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Abstract 
As extension of the previous two-surface model in plasticity, a 
two-surface model for viscoplasticity is presented herein. In order 
to validate and investigate the performance of the proposed model, 
several numerical simulations are undertaken especially for struc-
tural steel under monotonic and cyclic loading cases, where exper-
imental results and numerical results from the rate dependent 
kinematic hardening model are also provided for the reference. For 
all the cases studied, the proposed model can appropriately ac-
count for the rate-effects in both maximum stress and hysteretic 
shapes. 
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1 INTRODUCTION 

The general description of material nonlinearity primarily concerns a constitutive equation. Essen-
tial ingredients to establish this constitutive equation can be characterized by yield surface (or yield 
stress function), plastic flow rule, normality rule and hardening law- the yield surface divides the 
elastic and plastic region; the flow rule relates the plastic strain to stress state; the normality rule 
leads the incremental plastic strain to the normal level of the yield surface; the hardening law de-
scribes the plastic evolution. While the classical rate independent plasticity (so called plasticity) is 
often illustrated by a single yield surface with either isotropic hardening or kinematic hardening, 
these models can not completely express the hardening behavior of material. In particular, in the 
single yield surface model, the elastic domain is considered to be too large compared to experiment 
results and it is difficult to describe sudden changes from elastic to plastic or plastic to elastic region 
(Chaboche (2008)). Also, it cannot solely account for cycle-by-cycle accumulation of permanent 
deformation (ratcheting), which often happen in engineering practice (Bari and Hassan (2008)). In 
order to account for more realistic response of plasticity, previously, two-surface and multiple yield 
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surface models have been developed by Mroz (1967), Dafalias and Popov(1975), Krieg (1975), and 
Banerjee et al. (1987), where key ideas reside in combining the kinematic and the isotropic harden-
ing rules. Among these models, Dargush and Soong (1995) tested the two-surface model by Banerjee 
et al. (1987) with application to metallic plate dampers, which shows excellent agreement to exper-
imental force-displacement data provided by Tsai et el (1993).  

For much elaborate description of material nonlinearity with consideration of strain/stress rate 
effects under various loading conditions like monotonic, cyclic, and more complex transient dynamic 
loadings, there have been numerous researches especially for the development of rate-dependent 
plastic material models and their practical applications in engineering problems. For examples, 
Bodner and Partom (1972) established a theory of rate-dependent plasticity (or viscoplasticity); 
Chaboche (1977, 1989) developed a viscoplastic constitutive model with nonlinear kinematic harden-
ing- this model is applied to the 316 stainless steel under cyclic loading and creep relaxation 
[Chaboche and Rousselier (1983b)]. Later, it is also used for the simulation of ratcheting [Chaboche 
(1991)]; McDowell (1992) developed viscoplastic nonlinear kinematic hardening model under ther-
momechanical cyclic conditions, while Tanaka (1994) developed a viscoplastic constitutive model 
under non-proportional loading; Ohno and Wang (1993) modified Armstrong-Frederick model 
[Chaboche (1986)] with dynamic recovery term. Tanaka and Yamada (1993), Abdel-Karim and 
Ohno (2000) continued with this study especially on the nonlinear kinematic hardening model with 
steady-state ratchetting, while Chaboche-type nonlinear kinematic hardening models for ratchetting 
are investigated by McDowell (1995), Kang et al. (2001), Kang et al. (2002), Kang el al. (2004), 
Yaguchi and Takahashi (2000), Yaguchi and Takahashi (2005), and Kang et al. (2006). Main differ-
ences in such various viscoplastic models and the classical rate-independent plasticity can be de-
scribed by overstress and time-dependent behavior. Thus, while elastic strain and strain hardening 
rules in the viscoplasticity are the same as those in the classical rate-independent plasticity, the 
stress state goes beyond the elasticity domain whereas this overstress is not allowed in the classical 
rate-independent plasticity. Also, the viscoplasticity model can describe creep phenomenon (time 
dependent irreversible deformation for long term response), and it can account for the rate of load-
ing in strain-stress responses, which may become a major issue for earthquake excitation and high 
velocity impact.  

In this paper, we extend the rate independent two-surface model by Banerjee et al. (1987) to 
the rate dependent two-surface model with consideration of rate-effects. The proposed model is then 
implemented in commercial finite element software ABAQUS (2008) by using a user subroutine 
(UMAT), and some representative examples are considered to elucidate the features of the proposed 
model.  
 
