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Abstract

This paper deals with free vibration analysis of thick cylindrical
composite sandwich panels with simply supported boundary condi-
tions based on a new improved higher-order sandwich panel theory.
The formulation used the third-order polynomial description for the
displacement fields of thick composite face sheets and for the dis-
placement fields in the core layer based on the displacement field of
Frostig's second model. In this case, the unknowns were coefficients
of the polynomials in addition to displacements of the top and bot-
tom face sheets. The fully dynamic effects of the core layer and face
sheets were also considered in this study. Using Hamilton's principle,
the governing equations were derived. Moreover, the effect of some
important parameters such as those of thickness ratio of the core to
panel, the length to radius ratio of the core and composite lay-up
sequences were investigated on free vibration response of the panel.
The results were validated by those published in the literature and
with the finite element results obtained by ABAQUS. It was shown
that thicker panels with thicker cores provided greater resistance to
resonant vibrations. Moreover, the effect of increasing face sheets’
thicknesses in general was the significant increase in fundamental
natural frequency values.
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The use of sandwich structures has increased in recent years in aerospace, naval, civil, transportation,
and other industries which require stiff and light-weight structural ingredients. Sandwich structures
are constructed of three layers. They are usually composed of two metallic or composite laminated
materials: face sheets and a foam core or a low-strength honeycomb core. The materials with a high
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strength are usually used for face sheets, whereas the core layer is made of a low-specific-weight mate-
rial which may be much less stiff or strong than the face sheets (Librescu and Hause, 2000).

NOMENCLATURE
7,0,z Longitudinal, circumferential and radial coordinates
i=(atb) Indices for core, outer (top) and inner (bottom) face sheets
Uy, Vi, W Displacements in longitudinal, circumferential and radial directions
ué, VS, W{) Mid-plane displacements in longitudinal, circumferential and transverse di-
rections
8; , 5é9 ’ 8; Strains in face sheets
£ £ gl Mid-plane strains in face sheets and the core
Oxz ? 060’ 02z
i i i Shear strains in face sheets and the core
7 0 7 xz ) 7 0z
0, Reduced stiffnesses referring to the principal material coordinates
é Transformed reduced stiffnesses
»
o-lfl Normal and transverse stresses in the face sheets, i = (,0,2),j = (t,b)
o-l,", Normal and transverse stresses in the core, i = (z,6,2)
oo o) Shear stresses in the face sheets, j = (¢,0)
z0 xz 0z
T Shear stresses in the core
0 xz 6z

N M' P H .. Stress resultants in the face sheets, i = (¢,b)

zx’” xx?

Npm 7 M;’T 7 P; 7 H;z ’ Stress resultants in the core

Qj " The reduced stiffness coefficients of the 1th composite layer of each face sheet

K Kinetic energy

U Strain energy

L the number of composite layers in each face sheet

I Moment of inertia

P Mass density

av,, dv_, dv, Volume element of the top face sheet, the core and the bottom face sheet,
respectively

L Length of cylindrical sandwich panel

h Total thickness of cylindrical sandwich panel

h, Thickness of the top face sheet

hy Thickness of the bottom face sheet

M Mass matrix
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Stiffness matrix

S

Natural frequency

In recent years, to describe the dynamic and static behavior of these structures, various theoret-
ical models have been developed. Understanding the free vibration behavior of structures is essential
for preventing the occurrence of resonance, and for optimal designing. Moreover it is important to
Recovering new types of materials for the face sheets and core in order to reduce failure modes and
obtain optimum weight sandwich structural. Different approaches may be used for modeling sand-
wich panels. The first approach is equivalent single layer (ESL) models and classical models (see
Reddy, 1997; Mindlin, 1951; and Wang, 1996). These theories often obtain inaccurate results when
used for the analysis of sandwich panels with flexible cores that are soft in the vertical direction
(Frostig and Thomsen, 2008). The second approach is the first-order shear deformation theories
(FSDT). When the face sheets in the sandwich panel are thin, the FSDT model obtains good results
for the analysis of sandwich panels with flexible cores (see Malekzadeh et al., 2015). Reissner (1985),
Noor and Burton (1989), Reddy (1990), and Kant and Swaminathan (2001) have reviewed these
developments. There are also other theories studied by some researchers. Biglari and Jafari (2010)
studied the free vibration of doubly curved composite sandwich panels with soft cores using the
mixed theory. Singh (1999) applied the Rayleigh—Ritz method for free vibration analysis of doubly
curved open deep sandwich shells. Meunier and Shenoi (2001), Nayak et al. (2002) and Carrera
(2004) used a “‘zig-zag” displacement pattern for the modeling of layered plates and shells. Garg et
al. (2006) investigated the free vibration analysis of simply supported composite and sandwich dou-
bly curved shells. Their formulation included Sander's theory based on an equivalent single-layer
approach. In order to include the three-dimensional fully dynamic modeling of the flexible thick
core of the panels, researchers have usually used a High-order Sandwich Panel Theory (HSAPT). In
this context, researchers such as Frostig and Thomsen (2004), Bozhevolnaya and Frostig (2001),
and Rabinovitch et al. (2003) have used HSAPT in various structural problems. Malekzadeh et al.
(2014) studied the improved high-order bending analysis of doubly curved sandwich panels subject-
ed to multiple loading conditions. Rahmani et al. (2010) applied a higher-order sandwich panel the-
ory in order to study the free vibration analysis of an open single curved composite sandwich panel
with a flexible core.

