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An extension of coupled beam method and its application to
study ship’s hull-superstructure interaction problems

Abstract

This paper describes an extended formulation for the cou-

pled beam method (CBM). The method is originally de-

veloped for elastic bending response analysis of passenger

ships with large multi-deck superstructures. The extension

is mainly performed to enable the available method in or-

der to study elastic bending behaviour of ships fitted with

superstructures of any sizes and locations. Finite element

method (FEM) is applied for solving the equilibrium equa-

tions. Both hull and superstructure of the ship are modelled

using beam elements. The connection between beam ele-

ments representing hull and superstructure is made using

specially developed spring box elements. The accuracy of

the extended method is demonstrated using an available ex-

perimental result. Then, two simplified structures, one rep-

resenting a ship with a short superstructure and the other

one representing a ship with a long superstructure, are anal-

ysed in order to validate the extended coupled beam method

against the finite element method. In spite of some existing

simplifications in the extended formulation, it is very effec-

tive in the early stages of ship structural design owing to its

advantageous capability of rapid estimation of the longitudi-

nal stress distributions along the height of ships at different

stations.
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1 INTRODUCTION

Size and location of superstructures fitted on the deck of ship’s hull structures depend on

the ship type. Typical cargo ships have generally short superstructures, which may be fitted

at any locations along the ship. This is while, long and wide superstructures are found on

large passenger ships. The extent of a superstructure’s contribution to the overall strength of

a ship has been a matter of interest to many researchers and also has been debated for many

years. Figure 1 summarises the history of key methods and studies applied in investigation
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NOTATION

Ai cross-sectional area of the i -th beam

Ai
j nodal cross-sectional area of the i -th beam

Cij bending moment lever on the i-th beam due to the shearing force between the i-th

and j-th beams

dik distance between the upper fibre of the beam to the reference line

eij distance between the lower fibre of the beam to the reference line

E Modulus of elasticity

F external nodal forces matrix

Hij height of shear element between i -th and j -th beams

Ii sectional moment of inertia of the i -th beam

Iij nodal sectional moment of inertia of the i -th beam

K global stiffness matrix of system

Ki stiffness matrix of i -th beam

kij transverse stiffness between the i -th and j -th beams

KShear stiffness matrix for the shearing springs

KTrans stiffness matrix for the transverse springs

Mi bending moment of the i -th beam

n number of beams

Ni axial force of the i -th beam

Nj(x) shape functions

pij transverse (vertical) distributed forces between the i -th and j -th beams

Qi shear force of the i -th beam

qi external force of the i -th beam

q∗i approximate function for external force of the i -th beam

sij longitudinal distributed shear forces between the i -th and j -th beams

s∗ij approximate function for longitudinal distributed shear forces between the i -th

and j -th beams

Tij shear stiffness between the i -th and j -th beams

ui axial displacement of the i -th beam

u∗i approximate solution to axial displacement for the i -th beam

ui
j the j -th node of the i -th beam axial displacement

vMi transverse deflection of the i -th beam caused by bending

vM∗i approximate solution to transverse displacement for the i -th beam

vij the j -th node of the i -th beam transverse displacement

X matrix of the degrees of freedom for the i -th beam

Xi first sectional moment of area of the i -th beam

Xi
j nodal first sectional moment of area of the i -th beam

Xs nodal displacement vector of system

δvij the relative displacement between beam i and beam j

θij the j -th node of the i -th beam angular displacement
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of superstructure effects on the longitudinal bending strength of ship’s hull structures. An

excellent literature survey until 1983 is given by de Oliveira [9].

Bruhn [4] seems to have been the first to study in detail the influence of discontinuities on

the stress distribution in ships. He recognised the importance of superstructure length on the

stress distributions above the main deck. The studies made by Bruhn were based upon tests on

sheet rubber models. King [17] examined the effect on longitudinal stresses of adding material

at various heights above the hull girder in single and multiple tiers in an attempt to rationalise

the scantlings of large superstructures. The results of King [17] showed the possibility of

designing a superstructure capable of participating fully in the ship’s longitudinal strength

provided adequate transitions at both ends of superstructure were fitted. Hovgaard [13, 14]

was probably the first to fully recognise the important role played by shear stresses at the hull-

superstructure connection. He developed a theory of shear stresses in riveted and welded joints

and applied it to discontinuities that occur in ship structures. Vasta [25, 26] seems to have

been the first to use a measure of effectiveness to characterise the superstructure behaviour.

Figure 1 Overview of some of the key past studies on hull-superstructure interaction.

