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Abstract 
This paper presents an exact model for studying the global buck-
ling of concrete-filled steel tubular (CFST) columns with compli-
ant interfaces between the concrete core and steel tube. This mod-
el is then used to evaluate exact critical buckling loads and modes 
of CFST columns. The results prove that interface compliance can 
considerably reduce the critical buckling loads of CFST columns. 
A good agreement between analytical and experimental buckling 
loads is obtained if at least one among longitudinal and radial 
interfacial stiffnesses is high. The parametric study reveals that 
buckling loads of CFST columns are very much affected by the 
interfacial stiffness and boundary conditions. 
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NOMENCLATURE 

A   cross-sectional area (cm2) 
C   radial contact stiffness (kN/cm2) 
D  outer diameter of the steel tube (mm) 
E   elastic modulus (kN/cm2) 
I   moment of inertia (cm4) 
K   longitudinal contact stiffness (kN/cm2) 
L   column length (cm) 

Simon Schnabl a, * 

Igor Planinc b 

 
a University of Ljubljana, Faculty of 
Chemistry and Chemical Technology, 
Večna pot 113, 1001 Ljubljana, Slovenia 
E-mail address:  
simon.schnabl@fkkt.uni-lj.si 
b University of Ljubljana, Faculty of 
Civil and Geodetic Engineering, Jamova 
2, 1000 Ljubljana, Slovenia 
E-mail address: 
igor.planinc@fgg.uni-lj.si 

 
* Corresponding author  

 
http://dx.doi.org/10.1590/1679-78253479 
 
Received 01.11.2016 
In revised form 13.02.2017 
Accepted 23.03.2017 
Available online 27.03.2017 



1838     S. Schnabl and I. Planinc / Buckling of Slender Concrete-Filled Steel Tubes with Compliant Interfaces 

Latin American Journal of Solids and Structures 14 (2017) 1837-1852 

NOMENCLATURE (continuation) 

YM  cross-sectional bending moment (kNcm) 

P   centrally applied point force (kN) 

crP  critical buckling load (kN) 

Xp  contact traction inX direction (kN/cm2) 

Zp  contact traction inZ direction (kN/cm2) 

Ym  contact traction inY direction (kNcm/cm2) 

XR  X component of the cross-sectional equilibrium force (kN) 

ZR  Z component of the cross-sectional equilibrium force (kN) 

t   wall thickness of the steel tube (mm) 
u   axial displacement (cm) 
w   deflection (cm) 
Greek letters 
d   variation operator 

UD  interlayer slip (cm) 

WD  interlayer uplift (cm) 

e   axial strain 

cre  critical axial strain 

k   pseudocurvature (rad/m) 
l   column slenderness ratio 
j   rotation (rad) 

Superscripts 
i   layer or material 
c   concrete core 
s   steel tube 
 
1 INTRODUCTION 

Concrete-filled steel tubular (CFST) columns are becoming popular in today's construction practice. 
They are used in many structural applications including columns supporting platforms of offshore 
structures and wind turbines, roofs of storage tanks, bridge piers, piles, and columns in seismic 
zones and high-rise buildings. CFST columns offer major advantages over either pure steel tubes or 
concrete members. Stiffness, strength, ductility, seismic and fire resistance, deformation characteris-
tics, elimination of formwork costs, installation, economy, and good performance are among the 
advantages achieved in using such a structural system. 

Accordingly, a great deal of experimental research works has been done by Zeghiche and Chaoui 
(2005), Ellobody et al. (2006), Yang and Han (2006), Guo et al. (2007), Lai and Ho (2014), Feng et 
al. (2015), and Wang et al. (2015) among many others, to investigate the behaviour of CFST col-
umns. Alternatively, much numerical research work has been reported by Shams and Saadeghvaziri 
(1999), Hu et al. (2003), Valipour and Foster (2010), Liang (2011), Tao et al. (2013), Wang and 
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Young (2013), Patel et al. (2014), Zhang et al. (2015), Aslani et al. (2015), and analytical studies by 
Choi and Xiao (2010), Schneider (1998), Brauns (1999), Susantha et al. (2001), Fam et al. (2004), 
Kuranovas et al. (2009). An up to date review on steel-concrete composite columns including exper-
imental and analytical studies has been reported by Shanmugam and Lakshimi (2001). Likewise, 
Han et al. (2014) have reviewed the development and advanced applications of the family of CFST 
structures till today. 