Unfortunately, the free vibration analysis of cylindrical sandwich panels with thick face sheets
and thick flexible cores has not been reported in the literature. In order to include the thickness
effects of the top and bottom face sheets of the panel in the current formulation, the third-order
polynomial description for the displacement fields was used. Buckling analysis of sandwich panels
with a flexible core was investigated by Frostig (1998) using classical plate theory in the face sheets.
Damped free vibrations of sandwich plates with a viscoelastic soft flexible core, and low-velocity
impact analysis of sandwich panels were investigated by Malekzadeh et al. (2004, 2005) using First
Shear Deformation Theory (FSDT) in the face sheets. The free vibration analysis of thick doubly
curved sandwich panels with transversely flexible cores were investigated by Malekzadeh et al.
(2014) using FSDT in the face sheets. In order to determine the bending response of composite
sandwich plates, Kheirikhah et al. (2012) applied the third-order plate theory for the face sheets
and quadratic and cubic functions for the transverse and in-plane displacements of the core.
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This study investigated the free vibration analysis of doubly curved thick composite sandwich
panels using a new improved higher-order sandwich panel theory based on the second computation-
al model of Frostig (2004). In the present formulation, the top and bottom face sheets can be thick
or thin. The in-plane stresses of the core were also considered. In this study, the analytical solution
of the displacement field of the core was presented in terms of polynomials with unknown coeffi-
cients according to the second computational model of Frostig (2004). Furthermore, the formulation
included accurate stress-resultant equations for composite sandwich structures, in which the term
(142z,/R,) was imported in Eq.3 and exactly integrated. These coefficients could be very important

in the structural analysis of thick cylindrical sandwich panel structures.

2 THEORY AND FORMULATION
2.1 Basic Assumptions

Consider a cylindrical thick composite sandwich panel which is composed of two composite laminat-
ed thick face sheets and a flexible core layer. The geometry of the panel and the coordinates are
shown in Fig. 1. In this figure, indices ¢ and b refer to the top and bottom face sheets of the sand-
wich panels, respectively. Moreover, the thicknesses of the top face sheet, the bottom face sheet, the
core layer, the total thickness of sandwich panel, the intermediate radius of the core, the intermedi-
ate radius of the top face sheet, the intermediate radius of the bottom face sheet, and the length of
the sandwich panel are presented by, h, , by ,h,, b, R.,R, ,R, and L, respectively. The displacement

fields in face sheets are u, v and w in the directions of x (longitudinal), @ (circumferential) and z
(radial), respectively. They are measured upward from the midplane of the face sheets (Reddy,
2003). Face sheets are thick laminated composite and orthotropic structures. The face sheets and
the core are assumed to be perfectly bonded, i.e. there is no relative displacement between the face
sheets and the core interfaces.

Figure 1: Geometry and coordinates of the coomposite cylindricl sandwich panel.
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2.2 Sandwich Kinematics

The displacements fields in face sheets, u;(x, 0, z,t), v;(x, 0, z,t) and w;(x, 0, z,t) in the direction of
x, @and z, respectively are explained as follows:

z,0,t) + zuj(z,0,t) + zfué (z,0,t) + zf’ué(x, 0,t)

z,0,t) + zivf (z,0,t) + z?vé (x,0,t) + zf‘vé (z,0,t)

u,(,0,2,t) = u(
(

i
v,(2,0,2,t) = Ué

w;(2,0,2,t) = w)(z,0,t) + 2w (2,0,t) + z?w;(x, 0,t) (1)
1=1t,b , t: topfacesheet b : bottom face sheet
h, +h h, +h
= _(t—;c) Zb_Z‘F(b;—C)

where ué ,’Ué denote inplane displacement and wé out of plane displacement, respectively, in midle

surface. The kinematic equations for the strains in the face sheets are as follows (Bert, 1967, and
Soykasap et al., 1996):

i v, i I, w; i dwy
€ = A ’ Cop = - ) €, = s
oz R,00 R, 0z
i 9gi O I Ou,
= ZE = _— s
Yoo =550 = e T R oo o)
) ) ow, Ou
’yalcz = 26;,2 = : _Z’
ox 0z
; ; 1 0w, v, Oy
Yo, = 269, = -t

