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An efficient C0 FE model for the analysis of composites and
sandwich laminates with general layup

Abstract

A C0 continuous finite element model is developed to model

the refined higher order shear deformation theory. The pro-

posed element is an upgraded version of an element based on

higher order shear deformation theory. The C0 continuity

of the present element is compensated in the stiffness ma-

trix calculations. The computational efficiency is achieved

by the C0 continuous finite element model by satisfying the

inter-laminar shear stress continuity at the interfaces and

zero transverse shear stress conditions at plate top and bot-

tom. The performance of the upgraded element is illustrated

with many numerical examples.
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1 INTRODUCTION

The composite materials are widely used in civil, aerospace and other engineering fields due to

their advantage of high stiffness and strength to weight ratio. Laminated composite structures

are weak in shear due to their low shear modulus compared to extensional rigidity. Thus the

effect of shear deformation is quite significant, making it vulnerable to failure. The Classical

Plate Theory [26] under-predicts displacements and over-predicts the natural frequencies and

the buckling loads [28]. However this kind of approach is not sufficient for laminated plate due

to neglecting the transverse shear deformation in the laminates. In this context a number of

plate theories have been developed where the major emphasis is to model the shear deformation

in a refined manner.

These plate theories can be divided into two groups and they are (1) single-layer plate

theory and (2) layer-wise plate theory. In single-layer theory [19, 20, 25, 26, 28, 31, 32] the

deformation of the plate is expressed in terms of unknown parameters of a single plane, which

is usually taken as the middle plane of the plate. These are similar to Reissner-Mindlin’s plate

theory (i.e., the first-order shear deformation theory – FSDT) which requires shear correction

factor but there are some improvements, which allow the warping of plate sections to have

a higher-order variation of transverse shear stresses/strains along the thickness. In the layer

wise theory [18, 27, 29, 30] the deformation of the plate is expressed in terms of unknowns
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of a number of planes, which are taken at the layer interfaces and also at some intermediate

levels in some cases. The mathematical involvement in these plate theories is quite heavy and

the solution becomes quite expensive in a multilayered plate, as the unknowns are dependent

on number of layers. There is another class of layer wise plate theories [1, 6, 7, 9, 14, 15, 22]

where the unknowns of different planes are expressed in terms of those of a particular plane

using the condition of shear stress continuity at the layer interfaces. The number of unknowns

is reduced in these plate theories considerably [1, 6, 7, 9, 14, 15, 22] .

In this context, the first-order shear deformation theory [32] maybe considered as the

simplest option where an arbitrary shear correction factor is used since the transverse shear

strain is assumed to have uniform variation over the entire plate thickness. The first order

shear deformation theory which assumes a constant transverse shear strain across the thickness

direction and a shear correction factor is introduced to correct the discrepancy between the

actual transverse shear stress distribution and those assumed in this theory. The performance

of first-order shear deformation theory is strongly dependent on shear correction factors [31].

For a better representation of the transverse shear deformations, higher order plate theories

(HSDT) are proposed by Lo et al. [19], Manjunatha et al. [20], Reddy [25] and a few others,

in which the use of shear correction factor could be eliminated. It gives continuous variation of

transverse shear strain across the entire thickness, which leads to discontinuity in the variation

of the transverse shear stresses at the layer interfaces. But the actual behavior of laminated

plate is the opposite i.e., the transverse shear stress is continuous at the interfaces whereas

the strains may be discontinuous. Moreover, the degree of discontinuity in the transverse

shear strain is severe especially for sandwich plates due to a wide variation in their material

properties.