CFST columns can sustain large axial loads especially when used in high-rise buildings. Shorter 
CFST columns may fail by crushing of the concrete core or by local buckling and yielding of the 
steel tube, while on the other hand, slender CFST columns usually fail by overall buckling. Most of 
the research on CFST columns covered in the literature is focused on short CFST columns. Howev-
er, much less literature is available on global buckling behaviour of slender CFST columns. Thus, 
only a few papers have dealt with this subject, see e.g. Goode et al. (2010), Romero et al. (2011), 
Portoles et al. (2011), Dai et al. (2014), and Hassanein and Kharoob (2014). Note, that to date, 
only Han (2000) has experimentally investigated the buckling behavior of circular CFST columns 
with very high slenderness ratios. 

The above-mentioned research work done on CFST columns is based on a simple prediction of 
fully bonded connection between the concrete core and the steel tube. Nevertheless, in real situa-
tions, imperfect interface compliance between the concrete core and the steel tube is observed espe-
cially when high axial loads are considered. Unfortunately, this imperfect bonding can reduce the 
initial stiffness and elastic strength of CFST columns considerably. The situation can be even worse 
in case of high-strength CFST columns, see Liao et al. (2011). Despite that, research works on com-
posite action in CFST columns are still very limited in literature. To date, only a few researchers 
have studied composite action in CFST columns; see e.g. Liao et al. (2011), Hajjar et al. (1998), 
Fam et al. (2004), Roeder et al. (2010). In all of these studies, it has been shown that composite 
action in CFST columns is not well understood and thus remains as an interesting topic for future 
research. 

The main purpose of this paper is the continuation work (Schnabl and Planinc, 2015) done on the 
formulation of analytical model for studying the buckling behaviour of CFST composite columns with 
compliant interface between the concrete core and steel tube. Thus, the derived mathematical model 
is based on the mechanics of layered column theories recently developed by Schnabl et al. (2007), 
Schnabl and Planinc (2010, 2011a, 2011b, 2013), and Kryžanowski et al. (2008, 2014). The analytical 
model is then used in the numerical examples to show its applicability for the analysis of buckling 
behavior of CFST columns with compliant interface and different boundary conditions. 
 
2 PROBLEM FORMULATION 

2.1 CFST Column under Consideration 

An initially straight, planar, geometrically perfect CFST circular column as shown in Figure 1 is 
considered. The CFST column has an undeformed length Land is made from a concrete core, c , 
and a steel tube, s , joined by an interface of negligible thickness and finite stiffness in normal and 
tangential directions. The CFST circular column is placed in the ( , )X Z plane of a spatial Cartesian 

coordinate system with coordinates ( , , )X Y Z  and unit base vectors EX, EY and EZ = EX × EY. The 
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undeformed reference axis of the CFST circular column is common to both layers. It is parameter-
ized by the undeformed arc-lengthx . Material particles of the concrete core and the steel tube are 

identified by material coordinates ( , , ),i i ix y z  ( , )i c s=  in local coordinate system which is assumed 

to coincide initially with spatial coordinates, and then follows the deformation of the column. Thus, 

( ),ix x X= =  ( ),iy y Y= =  and ( )iz z Z= =  in the undeformed configuration. Further, each 

material is modelled by Reissner's large-displacement finite-strain shear-undeformable beam theory 
(Reissner, 1972). The CFST circular column is subjected to a conservative compressive load,P , 
which acts along the neutral axis of the CFST circular column in such a way that homogeneous 
stress-strain state of the CFST column in its primary configuration is achieved. For more details on 
buckling behavior of composite columns an interested reader is referred to the work of Kryžanowski 
et al. (2009, 2014), Schnabl and Planinc (2010, 2011a, 2011b, 2013}.  
 