R 90 R, 0z

3

Based on the second Frostig’s model, the displacement field components of the core layer are

derived as:
u,(2,0,2,t) = uf(,0,t) + z.uy (z,0,t) + z?ug(m, 0,t) + zgug(x, 0,t)

v, (2,0,2,t) = [1 + ;—c vg(2,0,t) + 2,07 (2,0,1) + zfvg (z,0,t) + zfvg (z,0,t) (3)

(¢

w,(r,0,2,t) = w(z,0,t) + 2wy (z,0,t) + zzwg (x,0,t)

In Eq.3, it is seen that the number of unknown variables is 11. Based on small deformations,

the kinematic relations of the core are as follows:

c au(‘ C 1 a/U(’ w(’ c aw(’
ETT = I ’ 66)0 = - ] ’ Ezz = ]

oz [ z ] ROO R 0z

1 + C (& C
) (4)
5 dv, n 1 Ou, . 9ee ow, Ou,
= I = — s = I = —_—

Tat 0 o [1 z, ] R.00 Tz v oz 0z
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. 9ec 1 ow, v, dv,
: c . . .
Yo b [ 2, ] RO0 R, 0z,
14+ = ’

Cc

2.3 Compatibility Conditions

Based on the positive upward direction, the compatibility conditions in the interface of the core and
the top and bottom face sheets could be written as below:

U | —h, = U h
Ty, =1 cly =2 (7 h = U —h
t 2 e g b Zb:? C z,= 4
v —h, = U h
tl, " . e v h = U —h
SR LU LA S (5)
wy Zf:;ht = w, Z(:h;: wy| _h =w,| _-h
' P %= 2=

According to Eq.5, the relation between displacement dependent parameters is extracted in the
core:

o 8(uh +uh) + A(hyul — houl) + 2(hFub + hlub) + (hiub — BPul) — 16w
U2 = 2
4P
e = 8(ub — uh) — Alhul + hyul) + 2(hFuy — hlub) — (hBPul + hiub) — 8h,uf
’ 253
o 8(vl + vh) + A(hyv? — hol) + 2(h20Y + hZvb) + (hvh — hivl) — 160
’ 4h?
b (6)
8(vh — 118) — 4(h] + hbvf) + 2(ht211§ - hl?vg) — (hfvg + hlf’vg) — 8 %v5 — 8h,vf
vy = B,
2h?
o _ 8wy — wp) — A(hywy + hwt) + 2Ahfwy — hjwy)
o 8h
C
v — 8(wh + wp) + 4(hyw) — hyw]) + 2(hjwh + hiwh) — 16w
¢ =
4h?

[

According to this equation, the number of unknown variables in the core is decreased from 11
to 5. Therefore, the total number of unknowns in the core and the face sheets is reduced to 27:

b, b 0 ot ot ot b b bttt b b D
Uy Vg Wy Uy Vs Weyy Uy 5 Uy Wy Uy Uy Wy Uy 5 Uy, Wy

t ot t ,b . bt t ¢, ,c, c ,C [¢ (7)
Uy, Ugs Wy, Ug,s U3, Usg, Ug, U, Uy, Vg, Uy 5 Wy

2.4 The Stress-Strain Relations and Stress Resultants

The stress-strain relations for the orthotropic composite face sheets in the global coordinate system
are given as follows (Loy and Lam, 1999; Afshin et al., 2010):
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o k k
Ty Q, @, Qs 0 0 0 fg
R R
Uzz _ Q1L3 QZLS Q§3 0 0 0 EZZ (8)
T 0 0 0 Q, 0 0| |7
O, 0 0 0 0 §5 0 Yz
Uf)z 0 0 0 0 0 é(} 702

where C_an(m,n =1,2,4) is the reduced stiffness coefficients and Q (myn = 3,5,6) is the trans-

mn
verse shear stiffness coefficients. The values of stiffness coefficients as presented by Malekzadeh et
al. (2010) and Garg et al. (2006) are as follows:

Qlil = @}, cos’ 0 +2(Q}, + 2Q},)sin*0 cos® 6 + Qs,sin’f
QfQ = (Q], + @, — 4Q)},)sin’0 cos® 0 + Qi,(cos" 0 + sin’0)
Q{é = Qf3 cos? 0 + Qég sin? § ,
@52 = Q] ;sin0 + 2(Q}, + 2Q1,) sin® 6 cos® O + Q;, cos* 0
@13 = Q{J sin? § + Q;d cos? 0

Q2i1 = Qf?
Qi = Qly (9)
@;2 = C5213
@3 = Q§3

Ql, = (Qi, + Ql, —2Q/,)sin’*0cos’d + Q. (cos® O — sin’0)>
QL = Qi cos® 0 + Qi sin” 0
Qé’ﬁ = és sin® @ + Qéﬁ cos® @
i=tb

