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Abstract 
In this paper, we propose a time domain analytical solution for the 
forced vibration analysis of thick-walled hollow cylinders in pres-
ence of polar orthotropy. In this regard, solution of the governing 
equation is decomposed into two parts. The role of the first one is 
to satisfy boundary conditions utilizing the method of separation of 
variables besides of Fourier series expansion of the non-homogenous 
boundary conditions. The second part has been also expressed as 
the series of orthogonal characteristic functions with the aim of 
satisfaction of initial conditions. The proposed analytical solution 
has been implemented to evaluate the dynamic response of the 
cylinder in solution of some sample problems which are chosen from 
previous studies. 
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1 INTRODUCTION 

The increasing application of thick-walled cylinders subjected to dynamic inner pressure in diverse 
fields such as aerospace engineering, civil engineering and submarine structures has made these 
members of paramount importance. In this regards, so many studies have been done to compute 
time dependent responses of the both isotropic and anisotropic cylinders (Huang, 1969; Keles and  
Tutuncu, 2009; Shakeri et al. 2006; Baba and Keles, 2015; Ghannad and Gharooni, 2015). In most 
of these researches, the time dependency of the governing equation has been eliminated utilizing the 
Laplace transform (Huang, 1969; Keles and  Tutuncu, 2009; Baba and Keles, 2015).  

Recently, Baba and Keles (2015) proposed an analytical solution for the anisotropic hollow cyl-
inders under the internal dynamic pressure in Laplace domain. They also employed the modified 
Durbin's numerical inversion to obtain solution in time. Since the transformation of the dynamic 
response from the Laplace domain to the time domain problems is associated with some difficulties, 
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here the new idea is employed from previous studies (Shamsaei and Boroomand, 2011; Movahedian 
and Boroomand, 2014; Movahedian et al. 2013) to propose an analytical time domain solution for 
the governing differential equation of the mentioned problem. This solution enables us to estimate 
the dynamic responses of the cylinder, i.e. the radial and hoop stresses or radial displacement, with 
desirable accuracy directly in time. 

The layout of the paper is as follows, in the next section, the model used for the dynamic analy-
sis of orthotropic hollow cylinders is described and the governing equations are derived. In section 3, 
the superposition principle is employed to express the solution in terms of two parts. In section 4, 
the proposed solution is applied to cases which were studied by Baba and Keles (2015) in order to 
validate the study. In addition, a problem with non-homogenous initial conditions is included in this 
part. Finally, in section 5, the summary of the conclusions made throughout the paper are provided.  
 
2 PROBLEM STATEMENT 

In this section, the governing differential equation of the vibration of thick-walled hollow cylinder in 

presence of polar orthotropy is derived. Utilizing the axisymmetric conditions, the radial strain, re , 

and tangential strain, qe  are related to radial displacement u , as 
 

, .r
u u
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Considering the polar orthotropy of the cylinder, the stress-strain relation can be expressed as  
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where 11C  and 22C  are the stiffness modules in the radial and circumferential directions and 12C  

is the material parameter that includes the Poisson's effect.  
Consider an element on the thick walled hollow cylinder bounded by lines ( , )r q  and 

( , )r dr dq q+ + . Due to symmetry, the radial and hoop stresses remain constant along angular co-

ordinate, i.e., [ ] 0rs q¶ ¶ =  and [ ] 0qs q¶ ¶ = , and the shear stress component, rqt  , must be 

zero. In this way, equilibrium equation in the radial direction gives,  
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where u  is the displacement component in radial direction that must be found in polar coordinate r  
and time t . Also r and h are the material density and element’s thickness. Figure 1 shows the 

geometry of thick walled hallow cylinder as well as stress component on the specified element in 
polar coordinate. 

Substituting definitions of (1) and (2), in the above relation leads to the following equation, (the 
element’s thickness has been removed from both sides of (3)), 
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in which, 11c C r= and 22 11n C C=  is a non-dimensional parameter that indicates degree of 

anisotropy of material. If the variation of internal and external pressures are respectively expressed 

by functions ()IP t  and ( )EP t , the governing boundary conditions at r a=  and r ka=  can be 

stated as follow 
 

( ), ( ).r I r Er a r ka
P t P ts s

= =
= - =  (5)

 

Aforementioned conditions can be expressed in terms of radial displacement, u , as follow 
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where 11 12C Ca = . The general form of the initial displacement and initial velocity conditions of 

can be satisfied by the following equation 
 

0 00 0
( , ) ( ), ( , ) ( ).

t t
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Figure 1: The geometry of thick walled hallow cylinder in polar coordinate. 

 
3 THE SOLUTION METHOD 

The aim here is to find the time domain analytical solution of the Equation (4) through employing 
Fourier’s series expansion of boundary conditions as well as defining a suitable characteristic prob-
lem to satisfy initial conditions. In this regard, we split the solution into two parts as follows: 
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1 2( , ) ( , ) ( , )u r t u r t u r t= +  (8)
 

In the above relation the role of 1( , )u r t  is to fully satisfy the boundary conditions stated in (6). 

