E is the Young’s modulus, /d dt  , 
and β is a dimensionless parameter. Note that the Kelvin-Voigt model comprises two parts, namely 
the linear stress-strain relationship given by the Hooke’s law and the dissipation properties of the 
composite material. 

The associated virtual work δWs can be written as follows: 
 

( )d e b e de= +ò ò 
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in which the strain field is given by Equation (15). 
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Applying Equation (15) in Equation (14) and considering I = ∫s x
2dS = ∫s z

2dS and ∫s xzdS = 0, 
the virtual work δWs is obtained as show Equation (16). 
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The generalized forces are obtained applying first Equation (3) into Equation (16). The 
resulting equations are applied on the Lagrange’s equations (Lalanne and Ferraris, 1998), leading to 
the damping and stiffness matrices associated with the composite hollow shaft (Sino, 2007). The 
homogenized flexural stiffness EI derived from Equation (11) and Equation (12) is also used in 
Equation (6) to obtain the strain energy Us of the shaft. 

It is worth mentioning that the Rayleigh-Ritz model adopted in the present work follows the 
formulation presented by Sino (2007) (i.e., SHBT theory associated with the Rayleigh-Ritz model). 
However, the model was now extended to incorporate other vibration modes in the resulting 
differential equation of the rotor system (Equation (9)). 
 
4 NUMERICAL RESULTS 

Figure 1 presents the rotating machine used in the numerical simulations studied in this work. It is 
composed of a horizontal composite hollow shaft (see Table 1; physic and geometric properties 
provided by the manufacturer – Easy Composites Ltd) with L = 363.0 mm length and one rigid disc 
of steel (ρ = 7800.0 kg/m3) with 150.0 mm diameter and 20.0 mm thickness. The disc is positioned 
at y = l1 = 118.0 mm (see Figure 1). The rotor is simply supported at points A and B 
(representation of the bearings). In this work, the dimensionless parameter β (Equation (13)) was 
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considered equal to 1x10-5. Additionally, the simulations were performed considering the system 
vibrating around its equilibrium position (i.e., Wq = 0 in Equation (9)). 

Figure 6 shows the natural frequencies ωi (i = 1, 2, 3, and 4) associated with the first four 
vibration modes of the rotor system described in this work (i.e., symmetric rotor system; ω1 = ω2 
and ω3 = ω4) according to the parameter n used to the expansion of the lateral vibrations u, w, θu, 
and θw (see Equation (3) and Equation (5)). In this case, the rotor is at rest. Note that the 
convergence in terms of the first four natural frequencies of the composite hollow shaft was achieved 
for n = 35 (ω1 = ω2 = 39.3 Hz and ω3 = ω4 = 184.2 Hz). Therefore, these vibration modes were 
taken into account in the Rayleigh-Ritz model of the rotor. 
 

a) ω1 = ω2. b) ω3 = ω4. 

Figure 6: Natural frequencies associated with the four first vibration modes of the rotor system. 

 
Figure 7 presents the Campbell diagram of the considered rotor system, in which the first 

forward critical speed in the analyzed frequency band is, approximately, FW1 = 2420 rpm (i.e., 
close backward and forward whirls; backward critical speeds – BW1 = 2285 rpm and BW2 = 6645 
rpm).The instability threshold of the rotor system can be observed in Figure 8, which shows the 
real part of the eigenvalues associated with the considered vibration modes according to the 
rotating speed of the composite shaft. Note that the rotor becomes unstable in the vicinity of the 
first forward critical speed (i.e., approximately 2420 rpm; see Figure 8a). It is worth mentioning 
that the instability threshold was determined by analyzing the real part of the eigenvalues 
associated with the four first vibration modes of the system.  

Figure 9 presents the unbalance responses of the rotor determined along the x and z directions 
at the disc position (500 to 3000 rpm in steps of 10 rpm). The instability threshold can be also 
verified at approximately 2420 rpm (see Figure 8). In this case, an unbalance of mu = 750 g.mm at 
0o was applied to the disc of the rotor. 

Figure 10 shows the orbits obtained at the disc position considering the rotor operating under 
four different rotation speeds: 605 (1/4 of FW1), 806 (1/3 of FW1), 1210 (1/2 of FW1), and 2000 
rpm (Figure 10a, 10b, 10c, and 10d, respectively). Note that the vibration amplitude of the rotor 
system increases with the rotation speed. In this case, only unbalance forces are considered. 
Additionally, the intrinsic linear characteristic of the adopted Rayleigh-Ritz model can be verified 
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in the vibration responses associated with the subcritical rotation speeds (1/4, 1/3, and 1/2 of FW1; 
Figures 10a, 10b, and 10c, respectively). Internal loops should appear in the orbits if a nonlinear 
behavior had been considered. Figure 10e presents the vibration responses of the rotor operating at 
2000 rpm (i.e., determined along the x and z directions). 
 