Stress-strain relations in the core are as follows (Khalili et al., 2012):

[ ¢ k c c c ko c k

Um Ql/l Q12 QIS 0 0 0 Em

ow| |Qh Qn @ 0 0 0| |g

ot © Q@ 0 0 0] |&

jz _ QIS QQB QSS . zcz (10 )

Tog 0 0 0 @ O 0 Ve

T, 0 0 0 0 @ O Ve,

To, 0 0 0 0 0 Q! |,

The values of stiffness coefficients (Q) in Eq. 10 are as follows (George, 1999):
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Eij (’9‘3]1 + 19511’9‘3]2 )

j E1'7 (1 - 1951319.%]2 ) j By (19511 + ’931119513 ) j
Qi = T’ Qfy = A7 ) Qi3 = A7
j J 97 i (.97 J 97 j J qJ

i o_ E2j (1 B 19131931> i o E2j (’932 + 19121931> i o EQJ (1 - 19121921>

@y = — @3 = 7 ’ B
4 j Jj J A7 J J 4 (11)
Qi = G, » Qs = Gy ) Qds = G4
A7 = 1= 90,05, — 95,94, — 95,0/ — 295,95,/
7 = tb,c

Based on the relations of strain potential energy of face —sheets, the stress resultants in the face

—sheets are calculated as follows:

i i
N 1 Nyl [0
i 2 [} 2
Mzz i Zi M00 i Zi
= o1 91dz S = o o 1dz ,
7 I 2 1 P7, 2 7
T —h, v 00 —h, v
; : 3 i 3
H“ 2 Zi Hﬂ@ 2 Zi
hy
Nz
Mi = fgzz 2 dzz ’
2z —, i
? 12
13
Nl o Loy (12)
M, 2 2 2 2
i P 4 i _ P
P~ f Ta1 ,2 dz, 38, 1= f o, 1% 1dz;,
0 —h, ¢ Ri —h, 22
i 3 Tz i
Hz() 2 Zi 2
7
0z h; 1
i 2 —
0z _ i zz d , 1= t )b
i - Ty, 22 2
0z —h v
. L 3
(3
Vﬁz 2 Z;

And based on the relations
core are calculated as follows:

c ¢
Nm hﬁp 1 N@G ’Lp
c 2 c 2
M:I:z ¢ 2, Ze MGH c Ze
= |o° |1+F& dz = |o dz
p¢ T Z2 c ’ pe 00 2’2 c?
i —h c ¢ 06 —h ¢
c c 3 c C 3
H:I;ac 2 Ze H99 2 Ze ( 1 3)
*e
h, N.719 h, 1
e " %
Ne¢ 2 p 1 M 2 2 Z,
Zl= o |1+ == dz 0L o1+ <% dz
Me 2z R 2 c ’ P*C 0 R 22 ’
2z —h c ¢ 20 —h c ¢
e x e 3
2 H} 2 z
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¢

NHI }i 1 Q*C }i

Me 2 7z 9 » 1
Ox c %
= [of dz. Set= |o° |14+ =11z tdz

pe Oz 22 c ’ Tz Tz R c c
Oz _ c * _

H(’I s 3 R’rz(': e ’ ZCQ
. 2 V4 v 2 ’
Ox c

*c

QC }L 1 0z hi(

Tz 9 S*c 2 2

SCt= oo |1 —i—i z. pdz ol e
xz | T Tz R c c ) R*C - 0z 22 c ’
c —h c 2 0z —h c

R e 2z A
Tz 2 c H*,; B 23

0z c
h
C c
Q{)Z o ; 1
St = [o5|1+-= {2 tez,
c —h, c 2
RHz 2[' Ze

3 GOVERNING EQUATIONS
The governing equations of motion for the face sheets and the core are derived using Hamilton's

principle of minimization of the Lagrangian L of the deformed system:
T T
[srde = [[6K —ou]dt =0 (14)
0 0

where K is the kinetic energy, U is the strain energy and O denotes the variation operator. The

variation of kinetic energy is extracted as follows:

L

2
1 [ eiiibu, + iidv, + i dw,)dz dA,
A —h

0K =—3%7 3

i:t,b,c 2
+(1 fpc(iicéuc + 4,6v, + W, 0w, )dz,dA,

A(‘ _hr:
2
dA. = R du,df i=tb

dA, = R dz.db
dV, = Rdx,dfdz, = dAdz,

(15)

dA dz,

R dz,d0dz, = [1 s
e R

c

AV, =1+ 2=
: R

(¢

where p, and p,are the density of the face sheets and the core, respectively. The variation of

strain energy can be written as below:
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f (‘7;@65;; + 0ppbehy + 0l 0L + Tl by, + TSy + 70767&)

