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Vibration analysis of stiffened plates using Finite
Element Method

Abstract

This paper presents the vibration analysis of stiffened plates,

using both conventional and super finite element methods.

Mindlin plate and Timoshenko beam theories are utilized so

as to formulate the plate and stiffeners, respectively. Eccen-

tricity of the stiffeners is considered and they are not limited

to be placed on nodal lines. Therefore, any configuration of

plate and stiffeners can be modeled. Numerical examples are

proposed to study the accuracy and convergence characteris-

tics of the super elements. Effects of various parameters such

as the boundary conditions of the plate, along with orienta-

tion, eccentricity, dimensions and number of the stiffeners on

free vibration characteristics of stiffened panels are studied.
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1 INTRODUCTION

Noise and vibration control is an increasingly important area in the most fields of engineering.

There are many vibrating parts in structures of ships, aircrafts and offshore platforms. The

amplitude of their motions can be large due to the inherently low damping characteristics of

these structures. Such noise is commonly eradicated by use of heavy viscoelastic damping

materials which lead to increase in cost and weight. Vibration isolators between pieces of

equipment and their supporting structures can be another solution. Clearly, isolating large

structures can be difficult, expensive and in some cases, such as the wings of an aircraft,

almost impossible. In recent years, much attention has been focused on active noise control of

structures. However, their installation and maintenance can be expensive, so possible passive

solutions would be preferable [20].

In the case of plates/shells, one common and cost effective approach in order to improve

their NVH1 performance is to add stiffeners. Stiffened plates are lightweight, high-strength

1Noise Vibration Harshness
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structural elements, commonly used in ships, aircrafts, submarines, offshore drilling rigs, pres-

sure vessels, bridges, and roofing units [19, 21]. Most of these structures are required to

operate in dynamic environments. Therefore, a thorough study of their dynamic behavior and

characteristics is essential in order to develop a perfect strategy for modal vibration control

[8]. The stiffeners enhance the rigidity of base structures by increasing their cross sectional

second moment of inertia. The configuration of the stiffeners should be consistent with the

natural modes likely to be excited by the service loads, so as to arrive at a design with a high

strength-to-weight ratio [4]. In general, the stiffening of the structures is applied, because of

two main reasons: Increasing load carrying capacity and preventing buckling, especially in the

case of in-plane loading [6].

Different geometries of stiffened shells have been studied in the literature which can be

categorized into three groups including plates, single curved shells, and double curved shells.

The Superimposition of the stiffeners with respect to the plate mid-plane, i.e. eccentric or

concentric is also a matter of concern for the structural analysts. The stiffener of which,

centroid is coincident with the plate/shell mid-surface, is called concentric, otherwise eccentric

stiffener [16].

The analysis of stiffened plate vibration has been the purpose of numerous investiga-

tions. Among the known solution techniques, the finite element method is certainly the most

favourable. Olson and Hazell [14] predicted and measured the first 24 eigenfrequencies of stiff-

ened plates using FEM and real-time laser holography. Mustafa and Ali [12] developed an

eight-noded orthogonally stiffened super finite element to study the free vibration of a stiff-

ened cylindrical shell with diaphragm ends. Experimental measurements of natural frequencies

and mode shapes of an orthogonally stiffened shell were also carried out to substantiate the-

oretical predictions. A plate with centrally placed stiffener has been studied by Mukherjee

and Mukhopadhyay [11]. An isoparametric stiffened plate element has been utilized in their

analysis considering shear deformation in order to analyse thick as well as thin plates. In the

proposed formulation, the stiffeners can be placed anywhere within the plate element and they

are not required to necessarily follow the nodal lines. Koko and olson [9] have developed an-

other super element to model the free vibration of stiffened plates. This super element allows

a coarser mesh (at the expense of more complex interpolation functions), so that only a single

element per bay or span is needed. Sinha and Mukhopadhyay [18] investigated stiffened shells

utilizing a high-precision triangular shallow shell element in which stiffeners can be anywhere

within the plate element. The vibration analysis of stiffened plates has been investigated by

Barrette and Beslin [3] using hierarchical finite elements with a set of local trigonometric inter-

polation functions. Nayak and Bandyopadhyay [13] presented a finite element analysis for free

vibration behaviour of doubly curved stiffened shallow shells. The eight-/nine-node doubly

curved isoparametric thin shallow shell elements along with the three-node curved isoparamet-

ric beam element has been used in this study. Their Formulation suffers from the limitation,

that stiffeners can only be placed along nodal lines in x or y directions. Two years later

Samanta and Mukhopadhyay [17] developed a new 3 noded stiffened shell element and applied

it in determining natural frequencies and mode shapes of the different stiffened structures.
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Another Stiffened element with seven degrees of freedom per node has been presented by voros

[21]. Torsion–flexural coupling, torsional warping effect and the second- order terms of finite

rotations have been considered in this investigation.

