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Analytical study on the vibration frequencies of tapered beams

Abstract

A vast amount of published work can be found in the field of

beam vibrations dealing with analytical and numerical tech-

niques. This paper deals with analysis of the nonlinear free

vibrations of beams. The problem considered represents the

governing equation of the nonlinear, large amplitude free vi-

brations of tapered beams. A new implementation of the an-

cient Chinese method called the Max-Min Approach (MMA)

and Homotopy Perturbation Method (HPM) are presented

to obtain natural frequency and corresponding displacement

of tapered beams. The effect of vibration amplitude on the

non-linear frequency is discussed. In the end to illustrate

the effectiveness and convenience of the MMA and HPM,

the obtained results are compared with the exact ones and

shown in graphs and in tables. Those approaches are very

effective and simple and with only one iteration leads to high

accuracy of the solutions. It is predicted that those methods

can be found wide application in engineering problems, as

indicated in this paper.
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1 INTRODUCTION

Analyzing the nonlinear vibration of beams is one of the important issues in structural engi-

neering. Applications such as high-rise buildings, long-span bridges, aerospace vehicles have

necessitated the study of their dynamic behavior at large amplitudes. Many researchers have

studied tapered beams, which are very important for the design of many engineering structures.

The non-linear vibration of beams is governed by a non-linear partial-differential equation in

space and time. Generally, finding an exact or close-form solution for nonlinear problems is

very difficult. Goorman [7] is given the governing differential equation corresponding to fun-

damental vibration mode of a tapered beam. Evensen [6] studied on the nonlinear vibrations

of beams with various boundary conditions by using the perturbation method. Pillai & Rao

[24] considered the different types of solutions to the nonlinear equation of motion such as
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Galerkin, harmonic balance method and simple harmonic oscillations. Singh et al [32] later

studied the large-amplitude vibration problem of unsymmetrically laminated beams based on

classical, first-order and higher-order formulations by using the numerical integration technique

introduced earlier by Singh et al [31]. Qaisi [25] used an analytical method for determining

the vibration modes of geometrically nonlinear beams under various edge conditions. Rehfield

[27] proposed an approximate method for nonlinear vibration problems with material nonlin-

ear effects for various boundary conditions. Sathyamoorthy [28] developed the work on finite

element method for nonlinear beams under static and dynamic loads and classical methods

for the analysis of beams with material, geometric and other types of nonlinearities. Raju

et al [26] studied the large amplitude vibration problem of beams and plates using Rayleigh-

Ritz method by incorporating the inplane deformation as well as inertia, which were absent

in the earlier studies, and also by retaining the equivalent linearization function. Klein [13]

used finite element approach and Rayleigh-Ritz for analyzing the vibration of the tapered

beams. A dynamic discretization technique was applied to calculate the natural frequencies

of a non-rotating double tapered beam based on both the Euler-Bernoulli and Timoshenko

Beam Theories by Downs [5]. Sato [29] improved the Ritz method to study a linearly tapered

beam with ends restrained elastically against rotation and subjected to an axial force. Lau

[14] used the exact method for studying on the free vibration of tapered beam with end mass.

The Green’s function method in Laplace transform domain was used to study the vibration of

general elastically restrained tapered beams by Lee et al [15] for obtaining the approximate

fundamental solution by using a number of stepped beams to represent the tapered beam.

Junior et al [21] proposed Galerkin Method and the Askey-Wiener scheme as solutions of the

stochastic beam bending problem. Oni and Awodola considered [3] the Dynamic response

under a moving load of an elastically supported non-prismatic Bernoulli-Euler beam on vari-

able elastic foundation. Boukhalfa and Hadjoui [4] analyzed the free vibration of an embarked

rotating composite shaft using the hp- version of the FEM.

The main objectives of this study are to use analytical methods for analyzing the free

vibration of the tapered beams. Finding an exact analytical solution for nonlinear equations

is extremely difficult. Therefore, many analytical and numerical approaches have been inves-

tigated. The most useful methods for solving nonlinear equations are perturbation methods.