In order to overcome the above problem, Srinivas [29], Toledano et al. [30], Li et al. [18],

Robbins et al. [27], and some other investigators proposed layer-wise plate theories taking

unknowns at each layer interface. These plate theories perform well but they require significant

computational involvement in analyzing a multi-layered plate since the number of unknowns

increases with the number of layers. A major development in this direction is due to Di Sciuva

[14], Murakami [22], Liu et al. [9], and few others. They proposed zigzag plate theory where

layer-wise theory is initially used to represent the in-plane displacements having piecewise

linear variation across the thickness. The unknowns at the different interfaces are subsequently

expressed in terms of those at the reference plane through satisfaction of transverse shear stress

continuity at the layer interfaces. A further improvement in this direction is due to Di Sciuva

[15], Bhaskar et al. [1], Cho et al. [6, 7] and some other investigators who considered the

variation of in-plane displacements to be a superposition of a piecewise linearly varying field

on an overall higher order variation. Carrera [2] and Demasi [11] considered higher order

terms in the displacement field, using Mukarmi’s [21] zig-zag function and assumptions for

transverse stresses brings about a large number of solution variables. However applying static

condensation technique allows to eliminate the unknowns related to the transverse stresses

and thus, to derive efficient plate theories [12, 13]. Cho et al. [5] have also presented coupled

zigzag theory for hybrid plates under thermoelectric load considering global variation for the
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deflection and a layerwise linear variation of electric potential, which are inadequate to capture

the layerwise distribution of deflection due to thermal and potential fields. Kapuria et al.

[16, 17] have presented zigzag theory for hybrid beams and plates in which number of variable

are reduced to FSDT by satisfying interface and boundary conditions, it yield approximately

accurate results for cross ply only. Wu et al. [33] proposed C0 type higher-order theory

for bending analysis of laminated composite and sandwich plates. However in article [33], the

analytical formulations and solutions only presented for thermo-mechanical bending analysis of

laminated composite and sandwich plates. Wu et al. [34] also proposed C0 type finite element

based higher-order theory for accurately predicting natural frequencies of sandwich plate with

soft core. These theories are usually referred as refined higher order shear deformation theory

(RHSDT). However, there are very few C0 elements reported in the literature which can model

the RHSDT.

Considering all these aspects in view, an attempt has been made in this study to develop

an improved FE plate model to accurately predict the deflections and stresses of laminated

composites and sandwich plates due to different loadings, boundary and geometric conditions.

The plate model has been implemented with a computationally efficient C0 finite element based

upon refined higher order shear deformation theory. The C0 element proposed by Shankara

et al. [28] for simple higher order theory is upgraded to model the refined higher order shear

deformation theory in the present study. The C0 continuity of the present element has been

compensated in stiffness matrix calculations. The accuracy of the proposed eight-noded C0

element is established by comparing the results with three dimensional elasticity and other

finite element solutions.

2 MATHEMATICAL MODEL

The in-plane displacement fields (Figure 1) are typical to those of RHSDT Cho et al. [7] and

are as below:

uα = u0α +
nu−1
∑
k=0

Skα(z − zk)H(z − zk) +
nl−1
∑
k=0

T kα(z − ρk)H(−z + ρk) + ξαz2 + ϕαz3 (1)

where the subscript α represents the co-ordinate directions [α = 1,2]
where u0α denotes the in-plane displacements (i.e., u0 along x -axis and v0 along y-axis) of

any point on the mid surface, nu and nl are number of upper and lower layers respectively,

Skα, T
k
α are the slopes of k-th layer corresponding to upper and lower layers respectively, ξα,

ϕα are the higher order unknown and H(z − zk) and H(−z + ρk) are unit step functions.

and u3 = w0(x, y) (2)

The stress-strain relationship of a lamina say k-th lamina having any fiber orientation with

respect to structural axes system (x-y-z ) may be expressed as
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Figure 1 The displacement configuration across the cross-section of a plate with general lamination layup
based on refined higher order Shear deformation theory.
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or {σ} = [Qk] {ε} (3)

The rigidity matrix [Qk] can be evaluated by material properties and fibre orientation

following usual techniques for laminated composites [10].