In the present work, four different elements including two conventional and two super

elements [2] have been used so as to predict the dynamic characteristics of stiffened panels.

The formulation of the plate and stiffeners are both based on the first order shear deformation

theories so it can be applicable to both thin and thick plates. In the proposed formulation, the

stiffeners are modeled in such a way that they can be placed anywhere within the plate element.

This may be considered as a prominent advantage over most of approximate analyses, since

this method can be applied to any plate and stiffeners configuration. It is worth to mention

that, the shape function of the plate is also used to express the displacement of the stiffener at

any generic point along it. In this way, displacement compatibility between the plate and the

stiffeners is ensured automatically in the whole continuum and no additional node is utilized

for the stiffeners.

After studying the accuracy and convergence of super elements, they have been utilized to

investigate different problems. Because of significantly less time and fewer global DOFs needed

for super elements, they are useful for preliminary designs and parametric studies; where,

repeated calculations are often required. Effects of various parameters such as the orientation,

eccentricity and number of stiffeners on free vibration characteristics have been studied. These

examples demonstrate the strength of the developed formulation, and it is hoped that the

results presented will prove useful to other researchers. Up to authors’ knowledge, such results

have not been published before.

2 FORMULATION

The equation of motion for free vibration of elastic bodies, with infinitesimal displacements is:

[M] {d̈}+ [K] {d}= {0} , (1)

Where [M] and [K] is overall mass and stiffness matrix, respectively. {d} is the displace-

ment vector and dots denote derivatives with respect to time. Overall matrices in equation (1)

are obtained by assembling matrices corresponding to each element, and applying appropriate

boundary condition. In this paper, the following hypotheses are made:

• The material of the plate and the stiffeners is isotropic, linear elastic and Hookian.

• In-plane displacements are neglected in order to reduce the computational time. If the

plate edges are immovable in the plane, the in-plane displacements will be much smaller

than out-of-plane ones. Therefore, in such cases this can be a rational assumption.

• Stresses in the direction normal to the plate middle surface are negligible.

• Normal to the undeformed mid-plane remains straight and unstretched in length, but not

necessarily normal to the deformed mid-plane. This assumption implies the consideration
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of shear deformation, but it also leads to the nonzero shear stresses at the free surface,

because of constant shear stress through the plate thickness.

• Rotary inertia effect is included.

• The magnitude of transverse deflection (w) is small in comparison to the plate thickness

(h).

Stiffness and mass matrices corresponding to each element are the summation of the plate

stiffness and mass matrices, and the contributions of stiffeners to this element as

[K]= [Kp]+ [Ks] , (2)

[M]= [Mp]+ [Ms] , (3)

in which plate and stiffener are denoted by subscripts p and s, respectively [5, 7, 10].

2.1 Plate element

A flat, thin/thick plate of uniform thickness is considered. As it was assumed, constitutive ma-

terial is homogeneous, linear elastic and Hookian. For the purpose of finite element modeling 4

types of element are used, including eight-/nine-node conventional elements and eight-/twelve-

node super elements. Each node has 3 degrees of freedom. They consist of one displacement

in transverse direction, and two rotations about x-axis and y-axis. Displacement at each point

within the element is related to nodal values by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

w

θx
θy

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

n

∑
i=1

Ni

⎧⎪⎪⎪⎨⎪⎪⎪⎩

wi

θxi
θyi

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (4)

where i and n are the corresponding node and total number of nodes in a the plate element,

and Ni is the shape function of the ith node. In the isoparametric formulation the above

functions are used for defining the displacement as well as the location of any point within the

element in terms of nodal coordinates.

