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A local-restart coupled strategy for simultaneous sizing and
geometry truss optimization

Abstract

This paper presents an approach for the global optimization

of truss sizing and geometry that is based on a probabilis-

tic restart procedure coupled with a local search algorithm.

The resulting algorithm is able to guarantee local optimality

and provides a set of local optima which contain, with an

increasing probability as the number of restarts increases,

the global solution. The optimization problem searches for

a truss structure of minimum volume, subject to stress con-

straints. The design variables are the bars cross-section areas

and some nodal coordinates. Several loading conditions are

also considered. Finally, four numerical examples are pre-

sented and the main aspects of the approach are discussed.

Keywords

global optimization, truss structures, geometry optimization,

size optimization, stress constraints, minimum volume
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1 INTRODUCTION

The truss sizing optimization problem (where the member’s cross-sections areas are taken

as design variable) can be stated, in many cases, as a Linear Programming (LP) problem

[11, 16, 17]. One of the interesting characteristics of LP problems is that, when they are

feasible, they always have a single global optimum or a convex set of local optima that are all

global optima [15]. That is, in the case of sizing optimization problems that are stated as LP

problems, every optimum solution found is indeed a global optimum.

The truss geometry optimization problem (where the nodal coordinates are taken as design

variables) is, instead, non linear by its nature, and therefore it cannot be stated as a LP

problem. Consequently, one cannot know in advance if the problem being studied has a single

global optimum or several local optima. In fact, many authors already pointed out that in

many relevant cases several local optima may exist, which are not the global optimum [4, 20].

In this context, there is an increasing effort on applying global optimization procedures to

the problem of simultaneous optimization of truss geometry and sizing [4, 8, 14, 18, 21, 25].

Most metaheuristics (i.e. Genetic Algorithms and Simulated Annealing) have the ability to
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search for global optima, and consequently, these techniques have been applied extensively to

the problem studied here. However, these techniques do not guarantee local optimality [3, 5]

and require, in general, a large amount of calculations [5]. Consequently, the solutions given

by metaheuristics frequently present some kind of residual, such as bars that clearly do not

compose an optimum solution.

Gradient based algorithms (i.e. Sequential Quadratic Programming and Interior Point

Methods) were also successfully applied to the problem being addressed [2, 3, 12, 22]. These

techniques are efficient for local searches and local optimality can be guaranteed [3]. That is,

the solutions given by this approach do not present residuals and, in most cases, require fewer

calculations than most metaheuristics. However, such techniques are not global optimization

algorithms, and consequently may give poor results for problems that present several local

optima.

This paper presents a local-global strategy for the simultaneous geometry and sizing opti-

mization of truss structures. The optimization problem searches for a structure of minimum

volume, subject to stress constraints. Local search is performed by gradient based techniques

and thus local optimality is guaranteed. In order to find the global minimum, the local search

is made global by a probabilistic restart procedure presented by Luersen and Le Riche [13]. In

this approach, a spatial probability of starting a local search is built based on past searches.

As a result, when the optimization algorithm ends, a list with several local optima (eventually

the global optimum) is obtained. The proof that a local search converges to the global opti-

mum for a continuous regular function when the number of random restarts goes to infinity is

presented by Ritto et al. [19]. However, it should be pointed out that the restart procedure

used here is not purely a random one, but it is based on information obtained from previous

results, making the global search more efficient.

This paper is organized as follows. Section 2 presents the formulation of the optimization

problem. The local-global optimization strategy is presented in section 3 and in the section 4,

numerical examples are solved to demonstrate the strategy developed in this paper. Finally, a

summary of the work and the main conclusions are presented in section 5.

2 OPTIMIZATION PROBLEM

2.1 Formulation

The truss optimization problem stated in this paper is based on the ground structure approach

that is described in detail by Kocvara and Zowe [12], Achtziger [2] and Rozvany [20]. In this

approach, we assume an initial truss structure composed of as many bars as needed (called

the ground structure), and take as design variables the cross-section areas and some nodal

coordinates of this structure. Note that bars are not included nor removed from the ground

structure. However, the algorithm can reproduce the effect of removing bars from the structure

by reducing its cross-section area to very small values. Computational difficulties involved in

this approach are discussed in details by Cheng and Guo [7] and Stolpe and Svanberg [23].