Analytical methods are categorised into two basic approaches, based on either two-beam

theory or plane stress theory. Crawford [7] was the first to develop the method based on the

two-beam theory, taking into account the longitudinal shear force and the vertical force due

to the hull-superstructure interaction. Bleich’s approach [3] is similar to that of Crawford, but

describing a straightforward procedure for computation of normal stresses for prismatic beams.

Chapman [6] presented a method for finding the deflections and stresses along the length of

a ship, taking into account of distortion of the hull cross-section as a result of its interaction
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with the superstructure. Terazawa and Yagi [24] introduced the shear lag correction to the

two-beam theory. The stresses were calculated using the energy approach and assuming pre-

defined stress patterns for the structure. They also considered the effect of side openings on

the structural behaviour. Simplified approach to generate global response of large catamarans

with the large superstructure windows at the early stages of design using extended beam

theory was presented by Heggelund and Moan [12]. Naar et al. [21] proposed a new approach

called coupled beams method (CBM) to evaluate hull girder response of passenger ships. This

method is based on the assumption that the global bending response of a modern passenger

ship can be estimated by help of beams coupled to each other by distributed longitudinal and

vertical springs.

Caldwell [5] presented a method based on plane stress theory in order to determine how the

superstructure efficiency in hull bending strength varies with the ratio of its length to transverse

dimensions, with the flexibility of the upper deck and with the distribution of bending moments

applied on the ship. Johnson [16] also developed plane stress theory to study the stresses in

deckhouses and superstructures. In his approach, the shear stress distribution along the edges

of the deckhouse sides was assumed to be linear. The theory could take care of the possibility

of deckhouse having several decks. Fransman [10] developed methods based on the plane stress

theory and made an improvement with respect to Caldwell [5] approach.

Also some research studies on the topic of hull-superstructure interaction were made using

the finite element method (FEM). Paulling and Payer [22] and Mitchell [20] have obtained

stresses and deflections using the finite element method and compared their results with sepa-

rate experimental results of rectangular hull-deckhouse models. The work of McVee [19] follows

with the implementation to naval ship problems where the hull–deckhouse interaction is one

of the most important structural issues. In Zanic and Jancijev [27] a somewhat simpler com-

bination of 2D finite element membrane model of ship projected onto the centreline plane and

the partial 3D finite element model around midship section was applied to simulate the global

structural response of night ferry and to perform structural optimisation of the amidships

part. Andreau and Gillet [1] give a short overview of dominant structural parameters that

influenced longitudinal strength of passenger ships with the extensive superstructure. Another

study focused on the development of simplified finite element approach for evaluation of hull

girder response has been carried out by Heder and Ulfarson [11]. Numerical approach based on

orthotropic plates and calibrated with fine mesh FE models was suggested for the generation of

the equivalent shear stiffness of large side openings. Mackney and Ross [18] have investigated

the influence of deckhouse geometry (mainly length) on efficiency regarding participation of

superstructure in hull girder bending using different 1D, 2D and 3D finite element models.

Study was focused on naval ships problem and the design curves for the early design stage

have been introduced for the deckhouse structural efficiency (with respect to length and num-

ber of deckhouses). Different concepts of superstructures of livestock carrier were investigated

by Andric et al. [2] based on the full ship finite element model. The superstructure deck effec-

tiveness was investigated with respect to different structural configurations of superstructure

ends and its connections with the lower hull.
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Nowadays, two basic approaches exist to estimate the response of a ship when the su-

perstructure participates in its longitudinal bending. These include three-dimensional finite

element method on one side and simplified methods on the other side. However, the finite

element method is believed to be time-consuming and also a straightforward understanding

of the structural behaviour is difficult to reach using the finite element analyses. Therefore,

simplified methods are useful in the preliminary design stage.

This paper describes an extended formulation for the coupled beam method (CBM), fol-

lowing the work of Naar et al. [21]. The extended coupled beam method features the ability

to study elastic bending behaviour of ships fitted with superstructures of any sizes and loca-

tions. Finite element method (FEM) is applied for solving the equilibrium equations. Both

hull and superstructure of the ship are modelled using beam elements. The connection be-

tween beam elements representing hull and superstructure is made using specially developed

spring box elements. The accuracy of the extended method is demonstrated using an available

experimental result. Then, two simplified structures, one representing a ship with a short

superstructure and the other one representing a ship with a long superstructure, are analysed

in order to validate the extended coupled beam method against the finite element method. In

spite of some existing simplifications in the extended formulation, it is very effective in the

early stages of ship structural design owing to its advantageous capability of rapid estimation

of the longitudinal stress distributions along the height of any ships at any specific stations.