 

Figure 7: Campbell diagram of the considered rotor system (…… ω = Ω / 60). 

 

  
a) First and second vibration modes. b) Third and fourth vibration modes. 

Figure 8: Instability threshold of the composite rotor system(…….instability threshold). 

 

 

Figure 9: Simulated unbalance responses of the rotor and stability limit 

(---x direction / ----z direction / ……. instability threshold). 
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a) Rotation speed = 605 rpm. b) Rotation speed = 806 rpm. 

 

c) Rotation speed = 1210 rpm. d)Rotation speed = 2000 rpm. 

 

e) Rotation speed = 2000 rpm(----x direction /∙∙∙∙∙z direction). 

Figure 10: Vibration responses of the composite hollow shaft operating below the instability threshold. 

 
Figure 11 shows the vibration responses of the rotor operating above the instability threshold, 

namely 3000 rpm. As expected, the composite rotor shows a stable operating condition considering 
the rotation speeds lower than the instability threshold (i.e., 605,806, 1210, and 2000 rpm). The 
unstable condition of the system is demonstrated by the vibration responses obtained for the rotor 
operating at 3000 rpm. All the simulations were performed from 0 to 120 sec in steps of 0.001 sec. 
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Figure 11: Vibration responses of the composite hollow shaft operating at 3000 rpm (----x direction / ----z direction). 

 
5 CONCLUSION 

In this paper, an investigation regarding the dynamic behavior of a composite hollow shaft was 
discussed. The rotating machine used in the numerical analyzes is composed by a horizontal 
composite shaft containing a single rigid disc. The mathematical model of the rotor was derived 
from the Lagrange’s equations and the Rayleigh-Ritz method, which was evaluated considering 
different composite hollow shafts presented in the literature. The first natural frequency and the 
instability threshold obtained by the adopted Rayleigh-Ritz model were compared with the results 
presented by Sino et al. (2008). The natural frequencies obtained from the Rayleigh-Ritz model are 
similar to those given by Sino et al. (2008). However, significant differences concerning the 
instability thresholds were verified. In this context, the proposed analyses were performed both in 
the time and frequency domains, as represented by the orbits, unbalance response, and the 
Campbell diagram of the composite rotor system. The orbits and unbalance responses were 
determined from different rotation speeds, in which the dynamic behavior of the considered hollow 
shaft were analyzed. Further studies will encompass evaluations based on a finite element model for 
the rotor. An experimental verification is also scheduled. 
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APPENDIX A 

MATLAB® Code Implemented to Determine the Equation of Motion of the Rotor System 

The MATLAB® code used to obtain the matrices and vectors of Equation (9) is presented by 
Figure A1. In this case, it is considered then first vibration modes of the rotor system. 
 
APPENDIX B 

Model evaluation 

Figure B1a shows the rotating machine (Sino et al., 2008) used to evaluated the Rayleigh-Ritz 
model adopted in the present work. It is composed of a horizontal composite hollow shaft with L = 
1.2 m length, outer radius of 48.0 mm, inner radius of 40.0 mm, and two rigid discs of steel (ρ = 
7800.0 kg/m3) with 150.0 mm diameter and 5.0 mm thickness. The composite hollow shaft is 
composed by 8 plies (carbon/epoxy material) with the same thickness (i.e., 1.0 mm; see the physic 
properties in Figure B1b). In Sino et al., (2008), the finite element method was used to represent 
the dynamic behavior of the rotor system (i.e., 6 finite elements; Timoshenko’s beam theory – 2 
nodes with 4 degrees of freedom per node) and the composite hollow shaft was supported by flexible 
bearings (see the stiffness coefficients in Figure B1b). In the present work (Rayleigh-Ritz model), 
the rotor is simple supported at the ends A and B (representation of the bearings; see Figure B1a). 
Additionally, n = 35 (see Equation (3) and the convergence analysis shown in Figure 6). The 
dimensionless parameter β (Eq. (8)) was considered as equal to 10-5. 
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Figure A1: MATLAB® code used to obtain the motion equations of the composite rotor system. 