{ x

y
}=

n

∑
i=1

Ni {
xi
yi
} , (5)

Implementing Mindlin plate theory, displacement filed can be expressed as follow (figure

1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

U

V

W

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−zθy
−zθx
w

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (6)
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Figure 1 Rotations of the normal in the Mindlin plate [10].

in which z is measured from the neutral surface of whole structure consists of the plate

and one or more stiffeners. Based on linear elasticity the strain component are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx
εy
εxy
εxz
εyz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−z ∂θy
∂x

−z ∂θx
∂y

−z (∂θx
∂x
+ ∂θy

∂y
)

∂w
∂x
− θy

∂w
∂y
− θx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (7)

{εp} = { εx εy εxy εxz εyz } , (8)

Where εx and εy are normal strains, and εxy, εxz and εyz are shear strains. For isotropic,

linear elastic, Hookian Materials

{σp} = [Dp] {εp} , (9)

Dp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E
1−ν2

νE
1−ν2 0 0 0

νE
1−ν2

E
1−ν2 0 0 0

0 0 G 0 0

0 0 0 κG 0

0 0 0 0 κG

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

{σp} = { σx σy τxy τxz τyz } , (11)

Where σx and σy are normal strains, τxy, τxz and τyz are shear strains, E is the elasticity

modulus, G is the shear modulus, ν is the poison’s ratio and κ is the shear correction factor

to compensate the error due to the assumption of constant shear strains within the plate

thickness. In this stage, strain energy functional of the plate element can be obtained

Up =
1

2
∫ {εp}

T {σp} dV, (12)

Latin American Journal of Solids and Structures 9(2012) 1 – 20



6 Sh. Jafarpour Hamedani et al / Vibration analysis of stiffened plates using Finite Element Method

In which V is the volume of the plate element. The kinetic energy of vibrating plate element

is also given by

Tp =
1

2
∫ ρ [(∂U

∂t
)
2

+ (∂V
∂t
)
2

+ (∂W
∂t
)
2

] dV, (13)

In which t denotes time and ρ is the plate mass density. The integrations are calculated

using gauss quadrate scheme. Special considerations are applied so as to avoid shear locking

effect [5, 7, 10, 15, 22].

2.2 Stiffener

In this section, the matrices corresponding to the stiffener which can be placed everywhere

within the plate element are extracted. The proposed method releases the formulation from the

limitation of stiffeners to be lied along nodal lines. Hence, oblique stiffeners can be analysed.

For this purpose, by use of same shape function for both the plate and the stiffeners, displace-

ment compatibility is guaranteed and no additional node is introduced for the stiffeners. The

stiffener specifications are calculated at the Gauss points along it. Therefore a transformed co-

ordinate system is implemented (Figure 2). Based on Timoshenko beam theory, displacement

field of the stiffener is given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U
′

V
′

W
′

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−zθy′
−zθx′
w

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (14)

Figure 2 Transformed coordinate system for the stiffener.

where θx′ and θy′ are rotations about x
′
and y

′
, respectively. As mentioned before, z

is measured from the reference surface of whole structure. Displacement functions can be

expressed in terms of nodal values of plate element using a transformation matrix (Eq. 15)

and aforementioned shape functions.

{ θx′

θy′
} = [ cosϕ sinϕ

−sinϕ cosϕ
] { θx

θy
} , (15)

Latin American Journal of Solids and Structures 9(2012) 1 – 20



Sh. Jafarpour Hamedani et al / Vibration analysis of stiffened plates using Finite Element Method 7

Again, by applying linear elasticity

⎧⎪⎪⎪⎨⎪⎪⎪⎩

εx′

εx′z′

εx′y′

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−z
∂θ

y
′

∂x′
∂w
∂x′
− θy′

−z ∂θ
x
′

∂x′

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

, (16)

{εs} = { εx′ εx′z′ εx′y′ } , (17)

Similar to the plate element, for an isotropic material

{σs} = [Ds] {εs} , (18)

Ds =
⎡⎢⎢⎢⎢⎢⎣

E
1−ν2 0 0

0 κG 0

0 0 G

⎤⎥⎥⎥⎥⎥⎦
, (19)

{σs} = { σx′ τx′z′ τx′y′ } , (20)

In which σx′ is the normal stress along the longitudinal axis of the stiffener, τx′z′ is shear

strain and τx′y′ is torsional strain. So energy functional of the stiffener are obtained as follow

Us =
1

2
∫ {εs}

T {σs} dV, (21)