2 COUPLED BEAM METHOD (CBM)

2.1 Brief description

Naar et al. [21] proposed a coupled beam method (CBM) for longitudinal bending response

analysis of passenger ships with long multi-deck superstructures above the deck. They con-

sidered superstructures with the length equal to the ship’s length. In the approach presented

by Naar et al., ship’s hull together with its long superstructure were modelled as a set of

longitudinal beams, each having both bending stiffness and axial stiffness. Basic concept of

discretisation of a multi-deck ship into a set of coupled beams is shown in Fig. 2. The beams

are connected to each other using distributed springs.

Figure 3 represents a simple case of discretisation in which only vertical couplings exist

between beams. A more sophisticated case where both vertical and horizontal couplings exist

between beams is shown in Fig. 4. Each beam in principle consists of an intersecting structure

composed of horizontal and vertical substructures.

2.2 Governing equations [21]

A differential segment of the i-th beam with internal/external/coupling forces acting on it is

shown in Fig. 5. The internal forces that are known from beam theory include axial force Ni,

shear force Qi and bending moment Mi. On the other hand, the coupling forces consist of

transverse (vertical) distributed forces pij and longitudinally distributed shear forces sij . The

subscript ij represents the effect of the j-th beam on the i-th beam. The only external force
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Figure 2 Basic concept of discretisation of a multi-deck ship into a set of coupled beams.

Figure 3 Simplest case of couplings among beams.
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Figure 4 More sophisticated case of couplings among beams.

acting on the segment is qi that is resulted as a difference of the weight and buoyancy forces.

Any of the loads that were defined above changes by a corresponding differential value towards

the other section of the i -th beam segment as shown in Fig. 5.

Based on the formulation proposed by Naar et al., the reference line is fixed to the deck

position and it may differ from the centroid position of the cross-section. dik and eij are

respectively representing the distance between the upper and lower fibres of the beam to the

reference line.

The equations of equilibrium for the forces acting on the i -th beam in both longitudinal

and transverse directions are

∂Ni

∂x
+

n

∑
j=1

sij = 0 (1)

∂Qi

∂x
+

n

∑
j=1

pij = qi (2)

where the matrix of shear forces sij and also matrix of vertical forces pij are as follows

sij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

sij
0

−sij

j > i
j = i
j < i

(3)

and

pij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

pij
0

−pij

j > i
j = i
j < i

(4)
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Figure 5 A differential segment of the i-th beam with internal/external/coupling forces acting on it.

The equilibrium equation for the moments about z-axis gives

∂2Mi

∂x2
+

n

∑
i=1

pij +
∂ (∑Cijsij)

∂x
= qi (5)

where matrix C is

Cij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

dij
0

−eij

j > i
j = i
j < i

(6)

Interaction between beams is defined using the coupling equations. The coupling equa-

tions are to be written for both shear forces and vertical forces. Shear coupling between two

neighbouring beams is shown schematically in Fig. 6. Due to the shear element with the

shear stiffnessTij , displacement discontinuity δuij causes shear forces sij between beams. It is

assumed that this shear force is constant over length dx. Thus, this force may be considered

as the response of distributed horizontal spring between the two neighbouring beams. Shear

stiffness depends on the effective height Hij of the shear element and also its effective area. In

this case, as shown in Fig. 6, the effective height is equal to the deck spacing. Therefore, the

approximate shear force in the side shell or in the longitudinal bulkhead is equal to

sij (x) = Tij (x) δuij (x) (7)

The relative displacement can be formulated by help of axial displacement u and deflection

vM of beams as follows
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Figure 6 Shear element approach for definition of shear coupling between beams.

δuij = uj + eji
∂vMj

∂x
− ui + dij

∂vMi
∂x

(8)

where vMi is the deflection of beam i caused by bending. Substituting Eq. (8) into Eq. (7)

results in the following equation for the shear force

sij = Tij

⎛
⎝
uj −Cji

∂vMj

∂x
− ui +Cij

∂vMi
∂x

⎞
⎠

(9)

And the longitudinal shear stiffness matrix is

Tij = {
Tij

0

j ≠ i
j = i (10)

The next type of coupling is vertical coupling. This type of coupling is of great importance

when the superstructure is weakly supported. This condition is well described by Bleich [3].

The interaction between beams i and j is described with distributed vertical springs in Fig.