Here, the optimization problem is stated as the minimization of the volume of the structure
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subject to stress constraints and, as mentioned above, assuming some nodal coordinates and

members cross-section areas as design variables. This optimization problem can be stated as

[7]:

Find: x and A

that gives

minV (x,A) =AT .L(x), (1)

subject to

gj = Aj (σj(x,A) − σt) ≤ ε (j = 1,2, ...,m), (2)

gj+m = Aj (σc − σj(x,A)) ≤ ε (j = 1,2, ...,m), (3)

where V is the volume of the structure, x is the vector of nodal coordinates, A is the vector

of member cross-section areas, L is the vector of member lengths, gj are stress constraints,

σj is the stress on member j, σt is the allowable stress in tension (a positive value), σc is

the allowable stress in compression (a negative value), ε > 0 is a small positive quantity that

is reduced during the optimization procedure and m is the number of members subjected to

stress constraints.

Each stress constraint from Eq. (2) and Eq. (3) is multiplied by the cross section area of

the bars in order to allow the cross section areas to be reduced to very small values without

violating the constraints. When the cross section area of a given bar goes to zero, then the

stress in this bar goes to infinity. Consequently, in order to allow the optimization procedure to

obtain very small values for the cross section areas without violating the constraints, one must

apply some constraint relaxation technique. Note that by multiplying the entire constraint

by the cross section area of the bar involved, one guarantees that when the cross section area

is zero the constraint will not be violated. However, this measure alone is not enough to

ensure convergence of the algorithm, since during the optimization procedure the cross section

areas never become zero. It is also necessary to allow the constraints to be smaller than

some small quantity ε > 0 instead of simply being smaller than zero during the optimization

process. These two modifications ensure that the cross section areas can be reduced to very

small values without violating the constraints. The value of ε is then reduced during the

optimization procedure, in order to enforce that the stresses inside the bars be smaller than

the maximum allowable stresses. This strategy was first proposed by Cheng and Guo [7] and

is further discussed by Stolpe and Svanberg [23].

Note that the optimization problem defined here tackles both nodal coordinates and cross-

section areas at the same time, and thus can be classified as a simultaneous geometry and

topology (instead of sizing) optimization problem [3]. Other approaches to solve this problem

are described by Achtziger [3] and Torii and Biondini [24].
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For convenience, the design variables A and x can be grouped into a single design vector X,

and the constraints from Eq. (2) and Eq. (3) can be grouped into a single vector of constraints

g. In this way, the previous problem is concisely rewritten as

Find: X

that gives

min V (X) =AT .L, (4)

subject to

g(X) ≤ 0, (5)

where g is a vector with 2m components since there are two constraints (i.e. tension and

compression allowable stresses) defined for each bar of the structure. Several loading conditions

can be considered by defining one vector g composed by the stress constraints of all loading

conditions.

It is important to point out that the global optimization strategy proposed here is based

on solving the optimization problem several times for different initial solutions, but does not

depend on how these problems are solved or how these problems are formulated. Consequently,

modifications to the formulation of the optimization problem do not lead to modifications

on the global optimization strategy. Thus, different formulations for the truss optimization

problem (considering buckling, for example) can be used without reworking on the global

optimization algorithm. In this context, the formulation of the optimization problem used here

is kept as simple as possible in order to allow a better understanding of the global optimization

strategy. Sensitivity analysis can be made as discussed by [10], while the stresses in the bars

can be obtained as discussed by [6].

2.2 Bounds on the design variables

There are two different approaches for defining bounds on the nodal coordinates. In the first

approach, bounds can be defined locally for each design variable, like shown in Fig. 1(a). In

this case, there are different bounds for each design variable, and this can be accomplished by

defining a rectangular feasible region around each node [1]. The second approach is that of

defining bounds for all the design variables at once, like shown in Fig. 1(b). In this case, the

bounds are the same for all design variables.

These two approaches may lead to different results, since the feasible domain defined in

the first approach is smaller. However, the first approach may prevent problems related to

node superposition, if the bounds are defined properly. Therefore, this approach may be rec-

ommended when there are many nodes for which the coordinates are taken as design variables

in the optimization procedure.