 

Figure 1: Initial and buckled configuration of circular CFST column. 

 
2.2 Assumptions 

In addition to the abovementioned assumptions, a mathematical formulation of governing equations 
of a circular CFST column is based on the following assumptions: 

1. The material is linear elastic. 
2. The planar Reissner beam theory (Reissner, 1972) is used for each material. 
3. The shear deformations are not taken into account. 
4. No local type of instability can occur 
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5. The materials can slip over each other and separate in radial direction. 
6. The materials are continuously connected and slip and uplift moduli of the connection are 

constant. 
7. The shapes of the materials’ cross-sections are symmetrical with respect to the plane of de-

formation and remain unchanged in the form and size during deformation. 
8. The interlayer slip and uplift are small. 
9. The CFST column is slender. 

 
2.3 Nonlinear Governing Equations 

Nonlinear governing equations of a CFST circular column is composed of kinematic, equilibrium, 
and constitutive equations along with natural and essential boundary conditions for each of the 
material. Furthermore, there are also constraining equations which assemble each individual mate-

rial into a composite structure. A compact notation ( )i· will be used in further expressions, where 

( , )i c s= indicates to which layer the quantity ( )·  belongs to. The governing nonlinear equations of 

a CFST circular column constitute a system of 12 first order differential equations with constant 

coefficients for 12 unknown functions , ,i i iu w j wi, ,iXR ,iZR
i
YM : 

Kinematic equations 
 

1 (1 )cos 0,
i

i idu

dx
e j+ - + =  (1) 

 

(1 )sin 0,
i

i idw

dx
e j+ + =  (2) 

 

0,
i

id

dx

j
k- =  (3)

 

Equilibrium equations 
 

0,
i
X

X

dR
p

dx
+ =  (4)

 

0,
i
Z

Z

dR
p

dx
+ =  (5)

 

(1 )( sin cos ) 0,
i

i i i i iY
X Z Y

dM
R R m

dx
e j j- + + + =  (6)

 

Constitutive equations 
 

cos sin 0,i i i i i i i
X ZR R E Aj j e- - =  (7)

 

0.i i i i
YM E I k- =  (8) 
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Natural and essential boundary conditions 

0ix =  
 

1 (0) 0i i
XS R+ =        or      1(0) ,i iu u=  

2 (0) 0i i
ZS R+ =        or      2(0) ,i iw u=  

3 (0) 0i i
YS M+ =       or      3(0) .i iuj =  

(9)

 

ix L=  
 

4 ( ) 0i i
XS R L+ =        or      4( ) ,i iu L u=  

5 ( ) 0i i
ZS R L+ =        or      5( ) ,i iw L u=  

6 ( ) 0i i
YS M L+ =       or      6( ) .i iL uj =  

(10)

 

i
ku and i

kS (k=1,2,…,6) mark given values of generalized boundary displacements and their comple-

mentary generalized forces at the edges of materials, i.e. 0ix =  and ix L= , respectively. 
Constraining equations and contact model 
In case of a CFST column a material s is constrained to follow the deformation of the material c, 
and vice versa, which means that displacements of initially coincident material particles in the con-
tact are constrained to each other. This kinematic-constraint relation can be expressed with the 
positions of the observed material particles in the deformed configuration 
 

,i i i i
X Y ZX Y Z= + +R E E E  (11)

 

where the spatial Cartesian coordinates ,iX ,iY  and iZ are dependent on the generalized displace-

ments , ,i iu w and ij  as  
 

sin sin ,i i iX x u r a j= + -  (12)
 

cos ,iY r a=  (13)
 

sin cos .i i iZ w r a j= -  (14)
 

A displacement vector [[R]] between the two initially coincident material particles that belong 
to material c and s , respectively, is given as a vector-valued function by 
 

,c s
U X W Z

é é ù ù - = D + Dë ë û ûR = R R E E  (15)
 

or in component form as 
 

( , ) sin (sin sin ),c s c s
U x u u ra a j jD = - - -  (16)

 

( , ) sin (cos cos ),c s c s
W x w w ra a j jD = - - -  (17)
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where UD and WD are the interlayer slip and uplift between the observed material particles with 

respect to XE and ZE , and r and a  are the polar coordinates of the observed material particle in 

the contact, see Figure 2. 
 