They are not valid for strongly nonlinear equations and they have many shortcomings. Many

new techniques have appeared in the open literature to overcome the shortcomings of tra-

ditional analytical methods such as Variational Iteration [10, 18], Parameter-Expansion [19],

Energy Balance [2, 12, 16, 22], Variational Approach [33], Iteration Perturbation [23], the Im-

proved Amplitude-frequency Formulation [35] and differential transformation [20], etc. In this

study, which is an extension of the authors’ previous work [1], Max-Min Approach (MMA)

and Homotopy Perturbation Method (HPM) were developed by J.H. He [8, 9] and investigated

in different works [17, 30, 34], which have the following advantages, over above-mentioned

methods:

1. MMA and HPM lead us to a very rapid convergence of the solution and they can be

easily extended to other nonlinear oscillations.
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2. In MMA and HPM, just one iteration leads us to high accuracy of solutions which are

valid for a wide range of vibration amplitudes.

The Max-Min Approach (MMA) and Homotopy Perturbation Method (HPM) are used to

find analytical solutions for this problem with the nonlinear governing differential equation.

It is shown that the solutions are quickly convergent and their components can be simply

calculated. The results of the MMA and HPM are compared with the exact one, it can be

observed that MMA and HPM are accurate and require smaller computational effort. An

excellent accuracy of the MMA and HPM results indicates that those methods can be used for

problems in which the strong nonlinearities are taken into account.

2 TAPERED BEAM FORMULATION

In dimensionless form, the governing differential equation corresponding to fundamental vi-

bration mode of a tapered beam is given by Goorman [7] and the schematic of a tapered beam

represented by Fig. 1:

(d
2u

dt2
) + ε1 (u2 (d

2u

dt2
) + u(du

dt
)
2

) + u + ε2u3 = 0 (1)

Where u is displacement and ε1 and ε2 are arbitrary constants. Subject to the following

initial conditions:

u(0) = A,
du(0)
dt

= 0 (2)

Figure 1 Schematic representation of a tapered beam.

3 OVERVIEW OF HE’S MAX-MIN APPROACH METHOD

We consider a generalized nonlinear oscillator in the form;

u′′ + uf(u) = 0, u(0) = A, u′(0) = 0, (3)

Where f(u) is a non-negative function of u. According to the idea of the max-min method,

we choose a trial-function in the form;
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u(t) = A cos(ωt), (4)

Where ω the unknown frequency to be further is determined.

Observe that the square of frequency, ω2, is never less than that in the solution

u1(t) = A cos(
√
fmint), (5)

Of the following linear oscillator

u′′ + ufmin = 0, u(0) = A, u′(0) = 0, (6)

Where fmin is the minimum value of the function f(u).
In addition, ω2 never exceeds the square of frequency of the solution

u1(t) = A cos(
√
fmint), (7)

Of the following oscillator

u′′ + ufmin = 0, u(0) = A, u′(0) = 0, (8)

Where fmax is the maximum value of the function f(u).
Hence, it follows that

fmin

1
< ω2 < fmax

1
. (9)

According to the Chentian interpolation [8, 11], we obtain

ω2 = mfmin + nfmax

m + n
, (10)

Or

ω2 = fmin + kfmax

1 + k
, (11)

Where m and n are weighting factors, k = n/m. So the solution of Eq. (3) can be expressed

as

u(t) = A cos

√
fmin + kfmax

1 + k
t, (12)

The value of k can be approximately determined by various approximate methods [22, 23,

33]. Among others, hereby we use the residual method [11]. Substituting Eq. (12) into Eq.

(3) results in the following residual:

R(t;k) = −ω2A cos(ωt) + (A cos(ωt)) ⋅ f (A cos(ωt)) (13)

Latin American Journal of Solids and Structures 8(2011) 149 – 162



M. Bayat et al / Analytical study on the vibration frequencies of tapered beams 153

Where ω =
√

fmin+kfmax

1+k
If, by chance, Eq. (12) is the exact solution, then R(t;k) is vanishing completely. Since

our approach is only an approximation to the exact solution, we set

∫
T

0
R(t;k) cos

√
fmin + kfmax

1 + k
tdt = 0, (14)

Where T = 2π/ω. Solving the above equation, we can easily obtain

k = fmax − fmin

1 −
√

A
π ∫

π
0 cos2 x.f (A cosx)dx

. (15)

Substituting the above equation into Eq. (12), we obtain the approximate solution of Eq.

(3).