Node superposition (also called node melting [2]) occur when more than one node of the

structure assumes the same position inside the feasible domain. In this case, some bars may
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(a) (b)

Figure 1 Bounds on nodal coordinates defined (a) separately for each node, and (b) globally for all nodes.

have zero length leading to ill conditioned stiffness matrices and blocking the optimization

procedure. One measure for avoiding this difficulty is by imposing bounds on nodal coordinates

so that node melting is avoided, as proposed previously. However, this approach may prevent

the optimization algorithm from obtaining true optimum solutions and is not recommended

when very accurate solutions are sought. An elegant approach for dealing with node melting

is proposed by Achtziger [3] that allows nodes to occupy the same position without blocking

the optimization procedure. This approach allows one to obtain very accurate solutions, but

at the cost of a modified optimization problem. A more detailed discussion on node melting

is presented by Achtziger [2, 3].

For members areas, it is necessary to allow only positive values, defining in this way a lower

bound for these design variables. However, in order to avoid singularity of the stiffness matrix,

it is important to define a lower bound that is bigger than zero. Upper bounds on member’s

areas are not strictly necessary, since the algorithm will seek a structure with minimum volume.

3 LOCAL-RESTART STRATEGY FOR GLOBAL OPTIMIZATION

As already mentioned in the introduction of this paper, the problem of geometry and sizing

optimization of truss structures may present local minima that are not global minima. Under

this condition, deterministic optimization algorithms such as gradient methods, Newton meth-

ods or sequential simplex methods, may not converge to the global minimum of the problem.

Then, the use of a global optimization algorithm is required.

In this framework, stochastic or hybrid stochastic/deterministic methods are often used.

Well known examples of the former are: pure random search, genetic algorithm, and simulated

annealing. Among these methods, the simplest approach is furnished by the pure random

search, where a trial point is randomly generated at each iteration. It is accepted or rejected

according to its performance: accepted if better than the current design, rejected otherwise.

This simple procedure leads to a very high computational cost and several classes of global

optimization algorithms have been developed in order to increase the efficiency of the search.

One of them are the hybrid stochastic/deterministic methods where a local optimizer, such

as the deterministic methods cited above, is combined with a global optimizer. For instance,

when working with regular continuous objective functions, local optimizers can be turned

into asymptotically global ones by restarting the search from a random initial point (see, for
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instance, reference [22]).

Here, a local-global optimization strategy, where the restart procedure uses an adaptive

probability density function built using the memory of past local searches, is presented. The

local search is performed using Sequential Quadratic Programming (SQP) [15], but the global

optimization strategy remains unchanged if another local search algorithm is employed. The

search is then turned into an asymptotically global one applying the probabilistic restart

procedure proposed by Luersen and Le Riche [13].

Consider that the probability of having sampled a point X be described by a Gaussian-

Parzen-window approach [9]:

P (X) = 1

N

N

∑
i=1

pi (X) , (6)

where N is the number of points S(i) already sampled. Such points come from the memory kept

from the previous local searches, being, in the present version of the algorithm, all the starting

points and local optima already found. pi (X) is the normal multidimensional probability

density function given by:

pi (X) =
1

(2π)
n
2 det (Σ)

1
2

× exp(−1
2
(X − S(i))

T
Σ−1 (X − S(i))) , (7)

where n is the problem dimension (number of variables) and Σ is the covariance matrix:

Σ =
⎡⎢⎢⎢⎢⎢⎣

σ2
1

⋱
σ2
n

⎤⎥⎥⎥⎥⎥⎦
, (8)

and variances are estimated by the relation:

σ2
j = β (Xmax

j −Xmin
j )2 , (9)

where β is a positive parameter that controls the length of the Gaussians, and Xmax
j and

Xmin
j are the bounds of the j th design variable. To keep the method simple, such vari-

ances are kept constant during the optimization. At the first local search, the initial point

X0 is given by the user. At the end of each local search, M points are randomly sampled

(X1,X2, . . . ,XM) and the one that minimizes Eq.(6) is selected as the initial point to restart

the next local search.

The stopping criterion of the global optimization is the maximum number of local searches,

nmax, defined a priori by the user.