 

Figure 2: Cross-section of a circular CFST column. 

 
As a consequence of (15) or (16)-(17), interlayer contact tractions emerge whose magnitudes 

depend on the type of the connection. Hence, the contact tractions per unit of the undeformed ref-
erence axis of a CFST circular column are expressed as 
 

2

0

( )d ( ) d ,

x

X U x Up F F r
p

a= D = Dò ò
C

C  (18)

 

2

0

( )d ( ) d ,

x

Z W x Wp G G r
p

a= D = Dò ò
C

C  (19)

 

( ) ( )
2

0

( ), 0, ( ) d (0, cos , sin ) ( ), 0, ( ) d ,

x

i
Y U W x U Wm F G r r F G r

p

a a a= ´ D D = - - ´ D Dò òr
C

C  (20)

 

where ir is the cross-sectional vector-valued position function of the observed material particle of 

the material i  in the contact, xC and d xC are the contour and its differential of the cross-section of 

layer i , see Figure 2, F and G are experimentally determined (usually by push-out test) non-linear 
functions that describe constitutive contact laws. 
 
2.4 Linearized Governing Equations 

A linearized system of governing equations for a determination of critical buckling loads and modes 
of CFST columns is based on the first variation of the nonlinear system (2)-(20) defined here as 
 

0

d
( , ) ( ) ,

d b

d d bd
b =

= +x x x xY Y  (21)

 

where Y is the functional, x and dx are the generalized displacement field and its increment, respec-
tively, andb is a small scalar parameter. Therefore, to derive the linearized system of governing 
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equations for buckling problem of a CFST column, linearized equations have to be evaluated at the 
primary configuration in which the CFST column is straight, namely 
 

1
,i

i i

i

P
E A

e = -
å

 0,ik =  (0) ,i i
i i

i

x
u u

E A
= -

å
 0,iw =  0,ij =  0,UD =  

0,WD =  ,
i i

i
X i i

i

E A
R P

E A
= -

å
 0,i
ZR =  0,i

YM = 0,Xp = 0,Zp = 0.Ym =  
(22)

 

The linearized buckling equations are then: 
 

0,
i

idu

dx
d de- =  (23)

 

1
1 0,

i
i

i i

i

dw
P

dx E A
d dj

æ ö÷ç ÷ç ÷ç ÷+ - =ç ÷ç ÷ç ÷÷ç ÷çè ø
å

 (24)

 

0,
i

id

dx

j
d dk- =  (25)

 

2 ( ) 0,
c

c sXdR rK u u
dx

d p d d- - =  (26)

 

2 ( ) 0,
s

c sXdR rK u u
dx

d p d d+ - =  (27)

 

2 ( ) 0,
c

c sZdR rC w w
dx

d p d d- - =  (28)

 

2 ( ) 0,
s

c sZdR rC w w
dx

d p d d+ - =  (29)

 

31
1 ( ) 0,

c c c c
c c sY
Zi i i i

i i

dM E A dw
P P R r K

dx dxE A E A
d d d p dj dj

æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷- - - - - =ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç ç÷ ÷ç çè ø è ø
å å

 (30)

 

31
1 ( ) 0,

s s s s
s c sY
Zi i i i

i i

dM E A dw
P P R r K

dx dxE A E A
d d d p dj dj

æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷- - - + - =ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç ç÷ ÷ç çè ø è ø
å å

 (31)

 

0,i i i i
XR E Ad de- =  (32)

0,i i i i
YM E Id dk- =  (33)
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sin ( ),c s c s
U u u rd d d a dj djD = - - -  (34)

 

,c s
W w wd d dD = -  (35)