2 A RATE INDEPENDENT TWO-SURFACE PLASTICITY MODEL 

In the plasticity, a total strain at a given stress can be decomposed into two parts, which corre-
spond to an elastic strain and plastic strain. For the multiaxial case, this can be generalized as a 
rate-form as 
 

e p
ij ij ije e e= +    (1)
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with the superposed dot indicating a derivative with respect to the time. Thus, eije  and p
kle  repre-

senting the elastic strain rate and the plastic strain rate. 

In Eq. (1), the elastic strain rate eije  is related to a stress rate ijs  with a fourth-order elastic 

constitutive tensor e
ijklC  as 

 

e e
ij ijkl klCs e=   (2)

 

With Eq. (1), Eq. (2) can be equivalently written as 
 

( )pe
ij ijkl kl klCs e e= -   (3)

 

As in the classical rate-independent plasticity, the evolution of plastic strain ( p
ije ) and that of 

yield stress function (or yield surface) are decided by flow rules and hardening laws in the two-
surface model. However, this time, there are two yield surfaces, where the kinematic yield surface 
(or loading surface) in principal stress axes resides inside the isotropic yield surface (or bounding 
surface) as shown in Figure 1.  
 

 

Figure 1: A two-surface model in the rate-independent plasticity. 

 
For the isotropic material, the constitutive relation in this two-surface model of plasticity is 

identifed as 
 

2ij ij kk ijs ld e me= +   (4)
 

in a rate-form of elastic response, where a stress point moves until it reaches the inner yield surface 
and strains are fully recoverable. Also, when the stress state stays on the inner yielding surface but 
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resides inside the outer yielding surface (this is usually called transition region or the meta-elastic 
region), this rate-constitutive relation becomes 
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Further, as the stress state becomes larger, the inner yield surface continuously approaches to 
the bounding surface and it finally touches the bounding surface and make this bounding surface 
expand. For this case, the rate-constitutive relation becomes 
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In Eqs. (4)-(6), l  is lame’s first parameter; m  is shear modulus; L
ys  is the inner yield stress; 

B
ys  is the outer yield stress; ijS  is the deviatoric stress; ijS  is ij ijS a- representing the deviatoric 

stress minus the back stress; 
12

2

nB
yp B
B
y

H h
s x

s

æ ö- ÷ç ÷ç= ÷ç ÷ç ÷÷çè ø
is an isotropic hardening modulus dependent on 

parameters B B B
0 1h ( h h ),B

ys= + 0
Bh , 1

Bh , 1n , and ij ijx x x= . Here, we only summarize main formu-

lation for the rate-independent two-surface plasticity model. Interested readers can refer to Banerjee 
et al. (1987), Chopra and Dargush (1994), and Sant (2002). 

As described in Figure 1, geometrically, the kinematic hardening of the inner yield surface de-
pends on a vector that joins the stress state to the bounding surface, ijx . The location of AB is de-

termined by drawing a vector O'AAB parallel to OA, B
ijs . The direction of ij is then determined to 

be paralled to AAB. The inner surface, which separates the elastic range and inelastic range, is 

composed of its center and radius expressed by the back stress ( ija ) and inner yield stress ( L
ys ). 

Meanwhile, the outer surface, which always contains the inner yield surface, is located on the center 

of stress space with a radius represented by the outer yield stress ( B
ys ). The translation of inner 

surface corresponds to kinematic hardening, while the expansion of outer surface produces isotropic 
hardening.  
 
3 A RATE DEPENDENT TWO-SURFACE MODEL 

3.1 Formulation 

Unlike earlier single yield surface models in viscoplasticity that assume all inelastic strain to be rate 
dependent, in a present two-surface model, the inelastic strain is divided into rate-independent and 
rate-dependent parts as  
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in p vp
ij ij ije e e= +    (7)

 

with inije  and vpije  representing the inelastic strain-rate and the viscoplastic strain-rate, respectively. 

In the past, the above approach had been proven to be effective when accounting for the hyste-
resis loop with the rounded corners in stress-transition from elastic to inelastic or vice versa [Brad-
ley and Yuen (1983 ); Tirpitz and Schwesig (1992); Lubliner (2008)]. In addition, as in the existing 
two-surface plasticity model, a present two-surface viscoplasticity model utilizes the following yield 
functions such as  
 

3
:

2y y

L L
L e ij ijg S Ss s s= - = -  (8)

 

and 
 

3
:

2y y

B B
B e ij ijg S Ss s s= - = -  (9)