_ v,

oU = | E

[ (05,625, + ogybegy + OO + Tosy + TLOV + T5.6%5, )V,
Vv

C dA = Rdz,df i=tb (16)
dA = Rdudf
4V, = dAdz,
AV, = |1+ 22 |dA ds,

The governing equations for a cylindrical sandwich panel composed of a flexible core and thick
composite face sheets are derived. Hence, after integration by parts and some algebraic manipula-
tion, twenty-seven equations of motion are extracted, some of which are as follows:

At the top face sheet:

5u(t) :
Nt +_Nt +_Pc 4 _'_L c i c _ic _E c
TT,T R 26,0 TT,T 3 T, 9 " Ox,0 3 TOx,0 9 Vxz 37Xz
t hc c Rchc Rchc hc hc
210 41¢  8I¢  16I¢
_Itt+It +It +Itt_|_ 3 T4 51'j:c+
SR TR w W)
21 N 415 85 1615 | .. AL 161G b 415 N 1617 161 it (17)
(IS S R U N R CO R B T LA T
2,05 8hIG |, | 2hdy 8h5 8h TG, hily 47T b
ndons ) VIR SR T I (D T O
2 271¢ 271¢ 3 371¢ 3¢ 3t1¢ 371¢
BPLy | 4RPT5 AW, (WL 2T | WL WL WG
ht b ne )% l2nt  ns )7 oh! b’ e
51}{ :
1 h, . 2h, . h, 2h
Mt + Mx = Qtz + _Stz _ _tPXcX ch . Pc i . & (4
Rt, 00,0 0, (7% Rt (% h? 0, h3 0, R h2 00,0 Rchg 00,0 (18)
h * 2h % 2h 6h - - - ..
= L2 R, — R ht3 HS + h; S5, + h—tR‘ = Lo) + Lo + Lya, + 1505 +
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. 21 4I¢ 8IS

SR RN VT

— CH—L— 2B+
by b} hi b} R he b} B
—h, 1§ 2hIf N 4h I¢ N 8h, I i —2h I N 8h,I¢ i —2h,I§  8hJIf 8hJg it
h? h; h; h? h; he b, hy by
N —h,h,I¢ N 4h,h I¢ ]1‘5{’ h1¢ N 4h?TE N 4h?T; i —hh7 L4 N 2h h?T¢ i
h? h? h! h? h? 2h? h?
37¢ 371¢ 371¢ 31¢ 31c 471c 471c 47c
_htI4 o 2ht15 _ 2ht16 it _hthb14 htthG b htI4 + htI5 + htIG it
p) R R U R S U R PV E S C S U I
6w§ :
1 1 B2 . h . h? . R
R, YR 4h, T 2p2 T ARA T 2R BE T
h? h? h? h?
- Mgy ——t—=Fyy — N, — L M:, = L) + 5w} + il +
4Rchfc 06 QR(]ZCQ 06 4hc 2z hCQ 2z 270 371 4%2
BRI ORI WL ML) (WL R, (I RIS ORI
TV Y S B S R UV Y S R (V- R R S
R LR PO e S U O U b I % SR iy b
+ w w + W
8h? ant |t L snzand et |t 16m2 ant )
47c 47c 47c
ht I2 ht [3 ht [4 83
1662 4p?  4nt )’
at the bottom face sheet:
5ui’ :
Mb _i_LMbee o Qb +h_bPr —%HC hb HC ) — 2hb Hg ; +
XX,X x0, XZ 92 T XX,X 3 XX,X 2 X, 3 X,
Rb hc hC Rchc RChC
2h 6h h,I¢ 2h I¢ 4h I¢ 8h I¢
_ b Qe +_bR(‘ — Ib’il:b 4 Ibijb 4 Ibij,b 4 Ib’db 4 b™2 b™3 _ b~4 4 b5 ii¢
hf X7 hf X7 170 271 372 43 hz hg hf hi 0
hyIg  2hyT§  4hy T2 8hylg .. [2h 0 8hIf  ShIg|.,
e h? h? heo|! bt h? w0
C C C C C C C
’ 27cC 271¢ 271¢ ’ .
2h 1§ 8hyTg |, [hily  4hPIE 4hPIE) o | hhyT§ 4hhyTE )
b I I N woo w1 IR
hily  2h)Ig N 2th§ i h hiTg 2hbh§Ig i hly  hylg N hy T i+
2h? h? h? 2h? h? 4h! h? h?
371¢ 371¢
_hbhtI4 + hbhtIG it
4 6 3
4h? h?