7. Vertical coupling force pij depends on vertical coupling stiffness kij and relative deflection

δvij , which is the difference between beam deflections vi and vj . Hence

Pij (x) = kij (x) δvij (x) = kij (x) (vj (x) − vi (x)) (11)

Using the beam theory, the relations between the internal forces and displacements are

defined assuming that the material follows Hooke’s law. If axial displacement ui and deflection

vMi are known for beam i, then bending moment Mi and axial forces Ni are, see Crisfield [8]

Mi = −EIi
∂2vMi
∂x2

+EXi
∂ui

∂x
(12)
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Ni = EAi
∂ui

∂x
−EXi

∂2vMi
∂x2

(13)

where parameters EAi and EIi are the axial stiffness and the bending stiffness of beam i with

respect to the reference axis and EXi is the value which modifies the internal forces if the

reference line differs from the centroid of the cross-section. Matrices EAi, EIi and EXi are

diagonal.

Figure 7 Elongation element approach for definition of vertical coupling between beams.

2.3 Summary of equations to be solved

The following equations are to be solved in order to assess bending response of a ship using

coupled beam method

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂Ni

∂x
+ ∑n

j=1 sij = 0
∂2Mi

∂x2 +∑n
i=1 pij +

∂(∑Cijsij)
∂x

= qi
Mi = −E Ii

∂2vM
i

∂x2 +EXi
∂ui

∂x

Ni = EAi
∂ui

∂x
+EXi

∂2vM
i

∂x2

(14)

Eliminating Mi and Ni in above equations, result in the following equations

−
n

∑
j=1

sij =
∂

∂x
(EAi

∂ui

∂x
−EXi

∂2vMi
∂x2

) (15)
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qi −
n

∑
i=1

pij −
∂ (∑Cijsij)

∂x
= ∂2

∂x2
(−EIi

∂2vMi
∂x2

+EXi
∂ui

∂x
) (16)

The unknowns in Eqs. (15) and (16) are axial deflection ui and transverse deflection

induced by bending vMi .

2.4 Characteristics of coupled beam method presented by Naar et al.

Naar et al. presented an approach, based on the coupled beam method, for estimation of

bending response of ships having long superstructures. They assumed that the longitudinal

shear force and transverse (vertical) force are equal to zero at both ends of superstructure.

With such an assumption, shape functions are defined along the ship’s hull and superstructure.

In case of a ship having a short superstructure, the values of longitudinal shear force and

vertical transverse force are not equal to zero at both ends of superstructure. Therefore, some

modifications are necessary to be performed within the approach developed by Naar et al. in

order to make it applicable to other types of ships having superstructures of any lengths. This

is the main reason behind works presented in this manuscript.

3 EXTENDED FORMULATION

3.1 General

In order to resolve existing inabilities in the approach presented by Naar et al. regarding

bending response analysis of ships with short superstructures, a new method is provided in

this paper. The adopted concept for discretisation of ship structure into different beam and

spring elements is shown schematically in the Fig. 8. As can be seen in Fig. 8, both hull

and superstructure are modelled as beams consisting of a number of beam elements. In the

connecting region between hull and superstructure, the nodes are so located to have the same

abscissa. The beam elements are of three-node type, having a total number of six degrees

of freedom, so that the variations in the axial force can be considered. The reference line is

considered at the deck level.

The beams representing hull and superstructure are connected to each other using the

so-called ‘spring box elements’. The stiffness matrix of these spring box elements is derived

using equilibrium conditions. Any spring box elements consist of 9 transverse springs and also

9 shear springs, Fig. 9. The transverse springs and shear springs are simulating respectively

vertical forces and shear forces acting between the two beam elements, one inside the hull and

the other one inside the superstructure.

The governing equations to be solved were summarised in Section 2.3. The boundary

conditions are of free-free type. The Galerkin method [15] is adopted in order to solve the

set of equations. Using the Galerkin method, the finite element equations are formulated.

The length of the ship is divided into m intervals. The first node is chosen at the after

perpendicular position, while the last node is placed at the forward perpendicular. Each of

the intervals includes three nodes. u∗i and vM∗i are approximate solutions for the ui and vMi
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Figure 8 Adopted concept for discretisation of ship structure into different beam and spring elements.

Figure 9 Different components within any of spring box elements.

functions in i-th interval. These approximate solutions are considered as linear combination

of the corresponding nodal deflections in the following manner

u∗i =
9

∑
j=7

xi
jNj(x) (17)

vM∗i =
6

∑
j=1

xi
jNj(x) (18)

Degrees of freedom in above equations are as follows

Xi = [ xi
1 xi

2 xi
3 xi

4 xi
5 xi

6 xi
7 xi

8 xi
9 ]

= [ vi1 vi2 vi3 θi1 θi2 θi3 ui
1 ui

2 ui
3 ]
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where vij , θ
i
j and ui

j are nodal angular displacement and nodal displacement of i-th beam in

normal direction respectively.