4 OVERVIEW OF HOMOTOPY PERTURBATION METHOD (HPM)

To explain the basic idea of the HPM for solving nonlinear differential equations, one may

consider the following nonlinear differential equation:

A (u) − f (r) = 0 r ∈ Ω (16)

That is subjected to the following boundary condition:

B (u, ∂u
∂t
) = 0 r ∈ Γ (17)

Where A is a general differential operator, B a boundary operator, f(r) is a known analytical

function, Γ is the boundary of the solution domain (Ω), and ∂u/∂t denotes differentiation along

the outwards normal to Γ. Generally, the operator A may be divided into two parts: a linear

part L and a nonlinear part N. Therefore, Eq. (16) may be rewritten as follows:

L (x) +N (x) − f (r) = 0 r ∈ Ω (18)

In cases where the nonlinear Eq. (16) includes no small parameter, one may construct the

following homotopy equation

H (ν, p) = (1 − p) [L (ν) −L (x0)] + p [A (ν) − f (r)] = 0 (19)

Where

ν (r, p) ∶ Ω × [0,1]→ R (20)

In Eq. (19), p ∈ [0,1] is an embedding parameter and u0 is the first approximation that

satisfies the boundary condition. One may assume that solution of Eq. (19) may be written

as a power series in p, as the following:
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ν = ν0 + pν1 + p2ν2 +⋯ (21)

The homotopy parameter p is also used to expand the square of the unknown angular

frequency ω as follows:

ω0 = ω2 − pω1 − p2ω2 −⋯ (22)

Or

ω2 = ω0 + pω1 + p2ω2 +⋯ (23)

where ω0 is the coefficient of u(r) in Eq. (16) and should be substituted by the right hand side

of Eq. (23). Besides, ωi (i = 1,2, . . .) are arbitrary parameters that have to be determined.

The best approximations for the solution and the angular frequency ω are

u = lim
p→1

ν = ν0 + ν1 + ν2 +⋯ (24)

ω2 = ω0 + ω1 + ω2 +⋯ (25)

when Eq. (19) corresponds to Eq. (16) and Eq. (24) becomes the approximate solution of Eq.

(16).

5 APPLICATIONS

5.1 Solution using MMA

We can re-write Eq. (1) in the following form

(d
2u

dt2
) +
⎛
⎝
1 + ε1 (dudt )

2 + ε2u2

1 + ε1u2

⎞
⎠
u = 0 (26)

We choose a trial-function in the form

u = A cos(ωt) (27)

Where ω the frequency to be is determined.

By using the trial-function, the maximum and minimum values of ω2 will be:

ωmin =
1 + ε1A2ω2

1
, ωmax =

1 + ε2A2

1 + ε1A2
. (28)

So we can write:

1 + ε1A2ω2

1
< ω2 < 1 + ε2A2

1 + ε1A2
(29)

According to the Chengtian’s inequality [8, 11], we have
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ω2 =
m. (1 + ε1A2ω2 + ε2A2) + n. (1 + ε1A2ω2)

m + n
= 1 + ε1A2ω2 + kε2A2 (30)

Where m and n are weighting factors, k = n/m + n. Therefore the frequency can be

approximated as:

ω =
√

1 + kε2A2

1 − ε1A2
(31)

Its approximate solution reads

u = A cos

√
1 + kε2A2

1 − ε1A2
t (32)

In view of the approximate solution, Eq. (32), we re-write Eq.(??) in the form

d2u

dt2
+ (1 + kε2A

2

1 − ε1A2
)u = (d

2u

dt2
) + ε1 (u2 (d

2u

dt2
) + u(du

dt
)
2

) + u + ε2u3 +Ψ (33)

Ψ = (1 + kε2A
2

1 − ε1A2
)u − ε1u2 (d

2u

dt2
) − ε1u(

du

dt
)
2

− u − ε2u3 (34)

Substituting the trial function into Eq. (34) , and using Fourier expansion series, it is

obvious that:

Ψ= (1 + kε2A
2

1 − ε1A2
)(A cosωt) − (2ω2ε1A

2cos2(ωt) − ε1A2ω2 − 1 − ε2A2cos2(ωt))Acos(ωt)

=
∞
∑
n=0

b2n+1 cos [(2n + 1)ωt] = b1 cos(ωt) + b3 cos(3ωt) + ... ≈ b1 cos(ωt)
(35)

For avoiding secular term we set b1 = 0

∫
T /4

0
((1 + kε2A

2

1 − ε1A2
) − (2ω2ε1A

2cos2(ωt) − ε1A2ω2 − 1 − ε2A2cos2(ωt)))Acos(ωt)dt = 0 (36)