After determining 1( , )u r t , obviously, the task of satisfying the actual initial conditions remains for 

2( , )u r t  which will be explained later. Prior to construction of 1( , )u r t , one should expand the right 

hand sides of conditions in (6) in terms of Fourier series in time; i.e. Fourier sine series as: 
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where N  is the number of the basis functions to be used, i i Tw p= and T is the length of finite 

time interval ( [0, ]t TÎ  instead of [0, )t Î ¥ ). The magnitude of T may be determined by inspec-

tion, i.e. in successive solutions, one can enlarge T until the final solution to u  converges to a solu-

tion for smaller time interval, 1 1[0, ],t T T TÎ < . Utilizing the method of separation of variables 

leads to express 1( , )u r t  in the following form:  
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where 1, ( )iu r  is the solution to the following ordinary differential equation which comes from substi-

tuting (11) in Equation (4). 
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The aforementioned equation is known as the Bessel differential equation of order n . The solu-
tion of which can be expressed as the combination of the Bessel function of the first kind, 

( )n iJ r cw , and the second kind, ( )n iY r cw . In other words, the solution can be stated as 
 

1, 1, 2,( ) ( ) ( )i i n i i n iu r c J r c c Y r cw w= +  (13)
 

The constant coefficients 1,ic  and 2,ic  in the above relation are determined by satisfaction of the 

radial stress boundary conditions at r a=  and r ka=  in (6) as 
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Finally, after doing some simplifications, 1( , )u r t  is therefore written as 
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where  
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At this point, the second part of relation (8) must be determined. In this regard, the method of 
separation of variables is applied by substituting  
 

2 2( , ) ( ) ( )u r t u rT t=  (21)
 

in (4) which yields:  
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where 2b-  is the separation constant. The solutions of the two separated ordinary differential 

equations in (22) for 2( )u r  and ( )T t  are respectively expressed as: 
 

2 3 4( ) ( ) ( )n nu r c J r cY rb b= +  (23)
 

and 
 

( ) sin cosT t a c t b c tb b= +  (24)
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In order to determine the unknown coefficients of 3c , 4c  and b, a characteristic problem must 

be formed by substituting (21) in the homogenous form of stress boundary conditions, i.e.,

( ) ( ) 0I EP t P t= =  in (6), which results in following system of algebraic equations, 
 

bA C=0  (25)
 

In the above relation, bA  is a 2 2́ matrix depending on b, and C is a 2 1´  vector containing 

the coefficients of 3c  and 4c. The components of bA  are: 
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To have non-trivial solution to (25), the determinant of A   is set zero. 
 

0.b =A  (27)
 

The above mentioned issue a non-standard eigenvalue problem which should be solved for b. 

Moreover, by substituting the roots of (27), i.e. , 1,2,...j jb =  in (25), the corresponding null space 

, 1,2,...j j =C with components 3,jc and 4,jc , have been computed. In this way, the second part of 

the ( , )u r t  is therefore written as 
 

2 2,
1

s( , ) ( ) in cos ,j j j

M

j
j

ja c t b cr r tu t u b b
=

é ù´ +ê úë û= å  (28)

 

in which 3,2 ,, 4( ) () )( j nj j j n jc J ru r c Y rb b+=  and ( , )j ja b  denote a set of new unknown coefficients to 

be determined by satisfying the initial displacement and velocity conditions in (7). Utilizing the 

orthogonality of the set 2, ( )ju r  with respect to weight function ( )w r r= , (See Hildebrand (1976), 

for more details on the properties of Strum-Liouville problems), these coefficients have been deter-
mined by inserting (28) and (11) in (7) as follows 
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In this way, the radial displacement of a thick-walled cylinder can now be written as: 
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4 RESULTS AND DISCUSSIONS 

The proposed method has been used for both homogenous and nonhomogeneous initial displacement 
conditions. In the both cases the specifications of orthotropic hollow cylinder are taken form  Baba 

and Keles (2015), as 11 1C = , 1r = , 1a =  and 2ka = . Moreover, the analytical solution in (31) 

has been computed using the first 100 terms of the series of 1( , )u r t  with 8 0T =  for the Fourier sin 

series expansion of ()IP t  in (9), and the first 100 terms of the series of 2( , )u r t , i.e. 1 0 0M = . In 

Table 1, the first 15 sets of eigenvalues, jb , and ratio of the components of the related eigenvector, 

jC , have been provided for three types of material with different degrees of anisotropy. 