The shape functions Nj(x) are obtained as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1 [x] = 1 − 23x2

L2 + 66x3

L3 − 68x4

L4 + 24x5

L5

N2 [x] = 16x2

L2 − 32x3

L3 + 16x4

L4

N3 [x] = 7x2

L2 − 34x3

L3 + 52x4

L4 − 24x5

L5

N4 [x] = x − 6x2

L
+ 13x3

L2 − 12x4

L3 + 4x5

L4

N5 [x] = −8x2

L
+ 32x3

L2 − 40x4

L3 + 16x5

L4

N6 [x] = −x2

L
+ 5x3

L2 − 8x4

L3 + 4x5

L4

N7 [x] = 1 − 3x
L
+ 2x2

L2

N8 [x] = 4x
L
− 4x2

L2

N9 [x] = − x
L
+ 2x2

L2

(19)

The residuals would be

R1 =
∂

∂x
(EAi

∂u∗i
∂x
−EXi

∂2vM∗i

∂x2
) +

n

∑
j=1

s∗ij (20)

R2 =
∂2

∂x2
(−EIi

∂2vM∗i

∂x2
+EXi

∂u∗i
∂x
) +

∂ (∑Cijs
∗
ij)

∂x
+

n

∑
i=1

p∗ij − q∗i (21)

Based on the Galerkin method, in order to have minimum error, the functions u∗i and vM∗i

have to satisfy the following equations

∫
x2

x1
Nm (x)

⎛
⎝
∂

∂x
(EAi

∂u∗i
∂x
−EXi

∂2vM∗i

∂x2
) +

n

∑
j=1

s∗ij
⎞
⎠
dx = 0 m = 7,8,9 (22)

∫
x2

x1
Nm (x)

⎛
⎝
∂2

∂x2
(−E Ii

∂2vM∗i

∂x2
+EXi

∂u∗i
∂x
) +

∂ (∑Cijs
∗
ij)

∂x
+

n

∑
i=1

p∗ij − q∗i
⎞
⎠
dx = 0 m = 1, . . . ,6

(23)

Integrating Eqs. (22) and (23) by part results in
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Nm (x) d
dx
M∗

i (x))
L

0
− ( d

dx
Nm (x)M∗

i (x))
L

0
+

∫
L
0

d2

dx2Nm (x) (−E Ii
d2vM∗

i

dx2 +EXi
du∗i
dx
)dx =

∫
L
0 Nm (x) q∗i (x)dx − ∫

L
0 Nm (x)kij (x) (v∗j (x) − v∗i (x))dx

−(Nm (x)∑Cijs
∗
ij)

L

0
+

∫
L
0 {

d
dx
NmTij(x) (u∗j −Cji

dvM∗
j

dx
− u∗i −Cij

dvM∗
i

dx
)}dx

(Nm (x)N∗i (x))
L
0 − ∫

L
0

d
dx
Nm (EAi

∂u∗i
∂x
−EXi

∂2vM∗
i

∂x2 )dx

= − ∫
L
0 Nm (x)∑Tij (u∗j −Cji

dvM∗
j

dx
− u∗i −Cij

dvM∗
i

dx
)

(24)

The stiffness matrices for the beam elements and spring box elements can be easily obtained

using Eq. (24). More details on these are given in the next sections.

3.2 Assembling algorithm

After derivation of stiffness matrices for hull beam elements, superstructure beam elements and

also spring box elements, the global stiffness matrix of the whole ship structure is assembled.

Since the shear force and bending moment are zero at both ends of the ship, in order to solve

the finite element equations, singular points should be eliminated so that rigid body motion

of the ship is prevented. The resulting set of finite element equations is then solved. Figure

10 shows the flow of steps from beginning towards the solution.

Figure 10 Adopted algorithm for solution of finite element equations.