Now by utilizing the transverse shear stress free boundary condition at the top and bottom

of the plate, (σ3α ∣z=±h/2 = 0) the components ξα and ϕα could be expressed as:

ϕα =
−4
3h2
{w1α +

1

2
(
nu−1
∑
k=0

Skα +
nl−1
∑
k=0

T kα)} and (4)

ξα =
−1
2h
(
nu−1
∑
k=0

Skα −
nl−1
∑
k=1

T kα) (5)
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Substituting equation (4) and (5) in equation (1), the following expressions may be ob-

tained:

uα =u0α +
nl−1
∑
k=0

Skα(z − zk)H(z − zk) +
nl−1
∑
k=0

T kα(z − ρk)H(−z + ρk) −
z2

2h
(
nu−1
∑
k=0

Skα +
nl−1
∑
k=0

T kα)

−4z
3

3h2
{w1α +

1

2
(
nu−1
∑
k=0

Skα +
nl−1
∑
k=0

T kα)}
(6)

Similarly by imposing the transverse shear stress continuity conditions at the layer inter-

faces the following expressions for Sα and Tα are obtained as below:

Skα = akα(w,α + ψα) + bkαrw,α
T kα = ckα(w,α + ψα) + dkαrw,α (7)

where akα, b
k
α, c

k
α, d

k
α are constants depending on material properties of the individual layers

and r is the respective layer interface.

By using equations (2)-(6) the strain field vector can be evaluated by

{ε}5×1 = [H]5×17 {ε}17×1 (8)

where {ε} is the strain field vector and {ε} is the modified strain vector at the reference plane,

that is at the mid plane.

{ε}T ={ ∂u1
∂x

∂v1
∂y

∂v1
∂x
+ ∂u1

∂y
∂w1

∂x
∂w2

∂y
∂w2

∂x
∂w1

∂y
∂ψ1

∂x

∂ψ2

∂y
∂ψ2

∂x
∂ψ1

∂y
ψ1 ψ2

∂w
∂x

∂w
∂y

w1 w2 }
(9)

where the [H] matrix consists of terms containing z and some term related to material prop-

erties.

The nodal unknowns for the present FE model can be defined with respective to the co-

ordinate system (x -y-z ) as in Figure 1.

{δ} = {u0 v0 w0 Ψx Ψy w1 w2} (10)

The actual displacement fields require C1 continuity of the transverse displacement for

the finite element implementation. In order to avoid the usual difficulties associated with C1

continuity requirement, ∂w
∂x

is replaced with independent variable w1 and ∂w
∂y

with w2. For

the sake of convenience to represent all variables as C0 continuous, the derivative of w with

respect to x and y are expressed as follows

∂w

∂x
−w1 = 0 and

∂w

∂y
−w2 = 0 (11)
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Now the potential energy (V ) of the plate/laminate under the action of transverse load of

intensity q may be written as

V = ∫ {ε}
T [D] {ε}dxdy + Pλ − ∫ wqdxdy (12)

Where,

[D] =
n

∑
k=1
[H]T [Qk] [H]dz (13)

Using equation (9) the penalty term is expressed as:

Pλ = γ∫∫ ({
∂w

∂x
−w1}

T

{∂w
∂x
−w1} + {

∂w

∂y
−w2}

T

{∂w
∂y
−w2})dxdy (14)

where γ is the penalty parameter.

3 FINITE ELEMENT FORMULATION

For the present study, an eight noded quadrilateral C0 continuous isoparametric element has

been used. The typical node numbering adopted is as shown in figure 2. The element has

an arbitrary rectangular geometry in x -y coordinate system. To have a regular rectangular

geometry the element is mapped to ξ-η plane. The generalized field variable (u) and the element

geometry (x,y) at any point within the element are expressed in terms of nodal variables as

follows.

Figure 2 Eight node isoparametric element with typical node numbering.

u =
8

∑
i=1
Niui, x =

8

∑
i=1
Nixi, y =

8

∑
i=1
Niyi (15)

where Ni is the shape function of the associated node.

Using equation (10) the strain vector in equation (9) can be expressed in term of {δ}56×1
containing nodal degrees of freedom as

{ε}17×1 = [B]17×56 {δ}56×1 (16)

where [B]17×56 is the strain displacement matrix.

Latin American Journal of Solids and Structures 8(2011) 197 – 212



S.K. Singh et al / An efficient C0 FE model for the analysis of composites and sandwich laminates 203

The strain displacement matrix [B]56×56 is evaluated by using the modified strain vector

and the shape functions.