 

where K and C are the longitudinal and radial contact stiffness, respectively. The system (23)-(35) 
is a system of 18 linear algebraic-differential equations of first order with constants coefficients for 

18 unknown functions ,ide ,idk ,iud ,iwd ,idj ,iXRd ,iZRd ,UdD and WdD along with the corresponding 

boundary conditions 
 

0ix =  
 

1 (0) 0i i
XS Rd+ =        or      1(0) ,i iu ud =  

2 (0) 0i i
ZS Rd+ =        or      2(0) ,i iw ud =  

3 (0) 0i i
YS Md+ =       or      3(0) .i iudj =  

(36)

 

ix L=  
 

4 ( ) 0i i
XS R Ld+ =        or      4( ) ,i iu L ud =  

5 ( ) 0i i
ZS R Ld+ =        or      5( ) ,i iw L ud =  

6 ( ) 0i i
YS M Ld+ =       or      6( ) .i iL udj =  

(37)

 

i
ku and i

kS (k=1,2,…,6) mark given values of generalized boundary displacements and their comple-

mentary generalized forces at the edges of materials, i.e. 0ix =  and ,ix L=  respectively. 

 
2.5 Exact Buckling Solution 

The system (23)-(35) along with (36)-(37) can be written in compact form as a homogeneous system 
of 12 first order linear differential equations 
 

( ) ( )
d

x x
dx

=
Y

AY         and        0(0) ,=Y Y  (38)

 

where ( )xY is the eigenvector, (0)Y is the vector of unknown integration constants, and A  is the 

constant real 12 × 12 matrix. The exact solution of (38) is given by; see (Perko, 2001): 
 

0( ) .xx e= AY Y  (39)
 

The unknown integration constants 0Y  in (39) are obtained from (36)-(37). Hence, a system of 

12 homogeneous linear algebraic equations for 12 unknown integration constants is obtained as 
 

0 ,=KY 0  (40)
 

where K  is the tangent stiffness matrix. A non-trivial solution of (40) is obtained from the condi-
tion of singular stiffness matrix, e.i. 
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det 0,=K  (41)
 

which forms a linear eigenvalue problem for the critical buckling load crP and corresponding buck-

ling modes of the CFST column.  
 
3 NUMERICAL RESULTS AND DISCUSSION 

3.1 Comparison with Experimental Results 

The exact buckling loads of slender CFST P-P circular column calculated by the proposed model 
are compared with the experimental results obtained by Han (2000). The geometric and material 
data for six CFST columns are listed in Table 1 and shown in Figure 3. 
 

 

Figure 3: Geometric and material properties of CFST columns. 

 
Exact and experimental critical buckling loads for six CFST columns are summarized in Table 

1 for different K and ,C and .l  

 

Specimen L l  *
,cr eN  C 

Pcr 
K=10-10 K=10-2 K=10-1 K=1 K=10 K=1010 

SC154-1 415.8 154 342 10-10 177.649 186.475 240.841 293.583 299.955 300.651 
    10-5 190.091 198.085 246.015 293.684 299.957 300.651 

SC154-2 415.8 154 292 10-3 295.729 295.764 296.055 297.769 300.043 300.651 
SC141-1 380.7 141 350 10-10 211.918 220.790 279.200 348.563 357.656 358.646 

    10-5 222.495 230.785 284.381 348.685 357.659 358.646 
SC141-2 380.7 141 370 10-3 350.255 350.326 350.909 354.103 357.762 358.646 
SC130-1 351.0 130 400 10-10 249.298 258.206 319.942 407.924 420.537 421.908 

    10-5 258.371 266.861 324.981 408.067 420.538 421.908 
SC130-2 351.0 130 390 10-3 408.187 408.322 409.429 415.044 420.664 421.908 

* critical load obtained experimentally by Han (2000) 

Table 1: Comparison of exact and experimental critical buckling loads of CFST P-P  

columns for various ,K ,C and ,l where cr 0,e = and K and C are in kN/cm2. 