Note that the global optimization strategy proposed here solves several local search prob-

lems for different initial solutions. Since the local searches are performed using gradient based

techniques, local optimality of the solutions can be ensured by applying strict tolerances during

the optimization process. In other words, the use of gradient based techniques allows the algo-

rithm to find local solutions that will likely be very close to some local optimum, since gradient
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based techniques present good performance for finding local optima. On the other hand, the

probabilistic restart explores different areas of the domain searching for the global optimum.

These are important advantages over other global optimization methods, such as some heuris-

tics like genetic algorithms, since the latter need, in general, much higher computational effort

in order to ensure local optimality when continuum design variables are used. In this context,

it should be emphasized that the proposed approach present different benefits from most other

global optimization strategies, since it does ensures local optimality to some degree. Besides

it also yields a list of candidate local optima, which contains, with an increasing probability

as the number of restarts increases, the global solution. For this reason, it is difficult to make

a direct comparison to other global optimization approaches available in the literature.

4 NUMERICAL RESULTS

In this section, several numerical examples are solved in order to demonstrate the main aspects

of the local-global approach presented. The Young modulus, the maximum allowed stress in

tension and compression for all the examples are E = 200 GPa, σt = 250 MPa and σc =

-250 MPa, respectively. Besides, self weight of the structures is not considered. Also, for

all examples shown here, the lower bound for the cross-section areas is equal to 0.1 mm2

and, in the pos-processing visualization, when a bar cross-section is smaller than 0.3 mm2,

the correspondent member is not shown. Finally, the parameters used in the optimization

algorithm are presented in Table 1.

Table 1 Parameters used in the optimization algorithm.

Parameter Value

M 1000

nmax 20

β 0.001

Tolerance on constraints, objective

function and design variables
10−9

4.1 Example 1

Figure 2 presents a ground structure that is subjected to the loading F = 10 kN. The ground

structure has the dimensions Lx = 2000 mm and Ly = 1000 mm. The initial cross-section

areas for the first local search are taken as 250 mm2.

First, the nodes of the upper chord (except the node of the support) are allowed to be moved

up and down to positions as far as 500 mm, in both directions, from its original positions. The

results obtained from the optimization process are presented in Fig. 3, showing that at least

three local minima exist for this problem. It seems that the structure from Fig. 3(a) is the

global optimum of this problem, since no better solution was found by the algorithm. Besides,
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Figure 2 Ground structure of the Example 1.

note that the structures from Fig. 3(b) and Fig. 3(c) are slightly different, but have the same

volume. It is important to remark that when the restart procedure was not used, the optimal

structure found by the optimization algorithm was that presented in Fig. 3(c). It should be

pointed out that other local optima were also found for this example that are not presented

here. However, they are similar to the ones presented in Fig. 3(b) and Fig. 3(c).

V = 3.1395 × 105 mm3

Amax = 80.8572 mm2

(a)

V = 3.2020 × 105 mm3

Amax = 60.9112 mm2

(b)

V = 3.2020 × 105 mm3

Amax = 64.2791 mm2

(c)

Figure 3 Local optima found and their correspondent volumes V and maximum cross-section area Amax when
allowing the nodes to be moved by 500 mm from its original positions (Example 1).

Now, the same nodes are allowed to be moved up and down to position as far as 999 mm.

The results are presented in Fig. 4, from where it can be seen that at least two local minima

exist for this problem. Note that the volume of material used in each one is different, and

these are indeed local optima. However, it seems that the structure from Fig. 4(a) is also the

global optimum of this problem, since no better solution was found by the algorithm.

Taking a closer look at Fig. 3(a) one could conclude that this structure is the best solution

available even when allowing the nodes to be moved farther than 500 mm, since the node that

has been moved the most (the one from the right) is not linked to any bar. However, this is

not true, as can be seen from the results from Fig. 4.

Finally, the same example is addressed again, but now only the cross-section areas are taken

as design variables. Besides, this problem is solved twice: first assuming no upper bound for

the cross-section areas and then assuming this upper bound to be equal to 60 mm2. A solution

with no upper bounds is presented in Fig. 5(a). Figures 5(b) and 5(c) show solutions when

the upper bounds are taken into account.