Latin American Journal of Solids and Structures 14 (2017) 714-742

(19)

(20)



A.R. Pourmoayed et al. / Vibration Analysis of a Cylindrical Sandwich Panel with Flexible Core Using an Improved Higher-Order Theory =~ 725

5’Ub .

b
1 1 h2 . h2 . h2 h2
_Pt;bﬁﬁ + P}E@X 2822 +_Rgz +_begx _b X‘éX PHCOO Hgﬁﬁ +
R, ™ R, 2h? hj T 2R R b’
hy .. b} .. b 3h?
TR e S R = i i L+ 1
2RC C RC c c
WIS hiIy  2h7I  4hIE hf) e 2 A ST, N
— — — (Y
2h2  h¥  n h> 2R,h2 b, n2 i)’ (21)
I 2h2 e 2 || N hilg  4hfls  4hil hPlg  4hPIg o
o) h* RAC b f)' | n W (SO A U 'SR CR I
S A D g I e 0 T4 VD) 1< Vo DU B 119 VR TS LR T b
(% V. - .
p) LA R T 2h?* VO A (' S R CH B
thZIC thQIC WpI;  WIE byl " “hiR’IS  hIRL "
4 6 2 4 5 6 |3 4 6 3
4h? h' 8h!  2h5  2h° 8h? 2h’
&u;J :
h? . h? . h? . h .
7LP;9 - 2Mb + Rzzx Rgzﬁ —b- Sx(;x — x(';x -t 0;0 4]‘:{9;0 +
R, R, 4h, ™7 2n?2 7 4RMh, T 2R B2 T
h2 h2 2 h2 _h2Ic hQIc
o Mio = s Bl NG — MG = R R T | b S i+
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The stress resultants of the face sheets in Equations (17)-(26) can be related to the total strains
by the following equations. For each face sheet (i = ¢, b):
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Based on simply supported boundary conditions, the essential and natural boundary conditions
for the cylindrical sandwich panel obtained from Hamilton's principle are as follows:

at x=20 or L
vézO , vli:0 , vézO , vézO
wy =0, w =0 wy =0 (31)
vy=0 , o=0 , wy=0 , ;=0 , wy=0 , w=0 ,w =0
at y=20 or 2z
vé:O , vf:O , 1);7:0 , vézO , =10 (32)
vy =0 , oy=0 , v = , vy =0
4 SOLUTION

In order to solve the free vibration problem of simply supported cylindrical sandwich panel, the
Navier method is applied (Qatu, 2004). For satisfing the boundary conditions, the displacement
fields based on double Fourier series are assumed to be in the following form:

u! u™ cos(am)co <n9>

uf) uS”"" cos (a:c) cos (n@)

uf ul’m” cos (ax) cos (n@)

v B 00 00|, dmn sin(ax)sin(ﬂ@)

v vy sin (a:c)sin nf .
wz] wl”’”’ sin(ax)cos (n@)

wg S " sin (aac) cos (n@)

i=0123; 1=012; j=tb; a= mTﬁ
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Wherem is the axial half-wave number andn is the circumferential wave number. Also, /™"

c,mn J,mn

c,mn c,mn j,mn c,mn
V. w

c,mn
0 > [ 770 L | ) wy

; , wy™" are the constant amplitudes of vibrations asso-
ciated with the natural mode shapes and should be determined. In order to analyze the free vibra-

tion of the sandwich panel, the time coefficients in Equation (33) were considered as follows:

™ (6 (0] (o)) = {um g, e
o (6) g (8)op (1)) = L g g et
o () g (6 = fw ™ o

1=0,12,3; [=0,12; j=1tb

where w is the natural angular frequencies (rad/s) related to mode number (m,n). Substituting

Equations (33) and (34) into the equations of motion, applying the Navier method and collecting
the coefficients, the eigen value-eigen vector equation is obtained as follows:

(1]~ [M)){d} = {0}

t t [ 2% R N A AN t t t
Ugyy Uy 5 Uy, Usg, Uy 5 Uy 5 Uy Uy W, Wy 5 W
boobogb bbb oob b bbb
{d}: Uy Uy 5 Usyy Uy Uy 5 V5 Uy Vg, W, WY 5 W

T

17727 1772
c ,,C o C

C C
Ug, Uy 5 VU], W

where d, Kand M are the vector of mode shape coefficients, stiffness matrix and the mass matrix
of composite panel, respectively. The minimum eigen value of Equation (35) is the fundamental
natural frequency of sandwich cylindricl panel which is determined using MATLAB code.

5 RESULTS AND DISCUSSION

In this section, based on the present analytical method, some examples are considered and the re-
sults are validated and discussed. The results of the present analysis are validated by FSDT and
ABAQUS commercial FE software. In all examples, a cylindrical sandwich panel is simply support-
ed.

Example 1

The geometric specifications and mechanical properties of a cylindrical sandwich panel composed of
fiber glass reinforced polyester matrix face sheets and a PVC foam (named HEREX C70.130) core
are given in Table 1. The sandwich panel was made by (0/90/0/core/0/90/0) lay-ups.