 
From Table 1 it can be seen that a good agreement of the results is obtained if at least one of 

interface stiffness (K or C ) is high. Otherwise, the exact buckling loads are significantly reduced by 
the interface compliance. For example, the exact buckling loads are for almost fully debonded layers 
up to 60 % of those with completely connected to each other, and in the range of 57-64 % of exper-
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imental results. Furthermore, the exact results for a relatively stiff connection ( 310C -³ kN/cm2 

and K ³1kN/cm2) are within  10 % range measured from the mean experimental results. 

 
3.2 Effect of Interface Compliance on Buckling Loads and Modes 

A parametric study is undertaken to investigate the effect of interface compliance on critical buck-
ling loads and modes of P-P CFST column. For this purpose, a CFST column with the same geo-

metric and material properties as specimens SC154-1 and SC154-2 but cE = 2840 kN/cm2 is used in 
the parametric analysis, see Figure 3 and Table 1. The critical buckling loads are computed by the 
proposed exact model for various interlayer stiffnesses K and C . The results are presented in Table 
2 and Figure 4.  
 

 Pcr 
 C 

K 10-10 10-7 10-5 10-4 10-3 10-2 105 
10-10 179.865835● 179.993792 192.105027 255.862874 297.890147 302.479500 302.983390* 
10-5 179.874803 180.002752 192.113187 255.865453 297.890183 302.479501 302.983390* 
10-3 180.759877 180.887039 192.918146 256.119575 297.893746 302.479536 302.983390* 
10-2 188.553682 188.673596 199.977918 258.328044 297.925910 302.479853 302.983390* 
10-1 242.274702 242.329750 247.428743 273.212174 298.226557 302.483009 302.983390* 
1 295.681485 295.682538 295.785453 296.603501 300.001028 302.512517 302.983390* 
10 302.263327 302.263337 302.264356 302.273485 302.353467 302.687190 302.983390* 
102 302.911513 302.911513 302.911524 302.911616 302.912526 302.920497 302.983390* 
103 302.976203 302.976203 302.976204 302.976205 302.976214 302.976305 302.983390* 
105 302.983318 302.983318 302.983318 302.983318 302.983318 302.983318 302.983390* 
1010 302.983390* 302.983390* 302.983390* 302.983390* 302.983390* 302.983390* 302.983390* 

,cr cr cr crP P P P* * · ·= =
 

Table 2: Critical buckling loads of circular CFST P-P columns for various K, C,  

where 154,l = cr 0,e ¹ cE  = 2840 kN/cm2, and C and K are in kN/cm2. 

 

 

Figure 4: Density plot and contours of critical buckling load of CFST columns. 
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Evidently, the effect of the interface compliance on critical buckling loads of P-P CFST columns 
is significant. It is seen from Table 2 and Figure 4 that critical buckling loads can decrease consid-
erably as the interfacial stiffness decreases. 

However, this effect is insignificant if at least one among stiffnesses is high. Note that in the 
limiting case when at least one among stiffnesses tends to infinity, the critical buckling load be-
comes K and C independent. In this case, the critical buckling load of the CFST column corre-
sponds to a total sum of the critical buckling loads of individual materials, namely the buckling 
load of the concrete core, cr,

cP and the steel tube, cr,
sP respectively,  

 

2

cr cr cr 2

( )
,

(1 )

c c s s
c s E I E I

P P P
L

p
e

* +
= + =

+
 (42)

 

and is therefore equivalent to EP which is the Euler buckling load for the CFST column with per-

fectly bonded layers. On the contrary, in the limiting case when layers are fully debonded, it may 
be seen that the critical buckling load of the CFST column under consideration is 
 

2

cr cr 2
,

(1 )

c c
c s s sE I

P P P E A
L

p
e

e
· = + = +

+
 (43)

 

where sP  is the axial load carried by the steel tube. This result is expected since the critical buck-

ling load of the concrete core in this particular case is almost as much as 3 times lower than the 
steel tube. 