 

depending on kinematic hardening and isotropic hardening rules.  Here, es  is the von Mises effec-

tive stress and the symbol “:” designates the product contracted twice. Thus, three separate regions 
in Figure 1 are identified with these yield functions: Lg  < 0 (elasticity); Lg  > 0 and Bg  < 0 (meta-

elasticity); Bg  > 0 (both kinematic and isotropic hardening rules are effective). Once the stress-

state is identified with these criteria, each portion of the inelastic strain is given by flow rule and 
nomality hypothesis: 
 

p I

ij

g
e l

s
¶

=
¶
   where  or I B L  (10)

 

vp I

ij

g
pe

s
¶

=
¶

    where  or I B L=  (11)

 

In Eq. (10), the magnitude of the plastic strain increment l  can be decided by the consistency 
condition 0I Ig g= = . Otherwise, the magnitude of the viscoplastic strain increment p  is deter-

mined from a potential j   
 

( , , )Bij ij yp j s a s=  (12)
 

that is the function of the stress ijs , the back stress ija , and the magnitude of bounding surface 

B
ys . 

With adoption of the hyperbolic sine function for j  (Dunne and Petrinic, 2005), p  can be ex-

plicitly written as 
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2
2 3

sinh ( ) sinh :
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   (13)

 

In Eq. (13), C and B represent material parameters associated with viscosity. Also, 2n  is a con-

trolling parameter for strain-rate sensitivity [Bodner and Partom (1972), Chaboche (1989)] and ijS
  

represents the deviatoric stress that can be either ijS  or ijS .  

Thus, the viscoplastic strain rate is identified as 
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and consequently, the inelastic strain is given by  
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Overall, in the present two-surface viscoplasticity model, the consitutive relation of isotropic 
material results in 
 

2ij ij kk ijs ld e me= +   (16)
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for the elastic response, kinematic hardening response, and both kinematic and isotropic hardening 
response, respectively. 
 
3.2 Finite Element Implementation 

The present two-surface model for viscoplasticity was implemented by a user subroutine (UMAT) 
in the ABAQUS (2008). Once the small increment of strain is given, new updated state variables 
such as stress, back stress, plastic strain, viscoplastic strain are obtained by integrating the consti-
tutive equations. For this numerical simulation, a higher-order adaptive step size Runge-Kutta 
method is also used to integrate the constitutive equations until a high level of accuracy is obtained. 
All the equations are expressed by incremental form, which are easily implemented in the Fortran 
source code. Resulting equations become 
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1 12n n n
ij ij ijS S em+ += + D  (19)

 

1 1 11

3
n n n
ij ij ij kkSs d s+ + += +  (20)

 

1

3
n n n
ij ij ij kkSs d s= +  (21)

 

1

3
n n n
ij ij ij kke e d e= -  (22)

 

where eij  is deviatoric strain tensor, and n and n+1  represent time-steps.  
Subtracting Eq.(21) from Eq.(20) with the strain decomposition, and the relationship between 

strain and deviatoric strain in Eq.(22), one finds 
 

1 1 1 1
2

3 3 3 3
p vpp vp

ij ij ij kk ij ij kk ij ij kk ij kks m e d e e d e e d e d s
æ ö÷çD = D - D -D + D -D + D ÷ + Dç ÷ç ÷è ø

 (23)

 

Using a plastic flow rule and viscoplastic flow rule, Eq.(23) yields 
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Finally, one can obtain the following incremental formulation. 
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(25)

 

Eq. (25) is numerically into the commercial finite element code, ABAQUS, where a certain iter-
ation scheme is introduced to solve nonlinear equations at the element and global system level 
(Bathe and Cimento (1980)). The following is a brief explanation about how the nonlinear solver 
works (here, subscript indices are omitted to avoid complexity). First, all the variables are initial-

ized with corresponding time-step. Then, the solution ( tU , nodal displacements) and other internal 

variables such as strain ( te ) and stress ( ts ) are stored at time (t), where the iteration counter (i) is 
fixed as 1. Variables at the time-step of (t+ t ) are calculated and updated through iterations with 
convergence criteria and/or a maximum number of iterations.  