The transverse displacement may now be expressed in terms of the nodal displacement

vector as

w = [N] {δ}56×1 (17)

where the [N ] matrix contain shape functions for the eight node element [8].

Also
∂w

∂x
−w1 = [Px] {δ}1×56 and

∂w

∂y
−w2 = [Py] {δ}1×56 (18)

where [Px] and [Py] matrix contains shape functions and their derivatives.

By substituting the expressions equations (15), (16) and (17) in equation (12) and mini-

mizing the expression of the potential energy with respect {δ} equilibrium can be expressed

as

∫∫ (BT [D][B]dxdy) {δ} + ∫∫ ([Px]T [Px] + [Py]T [Py]) {δ}dxdy − ∫∫ ([N]T qdxdy) = 0 or

[K] {δ} = {P} (19)

where [K] is the element stiffness matrix and {P}the nodal load vector. The integration

involved in the above expressions is carried out numerically by following the Guass quadrature

method.

4 NUMERICAL RESULTS AND DISCUSSIONS

In order to demonstrate the accuracy and applicability of the present element a number of

numerical examples on composites and sandwich laminates are solved by the proposed finite

element model based on refined higher order shear deformation theory. The general geometric

details of the plate problem considered for the present analysis is shown in Figure 3. The

results obtained are presented in the form of different tables and figures. Initially a composite

plate problem is solved by using the proposed finite element to model the higher order shear

deformation theory (HSDT) with the inclusion of penalty parameters for study of convergence

and also to compare the present results with published results. Finally, the proposed FE model

is used to generate results based on refined higher order shear deformation theory (RHSDT).

A large number of results are compared with the published results.

4.1 Analysis of laminated plates based on higher order shear deformation theory

In this section numerical examples on composite plates are solved by using the present FE

model based on HSDT and penalty parameters. The present results are compared with those

obtained by Sankara et al. [28].
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Figure 3 Rectangular plate having a mesh of mxn.

4.1.1 Cross-ply square laminate subjected to uniformly distributed load

The problem of a three ply (0/90/0) square laminate, simply supported at all the edges and

subjected to uniformly distributed load, is studied for different thickness ratio (h/a) ranging

from 0.01 to 0.5. The plate is analyzed with different mesh divisions and the deflection obtained

at the plate centre is presented with the analytical solution of Reddy [25] and Chakrabarti et

al. [3] in Table 1. The result obtained shows the element is capable of predicting results with

sufficient accuracy. In this it is observed that the first order shear deformation theory gives

lesser deflections as compared to higher order shear deformation theory.

Table 1 Deflection (100wh3E2/qa4) at the centre of a simply supported square laminate (0/90/0) under
uniform load of intensity q.

Reference Theory
Thickness ratio(h/a)

0.5 0.25 0.1 0.05 0.02 0.01
Present element (2x2)∗ HSDT 7.2661 2.7533 1.0291 0.6805 0.4187 0.2098
Present element (4x4) HSDT 7.7506 2.9053 1.0968 0.7780 0.6799 0.6553
Present elemen (6x6) HSDT 7.7608 2.9087 1.0979 0.7786 0.6841 0.6678
Present element (8x8) HSDT 7.7624 2.9093 1.0980 0.7786 0.6844 0.6699
Present element (12x12) HSDT 7.7631 2.9095 1.0981 0.7785 0.6843 0.6706
Present element (16x16) HSDT 7.7632 2.9096 1.0981 0.7785 0.6843 0.6706
Chakrabarti [3] HSDT 7.7670 2.9093 1.0910 0.7763 0.6841 0.6708
Chakrabarti [3] FSDT 7.7068 2.6608 1.0235 0.7588 0.6813 0.6707
Reddy [25] HSDT 7.7671 2.9091 1.0900 0.7760 0.6838 0.6705
Reddy [25] FSDT 7.7062 2.6596 1.0219 0.7573 0.6807 0.6697