Ts =
1

2
∫ ρ

⎡⎢⎢⎢⎢⎣
(∂U

′

∂t
)
2

+ (∂V
′

∂t
)
2

+ (∂W
′

∂t
)
2⎤⎥⎥⎥⎥⎦

dV
′
, (22)

in which V
′
is the volume of the part stiffener, confined within the plate element. The governing

equation of vibration of stiffened plates is derived by use of Hamilton’s principle which requires

d ∫
ti

tf
[(Tp + Ts) − (Up + Us)] dt = 0, (23)

where d is the variational operator. Now stiffness and mass matrices of the stiffened element

can be calculated. By assembling matrices corresponding to each element in a suitable manner,

overall stiffness and mass matrices are obtained. Finally, boundary conditions are applied and

governing eigenvalue equation for un-damped free vibration of stiffened plates takes the form

[K] {d} = ω2 [M] {d} , (24)

where ω is the natural frequency in radian per second, and {d} represents eigenvector [5, 7,

10, 15, 22].
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2.3 Super element

The super element is a compound one, which is composed of a number of conventional finite

elements. In this regard, each super element is divided into a number of conventional elements

and corresponding matrices to each subdivided element are constructed (Figure 3).

Figure 3 Super elements.

Subdivided elements’ matrices are assembled, as in general finite element procedure. De-

grees of freedom related to servant nodes, defined later, are then condensed out while the

effect of them on super element matrices is taken into account. This procedure is named as

dynamic condensation, which is described in the following. The dynamic equilibrium equation

neglecting damping effect is given by,

[ Mss Msc

Mcs Mcc
]{ d̈s

d̈c
} + [ Kss Ksc

Kcs Kcc
]{ ds

dc
} = { Fs

Fc
} , (25)

Where index s denotes the terms related to the DOFs of super nodes that will remain

after condensation, and c represents the terms related to other DOFs which will condensed

out through the this procedure. They are sometimes called as master and servant nodes,

respectively. Using appropriate transformation matrix the following equation is obtained,
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TT
s [

Mss Msc

Mcs Mcc
]Tsd̈s + TT

s [
Kss Ksc

Kcs Kcc
]Tsds = Ts {

Fs

Fc
} , (26)

Md̈s +Kds = F. (27)

In this way, the effect of servant node is also embedded in the condensed super element.

Aforementioned element has remarkable ability to reduce the size of problem.

3 NUMERICAL EXAMPLES

3.1 Vibration of a Mindlin plate with different boundary conditions

In order to assess the vibration behaviour of the super plate elements, free vibration of a

square Mindlin plate with different boundary conditions is first investigated. This problem

has been studied by several investigators using exact or other approximate methods. The

natural frequencies are presented in terms of the non-dimensional eigenvalue λ, given by

λ = ρhω2a4/Dπ4, (28)

where D is the plate flexural rigidity, h is the plate thickness, and a the side length of the

plate. The eigenvalues for the various combinations of edge conditions are shown in Table 1.

The comparison between present and other numerical results shows a good agreement in

all ten cases considered. It should be noted that, unlike super element developed by Koko and

Olson [9] the present super elements result in accurate values for second and higher modes. It

is also indicated that, implementing super elements leads to reduction in computational time

with no significant change in results accuracy, which is expected because of the significantly

fewer number of global DOFs, used in the super elements.

3.2 Clamped square plate with a central stiffener

To validate the present formulations and study the characteristics of super elements, a stiffened

clamped square plate with central stiffener (Figure 4) is analyzed. (E = 6.87×1010 N
m2 , ν = 0.3,

ρ = 2823 kg
m3 )

Figure 4 Clamped square stiffened plate with one central stiffener.
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Table 1 Eigenvalues of a square plate with different edge conditions.