 
Composite hollow shaft 

E1 = 172.7 GPa        E2 = 7.2 GPa 

G12 = 3.76 GPa        ν12 = 0.3 

ρ = 1446.2 kg/m3 

Bearings 
kxx = 107N/m            kzz = 108N/m 

 

a) b) 

Figure B1: Rotating machine used to validate the Rayleigh-Ritz model adopted in the present work. 

 
Table B1 presents the natural frequencies and instability threshold obtained by Sino et al. 

(2008) (SHBT theory) and the results determined by the Rayleigh-Ritz model adopted in the 
present work. In this case, seven different stacking sequences for the composite hollow shaft were 
taken into account. Note that the natural frequencies determined from the Rayleigh-Ritz model 
present absolute errors which are smaller than 20% as compared with the ones obtained by Sino et 
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% Initialization – n = [~] 
syms y L rho S EI I IdxIdy l1 omega Md mu t beta 
 
% Generalized coordinates  
k=1; 
for i=1:2:2*n-1 
    u(i)=sin(k*pi*y/L); 
    u(i+1)=0; 
    w(i)=0; 
    w(i+1)=sin(k*pi*y/L); 
    k=k+1; 
end 
 
% Mass matrix (Mq) 
vud=subs(u,y,l1);  vwd=subs(w,y,l1); 
vdud=subs(diff(u,y),y,l1); vdwd=subs(diff(w,y),y,l1);  
MD=Md*(vud'*vud+vwd'*vwd)+Idx*(vdud'*vdud+vdwd'*vdwd); 
M1=rho*S*int(u'*u,y,0,L)+rho*S*int(w'*w,y,0,L); 
M2=rho*I*int(diff(u)'*diff(u),y,0,L)+rho*I*int(diff(w)'*diff(w),y,0,L); 
Mq=M1+M2+MD; 
 
% Damping and gyroscopic matrix (Cq) 
C1=2*rho*I*omega*int(diff(w,y)'*diff(u,y),y,0,L); 
C2=-2*rho*I*omega*int(diff(u,y)'*diff(w,y),y,0,L); 
C3=-Idy*omega*subs(diff(u,y),y,l1)'*subs(diff(w,y),y,l1); 
C4=Idy*omega*subs(diff(w,y),y,l1)'*subs(diff(u,y),y,l1); 
Cq=C1+C2+C3+C4; 
 
% Stiffness matrix (Kq) 
Kq=int(EI*diff(u,y,2)'*diff(u,y,2),0,L)+int(EI*diff(w,y,2)'*diff(w,y,2),y,0,L); 
 
% Matrices associated with the composite hollow shaft (Ciq and Kiq) 
Ciq=beta*EI*(int(diff(u,y,2)'*diff(u,y,2),0,L)+int(diff(w,y,2)'*diff(w,y,2),y,0,L));  
Kiq=beta*EI*omega*(int(diff(w,y,2)'*diff(u,y,2),0,L)-int(diff(u,y,2)'*diff(w,y,2),y,0,L));  
 
% Unbalance force (Fuq) 
Fuq=mu*omega*omega*(vud*sin(omega*t)+vwd*cos(omega*t)); 

L/3 
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al. (2008), Regarding the instability thresholds, the maximum difference between the two 
formulations is smaller than 70%. The presented variations on the instability thresholds can be 
associated with the formulation used to modeling the internal damping of the composite hollow 
shaft. In Sino et al. (2008), the internal damping was determined by formulating the damping 
matrix of each ply of the composite material (the equivalent parameter β was used in the present 
work). However, the Rayleigh-Ritz model is considered as being representative enough for the 
applications presented.  
 

Stacking sequence  
First natural frequency Instability threshold 

Sino (Hz) RR (Hz)* Error (%) Sino (rpm) RR (rpm)* Error (%) 

[±75]8S 16.88 17.14 1.54 1167 1038 11.05 

[902,45,0]S 39.87 43.86 10.01 5864 2670 54.47 

[90,0,90,45,90,45,0,90] 40.08 44.05 9.91 5913 2678 54.71 

[90,45,02]S 50.71 59.36 17.05 10,981 3612 67.11 

[02,452,902,02] 50.91 59.67 17.21 11,106 3630 67.31 

[02,90,45]S 50.92 59.69 17.22 11,111 3632 67.31 

[45,0,45,0,90,0,90,0] 51.36 60.37 17.54 11,395 3670 67.79 

* Results determined by the Rayleigh-Ritz model adopted in this work. 

Table B1: Natural frequencies and instability threshold obtained by Sino et al. (2008) and by the present work. 