∗Entries inside the parenthesis indicate mesh division

Although the individual layers possess different orientations but they have equal thickness

and material property (E1= E2 = 25; G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = 0.25 and

ν13 = 0.01), which is also applicable to all the subsequent problems.
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4.1.2 Cross-ply rectangular laminate subjected to distributed load of sinusoidal variation

The plate is modeled by the proposed element using the mesh arrangement as shown in Figure

3. This mesh arrangement is used in all the examples where the plate is rectangular. A rect-

angular laminate subjected to a load having a distribution of q(x, y) = q0sin(πx/a)sin(πy/b)

is considered in this example. The stacking sequence and boundary conditions are identical

to those taken in the previous example. The study is made by taking thickness ratio (h/a) as

0.5, 0.1 and 0.01.

In all the cases the analysis is done with three different mesh divisions and the deflection

and stress components obtained at the important locations are presented with the analytical

solution of Reddy [25] and numerical solution of Chakrabarti et al. [3] in Table 2. The

deflection and stress results of the element are exactly in agreement with the published results.

Table 2 Non-dimensional deflection and stresses at important points of a simply supported square laminate
(0/90/0) under sinusoidal loading of amplitude q.

h/a Reference Theory w σ1 σ2 σ4 σ5 σ6

0.25

Present element (8x8) HSDT 1.9258 0.7766 0.5144 0.1937 0.1865 0.0506
Present element (12x12) HSDT 1.9260 0.7713 0.5108 0.2012 0.1829 0.0502
Present element (16x16) HSDT 1.9261 0.7694 0.5095 0.2038 0.1817 0.0501
Chakrabarti [3] HSDT 1.9230 0.7500 0.5080 0.2023 0.1831 0.0499
Chakrabarti [3] FSDT 1.7770 0.4430 0.4843 0.1440 0.1569 0.0371
Reddy [25] HSDT 1.9220 0.7345 0.1832
Reddy [25] FSDT 1.7760 0.4369 0.1562
3D Elasticity [23] 1.9423 0.1562 0.2170

0.1

Present element (8x8) HSDT 0.7174 0.5917 0.5544 0.2478 0.1167 0.0285
Present element (12x12) HSDT 0.7175 0.5880 0.5511 0.2558 0.1085 0.0282
Present element (16x16) HSDT 0.7176 0.5866 0.5499 0.2586 0.1057 0.0282
Chakrabarti [3] HSDT 0.7140 0.5806 0.2722 0.2437 0.1015 0.0279
Chakrabarti [3] FSDT 0.6700 0.5219 0.2582 0.1623 0.0918 0.0254
Reddy [25] HSDT 0.7130 0.5684 0.1033
Reddy [25] FSDT 0.6690 0.5172 0.0915
3D Elasticity [23] 0.7405 0.5900 0.1230

0.01

Present element (8x8) HSDT 0.4325 0.5385 0.1786 0.5593 0.2858 0.0217
Present element (12x12) HSDT 0.4338 0.5385 0.1802 0.4333 0.2308 0.0215
Present element (16x16) HSDT 0.4341 0.5399 0.1806 0.3714 0.1945 0.0214
Chakrabarti [3] HSDT 0.4350 0.5496 0.1828 0.2401 0.0749 0.0215
Chakrabarti [3] FSDT 0.4350 0.5490 0.1825 0.1568 0.0709 0.0202
Reddy [25] HSDT 0.4340 0.5390 0.0750
Reddy [25] FSDT 0.4340 0.5384 0.0703
3D Elasticity [23] 0.4368 0.5520 0.0938 0.0214

4.2 Analysis of composites and sandwich laminates based on refined higher order shear
deformation theory

In the previous section the results based on higher order shear deformation show a definite

improvement over that of first order shear deformation theory, but it requires further improve-
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ment specifically for the stresses evaluation to have a comparable value with 3-D elasticity

solution Pagano [23]. This improvement is shown in this section by solving some problems of

composites and sandwich laminates with the proposed element based on refined higher order

shear deformation theory by compensating C0 continuity in stiffness matrix calculations.