Where T = 2π/ω. Solving the above equation, we can easily obtain

k = −
(ε1ω2 − ε21A2ω2 + 3ε1 − 2ε2 + 2ε2A2ε1)

3ε2
(37)

Substituting Eq. (37) into Eq. (32), yields

ω =
√
(3 + ε1A2) (2ε2A2 + 3)

(3 + ε1A2)
(38)
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According to Eqs. (38) and (38), we can obtain the following approximate solution:

u(t) = A cos
⎛
⎝

√
(3 + ε1A2) (2ε2A2 + 3)

(3 + ε1A2)
t
⎞
⎠

(39)

5.2 Solution using HPM

Eq. (1) can be rewritten as the following form:

(d
2u

dt2
) + u + p. [ε1u2 (d

2u

dt2
) + ε1u(

du

dt
)
2

+ ε2u3] = 0, p ∈ [0,1]. (40)

To explain the analytical solution, the solution u and the square of the unknown angular

frequency ω are expanded as follows:

u = u0 + pu1 + p2u2 +⋯ (41)

1 = ω2 − pω1 − p2ω2 −⋯ (42)

Substituting Eqs.(41) and (42) into Eq. (40) and equating the terms with identical powers

of p, the following set of linear differential equations is obtained:

p0 ∶ (d
2u0

dt2
) + ω2u0 = 0 (43)

p1 ∶ ü1 + ω2u1 = ε1u0 (
du0

dt
)
2

+ ε1 (
d2u0

dt2
)u2

0 − ω1u0 + ε2u3
0, (44)

Solving Eq. (43) gives: u0 = A cosωt. Substituting u0 into Eq. (44), yield:

p1 ∶ (d
2u1

dt2
) + ω2u1 =ε1ω2A3cos(ωt)sin2(ωt) − ε1ω2A3cos3(ωt)

+ω1Acos(ωt) + ε2A3cos3(ωt)
(45)

For achieving the secular term, we use Fourier expansion series as follows:

Φ(ω, t)= ε1ω2A3 cos(ωt) sin2(ωt) − ε1ω2A3 cos3(ωt) + ω1A cos(ωt) + ε2A3 cos3(ωt)

=
∞
∑
n=0

b2n+1 cos [(2n + 1)ωt]

= b1 cos(ωt) + b3 cos(3ωt) +⋯

≈ (∫
π/2

0
Φ(ω, t)d(ωt)) cos(ωt)

= [(Aω1 +
1

3
A3ε1ω

2 − 2

3
A3ε2)] cos(ωt)

(46)
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Substituting Eq. (46) into Eq. (45) yields:

p1 ∶ ü1 + ω2u1 = [(Aω1 +
1

3
A3ε1ω

2 − 2

3
A3ε2)] cos(ωt) +

∞
∑
n=0

b2n+1 cos [(2n + 1)ωt] (47)

Avoiding secular term, gives:

ω1 = −
1

3
A2(ε1ω2 − 2ε2) (48)

From Eq. (42) and setting p = 1, we have:

1 = ω2 − ω1 (49)

Comparing Eqs. (48) and (49), we can obtain:

ω2 = −1
3
A2(ε1ω2 − 2ε2) + 1 (50)

Solving Eq. (50), gives:

ωHPM =
√
(3 + ε1A2) (2ε2A2 + 3)

(3 + ε1A2)
(51)

6 RESULTS AND DISCUSSIONS

Comparisons with the analytical methods and the exact one are presented to illustrate and

verify the accuracy of the Max-Min Approach (MMA) and Homotopy Perturbation Method

(HPM). The exact frequency ωe for a dynamic system governed by Eq. (1) can be derived, as

shown in Eq. (52), as follows:

ωExact = 2π/4
√
2A∫

π/2

0

√
1 + ε1A2cos2tsint√

A2 (1 − cos2t) (ε2A2cos2t + ε2A2 + 2)
dt (52)

To demonstrate the accuracy of the MMA and HPM , the procedures explained in previous

sections are applied to obtain natural frequency and corresponding displacement of tapered

beams. A comparison of obtained results from the Max-Min Approach and Homotopy pertur-

bation method and the exact one is tabulated in Table 1 for different parameters A, ε1 and

ε2.