When no upper bounds are defined, we have a simple sizing optimization problem that is a

LP problem. Consequently, the solution found is a global optimum. The biggest cross-section

area in this case is equal to 79.9312 mm2.
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V = 3.1166 × 105 mm3

Amax = 73.0950 mm2

(a)

V = 3.1389 × 105 mm3

Amax = 74.3581 mm2

(b)

Figure 4 Local optima found and their correspondent volumes V and maximum cross-section area Amax
when allowing the nodes to be moved by 999 mm from its original positions (Example 1).

V = 3.2036 × 105 mm3

Amax = 79.9312 mm2

(a)

V = 3.6414 × 105 mm3

Amax = 60 mm2

(b)

V = 3.7754 × 105 mm3

Amax = 60 mm2

(c)

Figure 5 Optimum solution without upper bound for the cross-section areas (a), and some local optima found
when the upper bound in cross-section areas is taken as 60mm2 (b) (c).

However, taking an upper bound equal to 60 mm2 enforces the algorithm to find alternatives

to the solution presented in Fig. 5(a), since some cross-section areas in this case are bigger

than 60 mm2. Some solutions for this case are presented in Fig. 5(b) and Fig. 5(c). Note that

the structure from Fig. 5(b) is symmetric about an horizontal axis, while the structure from

Fig. 5(c) is not. This puts in evidence that when upper bounds for the cross-section areas are

considered, local optima with different volume of material may exist. In fact, for some starting

points the local search was unable to find a feasible solution. It should be mentioned that

several local optima were found for this problem and not all of them are presented in Fig. 5.

4.2 Example 2

Figure 6 presents a ground structure that is subjected to three loading conditions. The ground

structure has a total height of 4000 mm and a total width of 4000 mm. All nodes (except the

nodes of the supports) are allowed to be moved left and right by the optimization algorithm,

to positions as far as 1800 mm from its original position. The vertical and horizontal force

values are F1 = 10 kN and F2 = 5 kN, respectively. Finally, symmetry of the structure about

a middle vertical axis is enforced for the nodal coordinates. Figure 7 shows the minima found

for this problem. As can be seen, it appears to have two local minima. We also note that, for

the two solutions found, the cross section areas are symmetric about the middle vertical axis,

despite this condition was not enforced.
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Figure 6 Ground structure of the Example 2, subjected to three loading conditions.

V = 9.8592 × 105 mm3

Amax = 115.1772 mm2

(a)

V = 9.9894 × 105 mm3

Amax = 96.2070 mm2

(b)

Figure 7 Local optima for Example 2 and their correspondent volumes V and maximum cross-section area
Amax.

4.3 Example 3

The third example is that presented in Fig. 8. The ground structure has a total height of 1000

mm and a total width of 8000 mm. All nodes of the upper chord are allowed to be moved up

and down to positions as far as 10000 mm from its original position. The applied force is F =

10 kN. The initial values of the cross-section areas for the first local search are taken as 250

mm2. Symmetry of the structure according to the vertical axis is enforced in this example.

The results are presented in Fig. 9, and it can be seen that this problem have several local

optima. It seems that the structure from Fig. 9(a) and Fig. 9(b) are the two global optima for

this case. These two solutions are essentially the same, since the allowable stresses in tension

and compression are the same. The same is true for the solutions from Fig. 9(c) and Fig.

9(d). It is important to note that the optimum solution found when no restart procedure was

employed was that of Fig. 9(g), that is actually, among the solutions found, the worst one.

This puts in evidence the importance of using global optimization strategies.

4.4 Example 4

The last example is very similar to the third example. The only difference is that now the

structure is subject to the supports shown in Fig. 10, where horizontal displacements from

both supports are constrained. The nodes are allowed to be moved only up and down by the

optimization algorithm to positions as far as 5000mm from its original positions.
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Figure 8 Ground structure of the Example 3.

V = 0.5772 × 106 mm3

Amax = 25.6859 mm2

(a)

V = 0.5772 × 106 mm3

Amax = 25.6859 mm2

(b)

V = 1.1939 × 106 mm3

Amax = 74.0320 mm2

(c)

V = 1.1939 × 106 mm3

Amax = 74.0320 mm2

(d)

V = 1.4026 × 106 mm3

Amax = 79.9947 mm2

(e)

V = 0.8777 × 106 mm3

Amax = 47.6602 mm2

(f)

V = 1.9992 × 106 mm3

Amax = 160.0268 mm2

(g)

Figure 9 Local optima for Example 3 and their correspondent volumes V and maximum cross-section
area Amax.