4.2.1 Simply supported cross-ply square laminate

In order to show the performance of different plate theories a cross-ply (0/90/0) laminate

(Figure 3, a = b) subjected to a uniformly distributed load of intensity q(x, y) = q0 sin

(πx/a) sin (πy/b) is considered in this example. The full plate is analyzed with different

mesh divisions. The results obtained are compared with those obtained by First order Shear

Deformation Theory (FSDT), HSDT, RFSDT (Refined FSDT) and 3D elasticity solution.

Table 3 shows the present values of central deflections wc = 100wE2h
3/(q0a4) based on RHSDT

are close to the 3D elasticity solution while the FSDT gives the worst results.

Table 3 Central deflection (wc) of a simply supported cross-ply (0/90/0) square laminate under sinusoidal
loading.

References
Thickness ratio (h/a)

0.25 0.1 0.05 0.02 0.01
Present element(6x6) RHSDT 1.9965 0.7586 0.5179 0.4322 0.3480
Present element(8x8) RHSDT 1.9993 0.7601 0.5199 0.4451 0.4191
Present element(10x10) RHSDT 2.0001 0.7605 0.5203 0.4473 0.4325
Present element(12x12) RHSDT 2.0004 0.7607 0.5205 0.4479 0.4359
Present element(16x16) RHSDT 2.0006 0.7609 0.5206 0.4483 0.4374
Present element(18x18) RHSDT 2.0006 0.7609 0.5206 0.4483 0.4374
Chakrabarti [4] RFSDT 1.893 0.7202 0.5074 0.4446 0.4354
Chakrabarti [3] HSDT 1.923 0.714 0.5052 0.444 0.435
Chakrabarti [3] FSDT 1.777 0.674 0.4932 0.4421 0.435
3-D Elasticity Solution Pagano [23] 2.0059 0.753 0.5164 0.4451 0.4347

4.2.2 Simply supported cross-ply square laminate

The problem of a cross-ply (0/90/90/0) laminated plate (Figure 3, a = b) subjected to a

distributed load of intensity of q(x, y) = q0 sin (πx/a) sin (πy/b) is taken in this example.

The variation of normal stress (σx = σxh2/(q0a2)) across the thickness of the plate is presented
in Figure 4 with those obtained by 3D elasticity solution [8]. The potential of the element

is clearly reflected in the accuracy exhibited in the prediction of stress distribution. The in-

plane shear stress, τxy = τxyh2/(qa2) at the corner of the plate and the transverse shear stress

τxz = τxzh/(q0a) at the centre of the edge of the plate is obtained by RHSDT and is plotted

with 3D elasticity solution [23] in Figure 5 and Figure 6 respectively, which shows very good

agreement between the results.
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Figure 4 Variation of in plane normal stress across the plate thickness for simply supported square composite
plate (0/90/90/0) under sinusoidal loading.

Figure 5 Variation of in plane shear stress across the plate thickness for simply supported square composite
plate (0/90/90/0) under sinusoidal loading.

Figure 6 Variation of transverse shear stress across the plate thickness for simply supported square composite
plate (0/90/90/0) under sinusoidal loading.
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4.2.3 Simply supported rectangular laminated sandwich plate under distributed load of sinusoidal

variation

A rectangular sandwich plate (0/90/C/0/90) plate (Figure 3) is subjected to a sinusoidal load

of intensity q = q0 sin(x/a) sin(y/b). It has a total thickness of h where the thickness of the

core is 0.8h and that of each ply in the top and bottom face sheets is 0.05h. The plate is

analyzed by taking aspect ratio b/a=1.0 and 2.0 and thickness ratios h/a = 0.1 and 0.2 using

different mesh sizes. The material properties used for the core and each laminated face sheets

are given in Table 4. The non-dimensional values of central deflection w (a
2
, b
2
,0) obtained in

the present analysis are presented with those obtained from the three-dimensional elasticity

solution in Table 5.

Table 4 Material properties used for core and face sheets.