Natural Frequency [Hz]
Boundary Mode Durvasla Koko and Present Analysis
condition Shape et al. [9] Olson [9] Q8 Q9 S8 S12

SSSS
1 4 4 4.0096 4.0141 3.9283 3.7819
2 25 35.38 25.3289 25.4865 24.8472 23.7557

CCCC
1 13.4 13.37 13.6588 13.7948 13.3251 11.9945
2 58.3273 59.4948 57.0573 49.1684

SCSC
1 8.64 8.63 8.7705 8.85 8.5764 7.8526
2 31.13 41.59 31.4342 31.6446 30.6761 28.9287

CCCF
1 6.0416 6.1131 5.9354 5.3155
2 16.8429 16.9894 16.4938 15.1469

CCCS
1 10.49 10.45 10.6217 10.7154 10.3739 9.4666
2 41.62 74.83 42.6466 43.1586 41.6568 37.8995

CCSS
1 7.6 7.55 7.6117 7.6531 7.4406 6.9472
2 37.13 70.96 38.8016 39.3205 38.015 34.7716

SSSC
1 5.77 5.75 5.7906 5.814 5.6667 5.3504
2 27.75 38.07 27.8554 28.0273 27.2658 25.9524

CFCF
1 5.14 5.07 5.1918 5.2589 5.1019 4.5284
2 7.27 7.25 7.3622 7.4432 7.2436 6.5744

SCSF
1 1.65 1.66 1.6698 1.6737 1.6434 1.5689
2 11.22 11.6 11.3835 11.4457 11.1839 10.5609

FFFF
1 2.04 2.02 1.8883 1.8902 1.8812 1.8488
2 4.34 4.11 4.0062 4.0163 3.9451 3.7531

Global DOF 1443 1323 288 192
Run Time [S] 59.4288 46.8052 2.434 3.0184

The first ten natural frequencies from the super elements are compared with the finite

element and experimental results in Table 2. A fundamental modeling difference between the

super element developed by Koko and Olson [9] and present elements, is that they allow for in-

plane displacements of the plate, whereas the present theory assumes pure bending deformation

of the plate. However, such effects are expected to be small for thin plates.

All frequencies from the present approach are very close to the experimental and conven-

tional finite element results. The agreement between the super elements and the experimental

results reported by Olson and Hazell is wonderful. Although deviation of the eigenfrequencies

computed employing S12 from mentioned results is negligible, based on authors’ point of view

results obtained by S8 are more accurate. Because Due to the finite stiffness of any clamped

structure, exact edge conditions are not possible in practice. Consequently numerical results

must be on the stiff side of experimental ones.

Moreover, it can be seen from the table that there is a significant reduction in the global

DOFs and consequently in computational time by utilizing super elements, compared to the

conventional finite elements. As another conclusion, effect of neglecting in-plane deflections on

natural frequencies isn’t considerable in this case.
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Table 2 Natural frequencies of Clamped square stiffened plate with one central stiffener.

Natural Frequency [Hz]
Mode Olson and Hazell [14] Nayak Koko Present Analysis
No. Experiment FEM [13] [9] Q8 Q9 S8 S12
1 689 718.1 725.1 736.8 725.505 724.511 707.236 690.848
2 725 751.4 745.2 769.4 763.367 762.77 748.275 727.726
3 961 997.4 987.1 1020 994.79 987.675 961.085 939.819
4 986 1007.1 993.9 1032 1005.23 998.075 971.994 949.812
5 1376 1419.8 1400.4 1484 1422.5 1402.72 1360.67 1329.34
6 1413 1424.3 1488 1427.02 1407.05 1365.25 1333.47
7 1512 1631.5 1872.59 1876.35 1828.89 1744.42
8 1770 1853.9 1907.33 1916.1 1916.36 1786.69
9 1995 2022.8 2032.46 1995.47 1930.9 1878.21
10 2069 2025 2034.67 1997.53 1933.1 1880.18

Global DOF 1443 1323 1023 651
Run Time [S] 52.6695 41.4733 18.0866 9.7595

3.3 Clamped square plate with two parallel stiffeners

This configuration has first been studied by Olson and Hazell [14] using experimental and

conventional finite element method (Figure 5). Boundary conditions and material properties

are same as the previous example.

Figure 5 Clamped square plate with two parallel stiffeners.

Eigenfrequencies obtained from the present analysis are presented in Table 3 along with

the previous numerical and experimental results.

Again, there are significantly fewer global DOFs used in the super element models than

the conventional finite element models, which leads to considerable reduction in computational

time. Present super elements predictions are almost in agreement with the results obtained

from previous super element results [14]. But there is relatively remarkable difference with the

experimental results. The reason may be

1. Perfectly clamped edges are impossible in practice, so experimental results are lower than

the numerical ones, as said.
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Table 3 Natural frequencies of Clamped square stiffened plate with two parallel stiffeners.