Latin American Journal of Solids and Structures 8(2011) 265 – 290



F. Morshedsolouk et al / An extension of CBM and its application to ship’s hull-superstructure interaction problems 279

3.3 Stiffness matrix of the beam elements

Based on the Eq. (24), the stiffness matrix elements for i-th beam element having nodes 1, 2

and 3 with degrees of freedom u, vM and θ per each node would take the following form

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

kimj = kijm = − ∫
L
0 EIi (x) d2Nm

dx2

d2Nj

dx2 dx 1 ≤m,j ≤ 6
kimj = kijm = ∫

L
0 EXi (x) d2Nm

dx2

dNj

dx
dx 1 ≤m ≤ 6, 7 ≤ j ≤ 9

kimj = kijm = − ∫
L
0 EAi (x) dNm

dx

dNj

dx
dx 7 ≤m,j ≤ 9

(25)

kimj ∈Ki 1 ≤m,j ≤ 9

where Ki is the stiffness matrix of i-th beam.

Since the sectional properties of a ship are generally variable along its length, it would be

more accurate if the sectional properties of the beam elements can also vary along their length.

Therefore, the quantities EAi, EXi and EIi are defined in the new formulation as follows

⎧⎪⎪⎪⎨⎪⎪⎪⎩

EIi [x] = EIi1 ∗N7 [x] +EIi2 ∗N8 [x] +EIi3 ∗N9 [x]
EXi [x] = EXi

1 ∗N7 [x] +EXi
2 ∗N8 [x] +EXi

3 ∗N9 [x]
EAi [x] = EAi

1 ∗N7 [x] +EAi
2 ∗N8 [x] +EAi

3 ∗N9 [x]
(26)

where Ii, Ai and Xi are second moment of inertia, cross-sectional area and first sectional

moment of area at node number i of the beam element, which can be calculated by the

following equations

EIi = ∑
over the

cross − section

EjAjZ
2
j

EXi = ∑
over the

cross − section

EjAjZj

EAi = ∑
over the

cross − section

EjAj

Using above definitions, the stiffness matrix takes the following form

Ki =KEA1.EAi
1 +KEA2.EAi

2 +KEA3.EAi
3 +KEX1.EXi

1 +KEX2.EXi
2 +KEX3.EXi

3+
+KEI1.EIi1 +KEI2.EIi2 +KEI3.EIi3

(27)

The vector of degrees of freedom for i-th beam element is [vi1 vi2 vi3 θi1 θi2 θi3 ui
1 ui

2 ui
3]

T

and the matrices KEAj , KEXj and KEAj are explained in the appendix.

Latin American Journal of Solids and Structures 8(2011) 265 – 290



280 F. Morshedsolouk et al / An extension of CBM and its application to ship’s hull-superstructure interaction problems

3.4 Stiffness matrix of the spring box elements

Spring box elements are used in order to simulate the connection between beam elements of

the hull and beam elements of the superstructure. The forces acting on the beam elements

from the spring box elements are ∑n
j=1 sij , ∑

n
j=1 pij and ∑n

j=1Cijsij , which are respectively

representing axial force per unit length, transverse force per unit length and bending moment

per unit length.

Any one of spring box elements has 6 nodes, a total of 18 degrees of freedom, shear stiffness

and transverse vertical stiffness. The shear stiffness matrix and transverse vertical matrix are

KShear =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−C2
ijTijA CijTijB CijCjiTijA −CijTijB

CijTijB −TijD −CjiTijB TijD
CijCjiTijA −CjiTijB −C2

jiTijA CjiTijB
−CijTijB TijD CjiTijB −TijD

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ≤ k ≤ 6 7 ≤ k ≤ 9 1 ≤ k ≤ 6 7 ≤ k ≤ 9
1 ≤m ≤ 6 [− ∫

L
0 C2

ijTijN
′
mN

′
kdx] [∫

L
0 CijTijN

′
mNkdx] [∫

L
0 CijCjiTijN

′
mN

′
kdx] [− ∫

L
0 CijTijN

′
mNkdx]

7 ≤m ≤ 9 [∫
L
0 CijTijN

′
mNkdx] [− ∫

L
0 TijNmNkdx] [− ∫

L
0 CjiTijN

′
mNkdx] [∫

L
0 TijNmNkdx]

1 ≤m ≤ 6 [∫
L
0 CijCjiTijN

′
mN

′
kdx] [− ∫

L
0 CjiTijN

′
mNkdx] [− ∫

L
0 C2

jiTijN
′
mN

′
kdx] [∫

L
0 CjiTijN

′
mNkdx]

7 ≤m ≤ 9 [− ∫
L
0 CijTijN

′
mNkdx] [∫

L
0 TijNmNkdx] [∫

L
0 CjiTijN

′
mNkdx] [− ∫

L
0 TijNmNkdx]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(28)

and

KTrans =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[− ∫
L
0 kijNkNmdx] 0 [∫

L
0 kijNkNmdx] 0

0 0 0 0

[∫
L
0 kijNkNmdx] 0 [− ∫

L
0 kijNkNmdx] 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−kijE 0 kijE 0

0 0 0 0

kijE 0 −kijE 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(29)

Matrices A, B, D and E are given in the appendix.