The analytical solution for this problem is presented by Hemp [11], and it is a Michell’s

structure as shown in Fig. 11. The minimum volume of the structure can also be obtained

according to expressions presented by Hemp [11]. For this case, the expression that gives the

minimum volume of material is

Vmin = (
F l

σc σt
) (σc + σt) (1 +

π

2
) , (10)

where σt and σc are the allowable stresses in tension and compression and F and l are as
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defined in Fig. 11 and 2F = 10kN.

Figure 10 Ground structure of the Example 4.

Figure 11 Optimal (Michell) truss solution according to Hemp [11].

Applying Eq. (10) to the example being studied, the minimum volume is 0.4113 × 106 mm3.

It is important to remember that Michell’s structures are theoretical continuum solutions in

the sense that they are, in general, composed of an infinite number of bars [11].

The solutions obtained by the optimization algorithm described here are the ones presented

in Fig. 12. Again, a wide variety of local optima was obtained. Besides, the solution obtained

by a single local search was the one from Fig. 12(a), that is clearly not the global optimum of

the problem.

The global optima are the solutions presented in Fig. 12(e) and Fig. 12(f). Note that

these two solutions are essentially the same, since we have assumed the same allowable stress

in tension and compression. Besides, the volume of these two structures is 0.4191 × 106 mm3,

which is very close to the theoretical value of 0.4113 × 106 mm3. The difference between these

two values can be explained by three reasons. First, Michell’s structures are composed of an

infinite number of bars and this fact cannot be reproduced numerically. Second, the nodes

of the ground structure from Fig. 10 are allowed to be moved only up and down, while the

nodes of Michell’s structures can be placed everywhere. Third, the numerical solutions need

to respect lower bounds for cross sectional areas, thus avoiding bars to disappear completely.

In this context, it can be concluded that the solutions from Fig. 12(e) and Fig. 12(f) are

indeed the global optima of the example addressed, thus validating the global optimization

strategy proposed here. Note that small modifications could be obtained if the nodes were

allowed to be moved left and right and if a smaller lower bound for the cross sectional areas

were used.
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V = 1.3536 × 106 mm3

Amax = 160.0001 mm2

(a)

V = 1.7150 × 106 mm3

Amax = 160.0001 mm2

(b)

V = 1.6663 × 106 mm3

Amax = 160.0002 mm2

(c)

V = 0.8744 × 106 mm3

Amax = 54.6255 mm2

(d)

V = 0.4191 × 106 mm3

Amax = 30.7535 mm2

(e)

V = 0.4191 × 106 mm3

Amax = 30.7535 mm2

(f)

Figure 12 Local optima for Example 4 and their correspondent volumes V and maximum cross-section area
Amax. The dotted lines represent the limiting y coordinates.
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5 CONCLUSIONS

This paper presented an approach for the global optimization of truss structures that is based

on a probabilistic restart procedure coupled with a local search algorithm. The resulting

algorithm is able to guarantee local optimality and to asymptotically converge to the global

optimum. Besides, the restart procedure is based on information from the previous iterations,

and is not a purely random one, which may reduce computer time in the global optimization

process.

The main advantage of the procedure proposed here is that the local search can be per-

formed by efficient gradient based algorithms, thus ensuring that the solutions found by the

algorithm are residual free. Finally, several loading conditions can be considered by including

new sets of constraints.

At the end of the optimization procedure, the approach proposed here presents a set of

local optima that are, in general, different from one another. In some cases, the designer may

find some local optima more appealing than others (for some reasons apart from the material

volume used) and thus choose some local optima instead of the global one.

The examples presented demonstrated that even for simple cases local minima, which are

not global minima, may exist. Some of these local minima may even appear to be global

optima at first glance. Besides, some problems may present several local optima, and in many

cases the optimum solution found by a single local search is not the global one. This highlights

the importance of considering global optimization procedures for the problem being addressed,

since they can lead to much improved solutions. Finally, the last example demonstrated that

the global optimization strategy proposed here was able to obtain the global optimum of the

problem, by comparing the numerical solutions obtained with an analytical solution given in

the literature.
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