In this table, the thickness of each top and bottom face sheets is determined to be 3 mm, the
thickness of the core to total thicknes 0.8, the radius of the core intermidate to total thickness 10,
and the length of the cylinder to the radius of the core intermidate 2. The dimensionless angular
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velocity is 5=a)l,2(,0/E2);/2 /h (Rahmani et al., 2010). In the FE modeling procedure via

ABAQUS, an eight-node C3D8R was selected as the element type for the core layer and Lanczos
solver was chosen to carry out the vibration analysis.

El = 24.51GPa , E2 = E3 = 7.77 GPa ,G12 = G13 = 3.34 GPa , G23 = 1.34GPa
Face sheets 3
vig =v13 = 0.078 ,vy3 =049, p = 1800 kg/m

Core 3

v=20.32,p=130 Kg/m

h, / h = 0.8 , R, =0.37 , L = 3R,
Geometry m

h,=h,=0.003 , [0 90 O / core / O 90 0]

Table 1: Geometrical and mechanical properties used for the analysis (Meunier et al., 1999).

G=wl(p/E,)> b

Mode (m,n) Present model FSDT model Error (%) ABAQUS Error (%)
(1,2) 16.39 16.66 1.62 17.13 4. 32
(1,3) 16.44 16.75 1.85 17.36 5.29
(1,4) 21.00 21.52 2.42 22.03 4.67
(1,5) 27.11 27.79 2.45 28.39 4.51

Table 2: Comparison of the dimensionless natural frequencies for the cylindrical sandwich panel.

In Table 2, the first four dimensionless natural frequencies obtained from the present model,
FSDT model and ABAQUS modeling for the sandwich panel are presented and compared. It is
shown that the results obtained from the present method, FSDT, and FE analysis for different
mode shapes are very close and in good agreement when face sheets are thin. Moreover, the smallest
dimensionless natural frequency of sandwich panel occurs at the mode shape of (m,n)= (1,2).

Example 2

In this example, mechanical properties of face sheets and the core for the cylindrical sandwich panel
are the same as those in Table 1. To show the accuracy of the present analysis, especially when the
face sheets’ thickness is increased, two geometrical models are considered. The first geometrical
model is shown in Table 3. It can be observed that the face sheetes are thin in comparison with
Table 5.

Geometry
h,/h=08 , R =03" , L=3R,
h,=h,=3mm , [0900 /core/0 90 0]

Table 3: Geometry of the cylindrical sandwich panel for the first model (thin).
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Four natural frequencies for a cylindrical sandwich panel based on Table 3 are as follows:

Mode (m,n) present FSDT Error(%) ABAQUS Error(%)
(1,2) 307.61 319.89 3.84 326.14 5.68
(1,3) 370.01 374.13 1.10 385.27 3.96
(1,4) 533.29 545.75 2.28 560.95 4.93
(1,5) 720.32 735.25 2.03 753.83 4.44

Table 4: The first four natural frequencies relevant to the cylindrical sandwich panel for the first model (Hz).

Similar to example 1, the results of the present analysis, FSDT, and ABAQUS are very close.
When the face sheets are thick, the results of the present theory are better than those of FSDT
theory. To clarify this, the geometric specifications of the cylindrical sandwich panel are defined
in Table 5. It can be seen that the face sheets in Table 5 are thicker than those in Table 3.

Geometry
h,/h=08 , R =03", L=3R,
h,=h,=12mm , [0900 / core / 090 0]

Table 5: Geometry of the cylindrical sandwich panel for the second model (thick).

The results of four natural frequencies for a cylindrical sandwich panel based on Table 5 are as

follows:
Mode (m,n) present FSDT Error(%) ABAQUS Error(%)
(1,2) 199.88 270.73 26.17 238.87 16.32
(1,3) 270.64 443.98 39.04 324.64 16.64
(1,4) 398.11 636.29 37.43 461.39 13.71
(1,5) 540.49 822.25 34.27 601.38 10.12

Table 6: The first four natural frequencies relevant to the cylindrical sandwich panel for the second model (Hz).

It is shown in Table 6 that in the cylindrical sandwich panel, when the face sheets are thick, the
maximum difference of magnitude of natural frequency of the sandwich panel with FSDT model is
related to mode (m,n)= (1,3) which is about 39%. Comparing Tables 4 and 6 shows that when the
face sheets are thin, the results of the present theory and FSDT theory are close, but when the face
sheets are thick, the results of the present theory and FSDT theory are far from each other. The
first four vibration mode shapes of sandwich panel obtained from ABAQUS FE code are presented

in Figure 2.
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(m,n)=(1,2)

(m,n)=(1,4)

Figure 2: The first four vibration mode shapes of sandwich panel obtained by ABAQUS.