3.5 Elimination of singular points of solution of finite element equations

The global stiffness matrix of the whole ship is singular, because there are not enough support

constraints to prevent its rigid body motion. In these cases, Singular Value Decomposition

(SVD) offers a better solution in many respects. All matrices have a unique decomposition as

multiplication of three matrices, a square orthogonal matrix, a diagonal matrix and a square

orthogonal matrix. Therefore, K, the global stiffness matrix of system, can be written as

bellow

K = U.diag.V T (30)

where U and V are square real and orthogonal. diag is a diagonal matrix that contains the

singular values. In terms of U , V , and diag, the system is readily solved

K−1= V. [1/diagj]UT (31)

Latin American Journal of Solids and Structures 8(2011) 265 – 290



F. Morshedsolouk et al / An extension of CBM and its application to ship’s hull-superstructure interaction problems 281

U and V being orthogonal means that their transposes are also their inverses. The inverse of

a diagonal matrix is just the reciprocal of the diagonal elements. The problem exists when the

system consists of one or more singular values (diagj). This means that diagj is very small

compared with the largest diagonal matrix element. It follows that (1/diagj) is a very large

number, which distorts the numerical solution, sending it off to infinity along a direction which

is spurious. A good approximation is to throw these spurious directions away completely by

setting (1/diagj) for the offending singular values to zero. The vector

Xs= V. [1/diagj]UT .F (32)

where F and Xs are vector of external forces and nodal displacement vector of system respec-

tively.

3.6 Implementation

Newly extended formulation was implemented in a code that was written in MATLAB envi-

ronment. The code creates the set of finite element equations for the whole ship structure

considering the couplings among beam elements of the hull and superstructure. The inputs

of the code are typically coordinates of the nodes, beam element connectivity matrix, spring

connectivity matrix and also vector of the loads. The outputs of the code consist of deflection

components at the nodes, internal forces and moments at the nodes and also longitudinal stress

at the nodes.

4 VALIDATION

Mackney and Rose [18] tested a simple ship model with the scale of 1/60 in a four-point bending

mechanism. The model had a length of 2 m, a breadth of 0.25 m, a hull height of 0.167 m and

a superstructure height of 0.117 m. The experimentally obtained deflections for the model are

shown in Fig. 11 with the marked points. The numerical results using the developed code are

also shown in the Fig. 11 with the solid line. As can be seen, a very good correlation exists

among the results.

Figure 11 Verification results.
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5 NUMERICAL EXPERIMENTS AND DISCUSSIONS

Two models are created numerically and their bending responses are assessed using the de-

veloped code. In order to examine validity of the results obtained based on the extended

formulation; the same models are analysed using ANSYS finite element code [23]. Different

paths are considered along the models where longitudinal stress distributions obtained based

on the present formulation and ANSYS are compared with each at them. All the forces ap-

plied on the models are self-balanced. That means there are no forces acting on the imaginary

support considered for the model. This support could be placed at any location on the natural

axis of the section. Herein, in order to prevent rigid body motion of the models, a point on the

midlength of the hull, but located on the neutral axis of the section, is restrained against mo-

tion. Elements of SHELL63 [23] type were used in order to discretise the models. SHELL63

element has both bending and membrane capabilities. Both in-plane and normal loads are

permitted. The element has six degrees of freedom at each node: translations in the nodal x,

y, and z directions and rotations about the nodal x, y, and z axes. Stress stiffening and large

deflection capabilities are included.

5.1 Case study 1: box girder model with a superstructure shorter than the hull

Model number 1 is a box girder model in which the superstructure has a length smaller than

that of the hull. Geometrical specifications of the model are shown in Fig. 12(a). Loading

distribution for the model is also given in Fig. 12(b). In order to investigate longitudinal

stress distributions for the model, 6 equidistant paths are considered between both ends of the

superstructure (Fig. 12(a)).

 

(a) Geometrical specifications

 

(b) Load diagram

Figure 12 Geometrical specifications and loading details for the model no. 1.
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Figures 13 to 18 show the comparisons between the longitudinal stress distributions ob-

tained using the extended formulation and ANSYS for different paths. Shear force and bend-

ing moment are equal to zero at both ends of superstructure. That is why it is realised

that the proposed method approximates well the longitudinal stress distribution at both ends

of the superstructure, Figs. 13 and 18. The reason behind some existing errors between

the results is mainly due to structural discontinuities at both ends of the superstructure.