For example, the stress is updated from a known converged solution as 
 

1 1
t t

t t i t t t i

t
C ds s e

+D+D - +D -= + ò  (26)
 

At the element level, the tangent constitutive matrix ( 1t t iC+D - ) is updated with a certain itera-

tive scheme, and consequently, the global stiffness matrix ( 1t t iK+D - ) and nodal force vector 

( 1t t iF+D - ) corresponding to the interanl element stresses ( 1t t is+D - ) are computed by using a gauss-
ian quadrature for each element’s integration and collecting them in the following manner.  
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1 1
e

t t i T t t i

V
e

K B C BdV+D - +D -= å ò  (27)

1 1
e

t t i T t t i

V
e

F B dVs+D - +D -= å ò  (28)

 
At the global system level, the solution is obtained in terms of the incremental nodal displace-

ments ( iUD ) by solving the following set of equations 
 

1 1t t i i t t t t iK U R F+D - +D +D -D = -  (29)

 

with t tR+D  representing the externally applied nodal force vector to the time-step, t+ t . In solv-

ing the global solution of incremental displacement 1i iU- D , interative scheme is also utilized to 

update 1t t iK+D -  along with convergence criteria and/or a maximum number of iterations. Finally, 
the numerical solution of displacements at the time-step (t+ t ) is updated by 
 

1t t i t t i iU U U+D +D -= + D  (30)
 
and strains are calculated from these updated displacements. 

In the present work, we adopt the Cash-Karp method (one of embedded Runge-Kutta methods) 

as the iterative method for updating 1t t iC+D - , while the Newton-Raphson iterative method is used 

to solve the global system equation with updating 1t t iK+D - .   
 
4 NUMERICAL EXAMPLES 

In this section, we verify the present two-surface model for viscoplasticity with representative ex-
amples including both monotonic and cyclic loading cases, where both experimental results by 
Chang (1985) and numerical simulation results by the kinematic hardening model are provided for 
the reference.  
 
4.1 Experimental Results 

For the monotonic loading case, Chang experimentally tests A36 structural steel with three differ-
ent strain rates of 10-3/sec, 10-4/sec, and 10-5/sec, in each of which loading was increased until 2% 
axial strain was achieved. Also, in cyclic tests, there are four different types of loading as shown in 
Figure 2, where all the specimen were loaded in the axial direction and the loading continued until 
it was stabilized. In particular, for the case 1 and the case 2, the loading was increased until 0.8% 
axial strain was attained, while the loading was increased until 0.6%, 1.2%, and 1.5% axial strain 
were obtained for the case 3 and the case 4. 

Figure 3-Figure 6 show experimental results of axial stress and axial strain for each loading case, 
where results from the loading type 3 and the loading type 4 are separately provided for the sake of 
clarification. 
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(a) Strain rate of 10-4/sec (Loading Type 1) (b) Strain rate of 10-2/sec (Loading Type 2) 

(c) strain rate of 10-4/sec (Loading Type 3) (d) strain rate of 5 x 10-3/sec (Loading Type 4) 

Figure 2: Cyclic loading cases. 

 
As shown in Figure 3, three different values of maximum were observed in the monotonic test: 

32.5 ksi after initial peak (strain rate 10-3/sec); 30ksi (strain rate: 10-4/sec); 28.5 ksi (strain rate: 10-

5/sec). This indicates that the faster strain rate gives the higher stress after yielding. Also, it is ob-
served that the higher strain rate gives the longer plastic plateau and strain hardening effects are 
negligible in these monotonic tests. With reference to the strain rate of 10-5/sec, the yield stress at a 
strain rate of 10-4/sec was increased by 5%, and the yield stress at strain rate of 10-3/sec was in-
creased by 14%.  

For cyclic tests as shown in Figure 4~Figure 6, the plastic plateau is no longer observed, how-
ever, again, the faster strain rate yields the higher stress. In particular, maximum stresses in the 
loading type 1 (10-4/sec) and the loading type 2 (10-2/sec) are given by 38.5 ksi and 40.8 ksi, respec-
tively. Also, for the loading type 3 (10-4/sec) and the loading type 4 (strain rate: 5 x 10-3/sec), max-
imum stresses are identified as: 34 ksi and 37.5 ksi at the 0.6% axial strain; 39 kis and 42.1 ksi at 
the 1.2% axial strain; 39 ksi and 44.7 ksi at the axial 1.5% strain. 
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Figure 3: Experimental results under monotonic loading. Figure 4: Experimental results under loading type 1 & 2. 

 

  

Figure 5: Experimental result under loading type 3. Figure 6: Experimental result under loading type 4. 

 
4.2 Numerical Simulation Results 

With a user subroutine (UMAT) in the ABAQUS, both rate-dependent nonlinear kinematic hard-
ening model two-surface models are implemented by the authors. For fair comparison between these 
two models, we employ one four-node bilinear axisymmetric element (CAX4) for the cylinder-type 
specimen in every numerical simulation examples, as shown in Figure 7. Also, in numerical simula-
tion, Newton-Raphson method is adopted with fixing the maximum number of iteration as 1000 
and incremental displacement as 10-9 under such conditions, we checked that all the numerical solu-
tions satisfy convergence criteria of residual force (less than 10-5) and displacement (less than 10-8), 
respectively. 
 