From Table 1, the relative error of the analytical approaches is 2.90861% for the first-

order analytical approximations, for A = 10, ε1 = 0.1 and ε2 = 0.5. To further illustrate

and verify the accuracy of these approximate analytical approaches, a comparison of the time

history oscillatory displacement response for tapered beams with exact solutions is presented in

Figs. 2-4. From Figs. 2 and 3, the motion of the system is a periodic motion and the amplitude

of vibration is a function of the initial conditions. Fig. 4 presents the high accuracy of both
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Table 1 Comparison of frequency corresponding to various parameters of system.

Constant parameters Approximate solution Exact solution Relative error %

A ε1 ε2 ωMMA=HPM ωExact ∣ωMMA=HPM−ωEx

ωEx
∣

0.5 0.1 0.5 1.03652 1.03924 0.26199

0.5 1 1.05830 1.05727 0.09679

5 10 1.37198 1.34555 1.96424

10 50 2.25630 2.20503 2.32529

2 0.1 0.5 1.43486 1.44100 0.42665

0.5 1 1.48323 1.44506 2.64192

5 10 1.8996 1.85323 2.50516

10 50 3.06138 3.0103 1.69512

10 0.1 0.5 2.81479 2.73523 2.90861

0.5 1 1.95708 1.92710 1.55604

5 10 1.99552 1.98950 0. 1842

10 50 3.15801 3.15265 0.17001

20 0.1 0.5 3.06138 3.0103 1.69512

0.5 1 1.98888 1.97683 0.60943

5 10 1. 6369 1.99692 0.09776

10 50 3.16121 3.15951 0.05356

Figure 2 Comparison of analytical solutions
of u(t) based on t with the exact
solution for ε1 = 0.1, ε2 = 0.5, A =
2.

Figure 3 Comparison of analytical solutions
of u(t) based on t with the exact
solution for ε1 = 0.1, ε2 = 0.5, A =
2.
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approaches with the exact one for different values of amplitude, and shows the phase-space

curves (u̇(t) versus u(t) curve) of the Eqs. (51, 38) for amplitudes, u (0) = 0.5,1,2 and 3. It

can be observed that the phase-space curve generated from MMA and HPM are close to that

of the exact curve. The phase plot shows the behavior of the oscillator when ε1 = 0.5, ε2 = 0.1.
It is periodic with a center at (0, 0). This situation also occurs in the unforced, undamped

cubic Duffing oscillators.

Figure 4 Comparison of analytical solutions of du/dt based on u(t) with the exact solution for ε1 = 0.5,
ε2 = 0.1.

Figure 5 Comparison of frequency corre-
sponding to various parameters of
amplitude (A) and ε1 = 1.

Figure 6 Comparison of frequency corre-
sponding to various parameters of
amplitude (A) and ε2 = 1.
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Figure 7 Phase plane, for A = 2, ε2 = 0.5.

The effect of small parameters ε1 and ε2 on the frequency corresponding to various pa-

rameters of amplitude (A) has been studied in Figs. 5 and 6 for ε1 and ε2. Also, the phase

plane for this problem obtained from MMA and HPM has been shown in Fig. 7. It is evident

that MMA and HPM show excellent agreement with the numerical solution using the exact

solution and quickly convergent and valid for a wide range of vibration amplitudes and initial

conditions. The accuracy of the results shows that the MMA and HPM can be potentiality

used for the analysis of strongly nonlinear oscillation problems accurately.

7 CONCLUSIONS

In this paper, the MMA and HPM were employed to solve the governing equations of non-

linear oscillations of tapered beams. The analytical solutions yield a thoughtful and insightful

understanding of the effect of system parameters and initial conditions. Also, Analytical solu-

tions give a reference frame for the verification and validation of other numerical approaches.

MMA and HPM are suitable not only for weak nonlinear problems, but also for strong nonlin-

ear problems. The most significant feature of those methods is their excellent accuracy for the

whole range of oscillation amplitude values. Also, it can be used to solve other conservative

truly nonlinear oscillators with complex nonlinearities. The MMA and HPM solutions are

quickly convergent and its components can be simply calculated. Also, compared to other

analytical methods, it can be observed that the results of MMA and HPM require smaller

computational effort and only the one iteration leads to accurate solutions. The successful

implementation of the MMA and HPM for the large amplitude nonlinear oscillation problem

considered in this paper further confirms the capability of those methods in solving nonlinear

oscillation problems.
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