Location
Elastic properties

E1 E2 E3 G12 G13 G23 ν12

Core 0.04E 0.04E 0.5E 0.016E 0.06E 0.06E 0.25

Face 25E E - 0.5E 0.5E 0.2E 0.25

As regard to three-dimensional elasticity solution [8], it is relevant to mention that the

numerical results based on elasticity solution used here for the comparison are not readily

available in the paper of Pagano [3] and hence a software code is used to generate results. The

present results are in very good agreement with the elasticity solution [3]. Table 5 also shows

that the convergence of the results with mesh refinement is excellent.

Table 5 Non dimensional deflection (wc) of square sandwich plate (0/90/C/0/90) under sinusoidal load.

Reference Theory

Aspect ratio

1 2

h/a=0.1 h/a=0.2 h/a=0.1 h/a=0.2

Present element (2x2) RHSDT 0.4758 2.2523 0.8759 4.0448

Present element (4x4) RHSDT 1.7047 4.2258 3.1324 7.3201

Present element (6x6) RHSDT 1.7377 4.2676 3.1993 7.3945

Present element (8x8) RHSDT 1.7409 4.2729 3.2057 7.4039

Present element (10x10) RHSDT 1.7417 4.2743 3.2071 7.4062

Present element (12x12) RHSDT 1.7419 4.2747 3.2075 7.4070

Present element (16x16) RHSDT 1.7420 4.2751 3.2078 7.4076

Present element (18x18) RHSDT 1.7420 4.2751 3.2078 7.4076

Chakrabarti [4] HSDT 1.6738 3.9798 3.0957 6.9253

3D Elasticity Pagano [23] 1.7272 4.2447 3.1944 7.3727
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4.2.4 Simply supported square sandwich plate under sinusoidal load

A square sandwich (0/C/0) plate, simply supported at all four edges and subjected to dis-

tributed load of intensity q = q0 sin(x/a) sin(y/b) is analyzed by taking thickness ratios,

h/a = 0.01, 0.02, 0.05 and 0.25. The thickness of each face is 0.1h. The material properties

are as given in Table 4. The deflection, the normal stresses and the shear stresses at some

important points obtained by the present formulation are presented in Table 6 along with

the three-dimensional elasticity solution of Pagano [23]. The study has been performed for

different mesh divisions to show the convergence characteristics. In general present results are

close to the elasticity solution with good convergence.

Table 6 Non-dimensional deflection (wc) and stresses (σx, σxz , σxy) at important points of a simply supported
square sandwich plate (0/C/0) under sinusoidal loading.

h/a Reference w(a
2
, b
2
,0) σx(a2 ,

b
2
, h
2
) τxz(0, b2 ,0) τxy(0,0, h2 )

0.01

Present element (8x8) 0.8311 1.0217 0.5316 0.0425

Present element (12x12) 0.8962 1.0973 0.4515 0.4306

Present element (16x16) 0.9017 1.1020 0.4079 0.0453

Present element (18x18) 0.9017 1.1020 0.4079 0.0453

3D Elasticity solution [23] 0.8923 0.8923 0.3240 0.0433

0.2

Present element (8x8) 0.9346 1.1006 0.4074 0.0466

Present element (12x12) 0.9449 1.1063 0.3745 0.0466

Present element (16x16) 0.9458 1.1050 0.3617 0.0465

Present element (18x18) 0.9458 1.1050 0.3617 0.0465

3D Elasticity solution [23] 0.9348 1.0990 0.3230 0.0446

0.05

Present element (8x8) 1.2405 1.1238 0.3534 0.0027

Present element (12x12) 1.2422 1.1184 0.3456 0.0537

Present element (16x16) 1.2424 1.1161 0.3429 0.0536

Present element (18x18) 1.2424 1.1161 0.3429 0.0536

3D Elasticity solution [23] 1.2264 1.1100 0.3170 0.0511

0.1

Present element (8x8) 2.2372 1.1670 0.3285 0.0767

Present element (12x12) 2.2387 1.1614 0.3249 0.0761

Present element (16x16) 2.2389 1.1594 0.3237 0.0759

Present element (18x18) 2.2389 1.1594 0.3237 0.0759

3D Elasticity solution [23] 2.2004 1.1530 0.3000 0.0707

0.25

Present element (8x8) 7.8502 1.5532 0.2638 0.1691

Present element (12x12) 7.8547 1.5498 0.2618 0.1676

Present element (16x16) 7.8556 1.5480 0.2611 0.1671

Present element (18x18) 7.8556 1.5480 0.2611 0.1671

3D Elasticity solution [23] 7.5962 1.5560 0.2390 0.1437
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4.2.5 Sandwich plate having different boundary conditions under distributed load of sinusoidal