For analysis and parametric study cylindrical sandwich panel, the aforementioned Geometrical
and mechanical properties of Table 1 were chosen. The results of the parametric study which indi-
cate variation of the natural frequencies and non-dimensional natural frequencies versus circumfer-
ential wave number (n) for different longitudinal wave lengths (m) are depicted in Figure 3 .
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Figure 3: Variation of the natural frequencies and non-dimensional frequencies versus circumferential wave.

It can be seen in Figure 3 that by increasing the circumferential wave number, the natural fre-

quencies and non-dimensional frequencies of the sandwich panel initially decrease and then increase

when reaching a specific magnitude. The 3D view and 2D front view of the mode shape relevant to

the

Shape Mode (m)

first natural frequency are shown in Figure 4.
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Figure 4: 3D view and 2D front view of the vibration mode shape relevant

to the first natural frequency in mode shape (m,n)=(1,4).

The effect of length-to-radius core ratio on natural frequency and non-dimensional natural frequency

Another parametric study is related to the study of variation of the natural frequencys and non-

dimensional natural frequency versus the length-to-radius core ratio, shown in Figure 5. It can be

seen that by increasing the length-to-radius core ratio, the natural frequency of the sandwich panel
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737

initially decreases. Contrary to the natural frequency, the non-dimensional natural frequency in-

L
creases when the E ratio increases.
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Figure 5: Effect of — on natural frequency and non-dimensional frequency of cylindrical sandwich panel.

C

The effect of the ratio of core thickness to total thickness on natural frequency and non-dimensional natural

frequency

Variation of the natural frequency and non-dimensional frequency versus the increase in the ratio of

core thickness to total thickness (

=>|&

) can be seen in Figure 6. Based on the increase in the ratio of
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h
core thickness to total thickness (;‘ ), the first four natural frequencies (Hz) decrease. Contrary to

natural frequencies, the non-dimensional natural frequency increases.
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Figure 6: Effect of f on natural frequency and non-dimensional frequency of cylindrical sandwich panel.

The effect of fiber angles of composite face sheets on natural frequency and non-dimensional natural frequency

The geometrical and mechanical properties of sandwich are presumed as in Table 1, and stacking

sequence is considered parametrically as [9 / -0 / 0 / —0 / core / 0 / -0 / 0 / —0]. The effect

of fiber angles of composite face sheets on natural frequency and non-dimensional natural frequency
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is shown in Figure 7. According to Figure 7, the natural frequency of the sandwich panel initially
rises by increasing the fiber angle, which stems from the enhancement of sandwich panel stiffness,
but this trend reverses as the fiber angle reaches a critical value. This critical value of the fiber an-
gle is dependent on the mode shape. The variation of non-dimensional natural frequency versus
fiber angle is almost similar to that of the natural frequency.

o
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Figure 7: The effect of fiber angles of composite face sheets on natural frequency and

non-dimensional natural frequency of cylindrical sandwich panel.

6 CONCLUSIONS

In this study, an exact free vibration soulution for a cylindrical sandwich panel was presented based
on an improved higher-order sandwich panel theory. Based on compatibility conditions in the inter-
face of the core and the top and bottom face sheets, the total number of unknowns in the core and
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the face sheets was reduced from 33 to 27. The mathematical formulation used Hamilton’s principle
to derive the equations of motion and boundary conditions, and then used Fourier series to solve
them. In order to verify the accuracy of the present theory, a comparison was made with the results
of FSDT model and the commercial finite-element software ABAQUS. Finally, a parametric study
was conducted, and the effect of different parameters on natural frequency and non-dimensional
natural frequency were investigated. The natural frequency relevant to the cylindrical sandwich
panel in different shape modes were determined. The results of this study can be summarized as
follows:

e The results of the present theory and those of the first shear deformation theory have a good
agreement when the face sheets of the cylindrical sandwich panel are thin. Nevertheless, when
the face sheets are thick, the results of the present theory and those of the first shear defor-
mation theory are far from each other.

e By increasing the circumferential wave number, the natural frequency and non-dimensional
frequency of the sandwich panel initially decrease and then increase when n reaches a specific
magnitude.

e By increasing the length-to-radius core ratio, the natural frequencies of the sandwich panel
initially decrease, but the non-dimensional natural frequencies increase.

e When the ratio of core thickness to total thickness increases, the natural frequencies decrease.
Contrary to natural frequencies, the non-dimensional natural frequencies increase.

e the natural frequency of the sandwich panel initially rises by increasing the fiber angle. Nev-
ertheless, this trend reverses as the fiber angle reaches a critical value. The variation of non-
dimensional natural frequency versus fiber angle is almost similar to that of natural frequen-

cy.
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APPENDIX A
Exact integration method

In this method, the integral in Eq. (30) is calculated accurately. After taking the exact integration,
the following results are obtained:
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