At the end of this example, first buckling modes of the individual layers c and s  of the CFST 
P-P composite column are calculated for various ' sK and C's . The results are plotted in Figure 5. 
 

 

Figure 5: First buckling modes of layers c and s, and critical buckling  

loads of CFST P-P composite column for various values of K’s and C’s. 
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It can be seen from Figure 5 that in case of fully debonded materials, when K and C are almost 
negligible, only the concrete core buckles, while the steel tube remains straight. However, for all 
other values of K and C the deformations of the materials become constrained. This effect, however, 
becomes pronounced for rather rigidly connected materials in either of the two directions. Namely, 
in that case the first buckling modes of the two materials practically coincide. 
 
3.3 Effect of Boundary Conditions on Buckling Loads 

The effect of different boundary conditions on critical buckling loads of circular CFST compo-
site columns is studied using the exact model developed. The effect is studied for the CFST column 
(i.e., specimen SC154-1) whose geometric and material properties are given in Figure 3 and Table 1.  

The critical buckling loads of CFST columns are given in Table 3 for various K’s and C’s and 
different boundary conditions, i.e clamped-free (C-F), clamped-clamped (C-C), and clamped-pinned 
(C-P). Note, that the same boundary conditions are used for both materials, the concrete core and 
steel tube, respectively. As would be expected, the influence of interfacial compliance is similarly 
considerable in all cases of boundary conditions. The critical buckling loads decrease with the in-
crease of interfacial compliance. 
 

Pcr 
C 10-10 10-3 
K C-F C-C C-P C-F C-C C-P 

10-10 44.95092961 719.2112490 367.8313917 75.13464138 1094.182170 590.2955496 
10-5 44.95989029 719.2202108 367.8403534 75.13465339 1094.183316 590.2958548 
10-3 45.83596664 720.1067487 368.7262276 75.13583959 1094.296689 590.3260369 
10-2 52.77689604 728.1035991 376.6569381 75.14637765 1095.317938 590.5973960 
10-1 71.11456051 801.7556923 443.5802350 75.23209327 1104.671332 593.0426878 
1 75.25042232 1095.460050 588.7376543 75.50198900 1152.866275 604.9510316 
10 75.65633017 1199.648599 616.4465577 75.66425898 1201.041703 616.7586267 
102 75.69672750 1210.070051 619.1620639 75.69773741 1210.082508 619.1655195 
103 75.70076519 1211.104568 619.4325425 75.70086471 1211.104691 619.4325774 
105 75.70120931 1211.218272 619.4622827 75.70121211 1211.218272 619.4622827 
1010 75.70121379 1211.219421 619.4625831 75.70121379 1211.219421 619.4625831 

Table 3: Critical buckling loads of circular CFST columns for various K, C,  

where 154,l = cr 0,e = cE = 2760 kN/cm2, and C and K are in kN/cm2. 

 
4 CONCLUSIONS 

The paper presented a new mathematical model for studying the buckling behaviour of circular 
CFST slender columns with compliant interfaces.  The model is capable of predicting exact critical 
buckling loads and modes of CFST columns. The effect of interface compliance, and various other 
parameters, on critical buckling loads of CFST was studied in detail. Based on the results obtained 
in the present study, the following conclusions can be drawn: 

1. The exact solution of the buckling loads of elastic circular CFST columns with compliant in-
terface is presented. 
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2. A good agreement between the exact and experimental buckling loads of circular CFST 
composite columns is observed if at least one among longitudinal and radial interfacial stiff-
nesses is high. In the presence of finite interfacial compliance the critical buckling loads are 
reduced significantly. 

3. The effect of interface compliance on critical buckling loads and modes of CFST columns is 
proved to be significant. The critical buckling loads decrease as the interfacial compliance in-
creases. The first buckling modes proved to be constrained if a finite interfacial compliance is 
present. 

4. As would be expected, the parametric study revealed that the critical buckling loads of cir-
cular CFST columns are also very much affected by the type of boundary conditions. 

5. The results can be used as a benchmark solution for a buckling problem of circular CFST 
columns with compliant interfaces. 
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