Natural Frequency [Hz]
Mode Olson and Hazel [14]

Koko [9]
Present Analysis

No. Experiment FEM Q8 Q9 S8 S12
1 909 965.3 1072.8 1122.01 1121.63 1072.65 1088.59
2 1204 1272.3 1334.2 1325.21 1326.76 1251.1 1220.83
3 1319 1364.3 1410.3 1391.3 1389.81 1342.93 1226.66
4 1506 1418.1 1483.2 1534.31 1533.32 1459.65 1481.41
5 1560 1602.9 1649.2 1626.98 1626.29 1525.29 1527.97
6 1693 1757.1 1730.5 1662.27 1661.15 1572.39 1548.08
7 1807 1854.1 1937.8 1933.64 1828.38 1851.58
8 1962 2015.4 1983.61 1979.09 1851.79 1863.59
9 2052 2109.4 2000.67 1996.04 1881.87 1882.47
10 2097 2253.1 2457.91 2447.69 2297.87 2105.15

Global DOF 3135 2883 3135 1380
Run Time [S] 758.278 608.478 733.581 56.4338

2. In-plane deflections are neglected in this investigation. With increase in number of

stiffeners these displacements play more important role. Although this simplification

leads to less computational time, can affect results when number of stiffeners increases.

Because in this case deviation of reference surface of whole structure from plate midplane

and consequently first moment of inertia gets more considerable.

Eigenfrequencies from present conventional elements are always on the stiff side of exper-

imental values except for two modes, contrary to what is expected of a displacement based

theory. It is possible that the experimental procedure have not measured the frequencies of

those modes accurately. In the case of super elements, again S8 leads to more acceptable

results, especially for the first three modes. Therefore, the viability of the super element

formulation is clearly exhibited in that most of the super element solutions are close to the ex-

perimental and conventional finite element results, even though this method uses significantly

fewer DOFS.

3.4 Convergence study

The accuracy of numerical calculations depends on the number of the divisions. Convergence

characteristics of the elements used with respect to number of divisions is studied in this

section. The Analysis is performed on a clamped square plate with central stiffener (Figure

4). Results are shown in Figure 6.

It can be seen obviously from the Figure 6 that the conventional elements have faster

rate of convergence compared to super elements. In fact, super elements do not converge

necessarily. Although these elements lead to acceptable results with low number of elements,

recedes from the exact eigenfrequencies with an increase in number of divisions. The reason

may be eliminating internal nodes and making the super element softer. As another conclusion,

2 and 3 elements per bay is needed for analyzing a stiffened plate using the S12 and S8 elements,
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Figure 6 Convergence study of the elements used.

respectively, but in other cases 5 elements should be employed in each bay. The rest of present

calculations are based on mentioned division numbers.

3.5 Effect of eccentricity

To investigate the effect of eccentricity on the free vibration of stiffened plates, a clamped

square plate with one, two and three stiffeners has been analysed for both concentric and

eccentric types (Figure 7). (E = 2.06 × 1011 N
m2 , ν = 0.3, ρ = 7650 kg

m3 )

Figure 7 Clamped square plate with concentric and eccentric stiffeners.

The results obtained from such case are presented in Table 4. The effect of eccentricity on

eigenfrequencies has been observed.

It is interesting to note that the inclusion of eccentricity does not affect the values of

natural frequencies of the clamped plate with merely one stiffener. As the number of stiffeners

increases, effect of eccentricity is more insignificant. Deviation of neutral surface of whole

structure, with respect to which second moments of inertia, should be calculated from mid
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Table 4 Natural frequencies of a clamped square plate with concentric and eccentric stiffeners.

Natural Frequency [Hz]
Stiffener

No.
1 2 3

Mode
No.

Eccentric Concentric Eccentric Concentric Eccentric Concentric

1 131.8507 132.2772 203.8146 202.7164 270.4664 263.0167
2 155.8791 154.4151 254.2835 251.3998 279.7375 277.2788
3 196.5682 197.046 255.8007 253.8769 362.572 358.7522
4 219.5702 218.9409 288.6985 291.2963 380.6867 386.0687
5 296.9567 297.4925 342.6987 342.8742 406.3232 414.3255
6 312.0192 310.6612 362.2659 358.1533 449.9921 447.2937
7 320.108 315.2892 394.7799 398.0341 511.1413 507.8233
8 364.9126 368.3815 430.851 427.1797 512.9898 508.1754
9 428.1735 430.8037 437.438 438.3834 526.6003 537.712
10 431.9031 433.4756 458.5447 455.2726 575.1297 578.5875

plane of the plate may be the reason. It is worth to mention that in the case of concentric

stiffeners the neutral surface is same as the mid plane of the plate.