variation

A sandwich plate (0/90/C/0/90) subjected to a distributed load of intensity q=q0 sin(x/a)

sin(y/b) is analyzed in this example. It has a total thickness of h where the thickness of the

core is 0.8h and that of each ply in the top and bottom face sheets is 0.05h. The study has been

made for two types of boundary conditions. These are SCSC, i.e. two opposite edges simply

supported and other two edges clamped and CCCC, i.e. all edges clamped. The analysis is

performed for different thickness ratios (h/a = 0.01, 0.05, 0.10, 0.20 and 0.50). The material

properties used for the core and each laminated face sheets are given in Table 4. The non-

dimensional values of central deflection and the stresses calculated at the important points are

presented in Table 7.

It may be noted from the results that the percentage increase in the transverse displacement

for higher thickness ratios, i.e. from 0.20 to 0.50 is much higher than those for lower thickness

ratios, i.e. from 0.01 to 0.05 for both the boundary conditions. The major cause behind it

may be that for higher thickness ratios the effect of transverse flexibility of the core and shear

deformation effects are more pronounced as compared with that of the lower thickness ratio.

Table 7 Non-dimensional deflection (wc) and stresses (σx, σxz) at important points of a square sandwich
plate (0/90/C/0/90) under sinusoidal loading with different boundary conditions.

h/a Reference
Boundary
condition

w(a
2
, b
2
,0) σx(a2 ,

b
2
, h
2
) τxz(0, b2 ,0)

0.01

Present element SCSC 0.3920 0.5986 0.0944
Pandit [24] SCSC 0.3453 0.4077 0.0778
Present element CCCC 0.2260 0.4283 0.2348
Pandit [24] CCCC 0.2286 0.4270 0.2189

0.05

Present element SCSC 0.6080 0.6138 0.1542
Pandit [24] SCSC 0.6052 0.5850 0.1061
Present element CCCC 0.4462 0.4293 0.2004
Pandit [24] CCCC 0.4296 0.4275 0.1828

0.10

Present element SCSC 1.3092 0.7392 0.1523
Pandit [24] SCSC 1.3026 0.8310 0.1418
Present element CCCC 1.0213 0.4621 0.1651
Pandit [24] CCCC 1.0489 0.4597 0.1587

0.20

Present element SCSC 3.8500 1.0189 0.1620
Pandit [24] SCSC 3.8087 1.1415 0.1683
Present element CCCC 3.3421 0.6022 0.1422
Pandit [24] CCCC 3.4521 0.6170 0.1396

0.5

Present element SCSC 19.580 2.4028 0.1721
Pandit [24] SCSC 19.551 2.3071 0.1691
Present element CCCC 18.345 1.8150 0.1325
Pandit [24] CCCC 18.345 1.8156 0.1227
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5 CONCLUSIONS

An efficient FE model based on higher order zigzag theory (RHSDT) is presented for the analy-

sis of composites and sandwich plates. The present zigzag theory ensures shear free conditions

at the top and bottom of the plate, cubic variation of the in-plane displacements and inter-

laminar shear stress continuity at the layer interfaces. An eight node isoparametric element

with seven degrees of freedom per node is adopted in this study to model the RHSDT. Con-

vergence of the results is very good indicating reasonably less number of elements required to

get the desired results. The results obtained for the deflections and the stresses of a laminated

composite and sandwich plate show very good performance of the present formulation and

hence it can be recommended for the accurate analysis of laminated composites and sandwich

plates.
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