In real ship structures, a gradual transition in the form of curved brackets is considered at

the hull-superstructure connections. Thus, the amount of stress concentration at the hull-

superstructure is reduced reasonably to a lower level. The presented formulation has sufficient

accuracy for the preliminary assessment of general strength of ship structures. However, the

stress concentrations existing at the corners of hull-superstructure connections or around the

side openings may be compensated using simple empirical equations that can be implemented

in the present extended formulation. This remains as a future work.

Figure 14, 15, 16 and 17 also demonstrate this fact that the superstructure is contributing

to the bending strength of the ship’s hull. Again good correlations are observed among the

results of the developed code and ANSYS.

Figure 13 Comparison of longitudinal stresses along height of ship at the location of path 1 in model no. 1.

Figure 14 Comparison of longitudinal stresses along height of ship at the location of path 2 in model no. 1.
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Figure 15 Comparison of longitudinal stresses along height of ship at the location of path 3 in model no. 1.

Figure 16 Comparison of longitudinal stresses along height of ship at the location of path 4 in model no. 1.

Figure 17 Comparison of longitudinal stresses along height of ship at the location of path 5 in model no. 1.

Figure 18 Comparison of longitudinal stresses along height of ship at the location of path 6 in model no. 1.
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5.2 Case study 2: box girder model with a long superstructure

In this case, bending behaviour of a model in which both hull and superstructure are of the same

length is investigated. Geometrical specifications of the model are given in Fig. 19. Loading

case is the same as that applied for the model number 1, Fig. 12(b). Six equidistant paths

are considered along the ship. The longitudinal stress distributions obtained using ANSYS

software are compared with those obtained using the proposed formulation for two typical

paths in Figs. 20 and 21. As can be seen, a good agreement exists between the results of both

methods.

Figure 19 Geometrical specifications for the model no. 2.

Figure 20 Comparison of longitudinal stresses along height of ship at the location of path 2 in model no. 2.

Figure 21 Comparison of longitudinal stresses along height of ship at the location of path 3 in model no. 2.

Latin American Journal of Solids and Structures 8(2011) 265 – 290



286 F. Morshedsolouk et al / An extension of CBM and its application to ship’s hull-superstructure interaction problems

6 CONCLUSIONS

This paper was aimed at investigation bending response of the ships considering the contribu-

tion of the superstructure. The coupled beam method developed by Naar et al. was further

extended in a way that the resulting formulation could be capable of analysing the elastic

bending response of the ships having superstructures of any lengths. The new extended for-

mulation was coded in MATLAB environment and then it was validated against some available

experimental data. Furthermore, some new cases were generated and their behaviours were

examined using the extended formulation and ANSYS software. The results of the extended

formulation for the numerical models were then compared with those results obtained using

the finite element method and relatively good correlations were observed among them.

The extended formulation of the coupled beam method is so much effective in terms of

CPU time and accuracy that can be easily implemented in the algorithms for assessment of

the longitudinal bending strength of ship structures, considering the contribution coming from

superstructures.

Improvements of the extended formulation in order to enable it to assess the stresses at

discontinuities more accurately, such as hull-superstructure connections and side openings, are

recommended to be performed as future works.
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APPENDIX

KEA1=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 37
30L

− 22
15L

7
30L

0 0 0 0 0 0 − 22
15L

8
5L

− 2
15L

0 0 0 0 0 0 7
30L

− 2
15L

− 1
10L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

KEA2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 6
5L

− 16
15L

− 2
15L

0 0 0 0 0 0 − 16
15L

32
15L

− 16
15L

0 0 0 0 0 0 − 2
15L

− 16
15L

6
5L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

KEA3=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
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10L

− 2
15L

7
30L
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15L

8
5L

− 22
15L

0 0 0 0 0 0 7
30L

− 22
15L

37
30L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

KEX1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 237
35L2 − 988

105L2
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105L2

0 0 0 0 0 0 − 32
5L2

128
15L2 − 32

15L2

0 0 0 0 0 0 − 13
35L2
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105L2 − 53

105L2

0 0 0 0 0 0 92
35L

− 356
105L

16
21L

0 0 0 0 0 0 32
35L

− 64
35L
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35L
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35L
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105L
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237
35L2 − 32

5L2 − 13
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35L

1
35L

0 0 0
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− 11
105L

0 0 0
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KEX2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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