 
n = 0.5, α = 3 n = 2, α = 2 n = 1, α = 2 

j βj c3,j / c4,j βj c3,j / c4,j βj c3,j / c4,j 

1 0.25992 -0.91437 1.34969 -0.46413 0.61059 -0.92914 
2 3.16786 -12.65974 3.45185 0.11203 3.20507 1.46431 
3 6.29641 -25.17978 6.43419 -0.35032 6.31359 1.19987 
4 9.43361 -37.73051 9.52479 -0.52919 9.44485 1.12786 
5 12.573 -50.28905 12.6412 -0.62901 12.58137 1.0941 
6 15.71327 -62.85071 15.76776 -0.69341 15.71994 1.07447 
7 18.85398 -75.41394 18.89936 -0.73859 18.85953 1.06163 
8 21.99494 -87.97806 22.03382 -0.77208 21.99969 1.05257 
9 25.13606 -100.54275 25.17007 -0.79793 25.14021 1.04583 
10 28.27728 -113.10781 28.30751 -0.81849 28.28097 1.04063 
11 31.41858 -125.67314 31.44578 -0.83525 31.4219 1.03649 
12 34.55993 -138.23865 34.58466 -0.84916 34.56295 1.03311 
13 37.70132 -150.80431 37.72399 -0.8609 37.70409 1.03031 
14 40.84274 -163.37007 40.86367 -0.87095 40.8453 1.02794 
15 43.98419 -175.93592 44.00362 -0.87964 43.98656 1.02592 

Table 1: Results of the first 15 sets of the non-standard eigenvalue problem  
in (25) for three anisotropy's types of the material. 
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In the case of homogenous initial conditions, three different dynamic inner pressure functions 

were considered as ( ) 1IP t = , ( ) 1 exp(0.8 )IP t t= -  and ( ) 1 cos(0.8 )IP t t= -  to validate results 

with those stated in Baba and Keles (2015) (The variations of outer pressure was not considered in 

the mentioned reference, i.e. ( ) 0EP t = ). In this regards, the variation of radial displacement, 

( , )u r t , and hoop stress, ( , )r tqs  at r a=  are illustrated in Figures 2 to 4. As can be seen, the 

results of in Baba and Keles (2015) and presented method follow similar trends in evaluation of 

both ru and qs . 

 
 

(a) (b) 

Figure 2: Variation of (a) ( , )u a t and (b) ( , )a tqs  due to ( ) 1IP t =  for three different degrees of anisotropy. 

 
 

(a) (b) 

Figure 3: Variation of (a) ( , )u a t  and (b) ( , )a tqs  due to ( ) 1 exp(0.8 )IP t t= -   

for three different degrees of anisotropy. 
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(a) 

(b) 

Figure 4: Variation of (a) ( , )a tu  and (b) ( , )a tqs due to ( ) 1 cos(0.8 )IP t t= -   

for three different degrees of anisotropy. 

 
As mentioned previously, the presented analytical solution is able to predict dynamic response 

of the hollow cylinder even in presence of nonhomogeneous initial and external pressure boundary 
conditions. In this regards, the second sample problem has been chosen to investigate the forced 
vibration of the orthotropic cylinder due to following variations of the inner and outer pressures, 
 

( ) 1 cos(0.8 ), ( ) 1I EP t t P t= - =  (32)
 

The initial displacement and initial velocity conditions are also considered as follows: 
 

2 2
0 0( ) ( ) ( ) , ( ) 0u r r a r k a u r= - - =  (33)

 

Figure 5 depicts the variations of ( , )r r ts and ( , )r tqs  within the thickness of the cylinder with

0 .5n =  and 3a=  at two time steps 2t =  and 5t = . 
In order to provide design criteria from the standpoint of fatigue of orthotropic cylinders, the 

variations of ( , )a tqs and ( , )ka tqs are illustrated in Figure 6 for three different degrees of anisotro-

py. As can be seen, increasing degrees of anisotropy, n , will result in an increase in the frequency of 
cylinder's response 
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(a) (b) 

(c) (d) 

Figure 5: Variation of (a) ( ,2)r rs , (b) ( ,5)r rs , (c) ( ,2)rqs and (d) ( ,5)rqs  within the cylinder’s thickness. 

 

 

(a) (b) 

Figure 6: Variation of (a) ( , )a tqs , (b) ( , )ka tqs  due to ( ) 1 cos(0.8 )IP t t= -   

and ( ) 1EP t =  for three different degrees of anisotropy. 
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5 CONCLUSIONS 

In the present study, a semi analytical time domain solution has been proposed for the governing 
equation to the vibration of thick-walled hollow cylinder in the presence of polar orthotropy. The 
effects of different material properties and internal pressure variations on the dynamic responses of 
hollow cylinder have been investigated. The sufficient accuracy of the presented method has been 
also illustrated in comparison of the obtained results with those reported in Baba and Keles (2015). 
Finally, the superiorities of the presented solution can be listed as follows: 
 

 Employing the analytical solution, the dynamic response of the cylinder can be evaluated di-
rectly in time with no need to use any transformation such as inverse Laplace transform. 

 The proposed scheme can be used to evaluate dynamic response of polar orthotropic cylinders 
in presence of exterior pressure or non-homogenous initial conditions, which may be useful for 
designing purposes. 

 The presented method can be extended to evaluate transient response of the pipe conveying 
fluid due to internal and external temperature variations. 
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