From the preceding discussion it can be concluded that the consideration of eccentricity

affects the natural frequencies of stiffened clamped plates. But when there is just one stiffener,

the effect of eccentricity can be neglected without any significant loss of accuracy. Whether

this conclusion is true for other boundary conditions or not, needs more investigations.

3.6 Number of stiffeners

The objective of the present example is to study the influence of the number of stiffeners on

natural frequencies of square clamped plates. Dimensions and material properties are the same

as previous section. Number of stiffeners is changed from 0 to 11 and results are summarized

in Figure 8 for the first five modes.

Figure 8 clearly shows that the fundamental frequency is increasing with the increase in

the number of stiffeners, which was expected before. However this increase gradually becomes

insignificant after a critical value of the number of stiffeners, as generally observed for all 5

modes. This critical value is 4 or 5 stiffeners. Based on authors’ point of view the reason is

that, utilizing stiffeners leads to eliminating some mode shapes, so the fundamental frequency

increases. But after this critical value, no mode shape elimination occurs and stiffened plate

acts as a plate with larger thickness. Therefore providing more than four stiffeners is not

recommended based on economical point of view.

3.7 Inclination angle

Improving the vibration or noise characteristics of structures by changing its configuration has

been a subject that has fascinated the minds of engineers and scientists during last decades [1].

In this section, the orientation angle of the stiffener arranged over a clamped square plate is

selected to optimize the dynamic characteristics of these plates/stiffener assemblies (Figure 9).
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Figure 8 Fundamental frequency with respect to number of stiffeners

Figure 9 Schematic figure of a plate with oblique stiffener

The objective is to find the inclination angle (ϕ) for the stiffener arrangement that maxi-

mizes the fundamental frequency of the stiffened plate structure. The first natural frequency

as a function of the stiffener inclination angle is calculated and plotted in Figure 10.

With due attention to Figure 10 an optimum value for inclination angle of 80○ was found to

maximize the fundamental frequency. The presented approach can be invaluable in the design

of stiffened plates for various vibration and noise control applications.

3.8 Practical configurations in ship

Two practical configurations which are used practically in the body of ships are analysed.

These two cases are square clamped plates with one stiffener (Case 1) and with two orthogonal

stiffeners (Case 2) shown in figure 11. The dimensions of the plate and the stiffeners are the

same in both cases. The material properties are similar to the previous example.

Calculations have been performed for different thicknesses. Results are presented in Ta-

bles 5 and 6.
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Figure 10 Optimum inclination angle of the stiffener.

Figure 11 Square clamped plate with two orthogonal stiffeners.

Figure 6 and 7 show that adding stiffener to the plate can increase its natural frequency

significantly, which was predictable. Moreover, form obtained results it seems that natural

frequencies vary linearly with the thickness of the plate.

4 CONCLUSION

The vibration analysis of stiffened plates using both conventional and super elements has

been presented. The capability of placing stiffeners anywhere within the plate element has

enabled the proposed formulation to encounter any configuration of stiffened plates. The

efficiency of the super elements has been examined with different types of problems. The

comparison of the present approach with the existing numerical and experimental results shows

remarkable agreement. Although super elements yield acceptable results in significantly short

time, conventional elements are superior to them according to their convergence characteristics.

As a result, these elements are attractive for preliminary designs and parametric studies, where

repeated calculations are often needed. It is also observed that the fundamental frequency of
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stiffened plates is increasing with the increase in the number of stiffeners up to a specific

number after which there is no appreciable increase in frequency. Moreover, the effect of

neglecting the eccentricity of the stiffeners has been studied in details. It is understood that

for a clamped plate with only one stiffener eccentricity can be neglected with no considerable

change in results. However, effect of eccentricity for more stiffeners should be included. This

paper has also presented a rational design approach to optimize the dynamic characteristics of

stiffened plates. In order to maximize the fundamental frequency, the optimal orientation angle

is found to be equal to 80○. Further works can be undertaken to study hydroelastic analysis

of stiffened panels, which may be important in practical point of view for marine structures.
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