  

(a) Geometry of specimen (b) Finite element (CAX4) 

Figure 7: Specimens and analytical models. 
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4.2.1 Nonlinear Kinematic Hardening Model 

The main difference between the developed two-surface model and the nonlinear kinematic harden-
ing model [Chaboche, 2008] for the rate-dependent plasticity is that von Mises yield surface cannot 
expand in the nonlinear kinematic hardening model, while the developed two-surface model allows 
both expansion and translation of von Mises yield surface. In addition, in the developed two-surface 

model, we differentiate inelastic strain as the rate-dependent ( vp
ije ) and the rate-independent part 

( p
ije ) as in Eq. (7). Thus, we have the following equations for the nonlinear kinematic hardening 

model  
 

3

2
ijvp

ij
ij e

Sg
p pe

s s
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= =
¶
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whereas the developed two-surface model has Eqs. (15)-(18).  

In numerical simulation of the nonlinear kinematic hardening model, we take material proper-
ties and parameters as shown in Table 1. 
 

Young's modulus(E): 28,500 ksi(196,500 MPa), Poisson's ratio ( ) : 0.35 

Yield stress( y ): 30 ksi (206.84 MPa) 

Material parameters of the hyperbolic sine function:  C=  1.E+2;   B=  1.E-8;   n2 = 5.0 

Table 1: Material properties and model parameters employed in the kinematic hardening model. 

 
As shown in Table 1, the yielding stress is specified as 30 ksi (206.84 MPa) for A36 steel, and 

this value is adopted in numerical simulation with calibration of experimental results from Chang 
(1985).  

Figure 8-Figure 10 show numerical simulation results obtained from the kinematic hardening 
model. In Figure 8, maximum stress is computed as 32.3 ksi (strain rate 10-3/sec), 30ksi (strain rate: 
10-4/sec), and 28.6 ksi (strain rate: 10-5/sec) for the monotonic loading. Also, in cyclic tests, we have 
maximum stress of 45.6 ksi (loading type 1) and 46.4 ksi (loading type 2). For the other loading 
types, maximum stresses at each axial strain are obtained as: 33.52 ksi (loading type 4) and 33.51 
ksi (loading type 3) at the 0.6% axial strain; 41.8 ksi (loading type 4) and 41.7 ksi (loading type 3) 
at the 1.2% strain; 46.9 ksi (loading type 4) and 42.2 ksi (loading type 3) at the 1.5% strain.Thus, 
compared to experimental results, one can check that the nonlinear kinematic hardening model 
yields reasonably good results in terms of maximum stress for every case. However, this model gives 
almost linear shape of hysteresis in every stress-strain response that is not well matched to experi-
mental results. 
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Figure 8: Numerical results under monotonic loading (nonlinear kinematic hardening model). 

 

 

Figure 9: Numerical results under cyclic loadings of type 1 and type 2 (nonlinear kinematic hardening model). 

 

 

Figure 10: Numerical result under cyclic loadings of type 3 (nonlinear kinematic hardening model). 
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Figure 11: Numerical result under cyclic loadings of type 4 (nonlinear kinematic hardening model). 

 
4.2.2 Two-Surface Model 

For numerical simulation of the two-surface model, basically, the same parameters in Table 1 are 
utilized. Additional parameters adopted in numerical simulation to account for combined effects of 
both kinematic nd isotropic hardening are summarized in Table 2. In particular, both inner yielding 
stress and outer yielding stress are introduced here instead of a single yielding stress. Again, every 
parameter in Table 2 is calibrated from experimental results by Chang (1985), here.  
 

Young's modulus(E): 28,500 ksi(196,500 MPa), Poisson's ratio ( ) : 0.35 

Inner yielding stress ( L
ys ) = 30 ksi (206.84 MPa) 

Outer yielding stress ( B
ys ) = 60.91 ksi (420MPa) 

Hardening parameters: BH 0  = 1650 MPa;   Bh1 = -8.47;    n1 = -10.4 

Material parameters of the hyperbolic sine function: C = 1.E+2;   B= 1.E-8;   n2 = 5.0 

Table 2: Additional material properties and model parameters adopted in the two-surface model. 

 
Figure 12-Figure 15 show numerical simulation results obtained from the two-surface model. 

For the monotonic loading test as shown in Figure 12, numerical results from the two-surface model 
are exactly the same as those from the rate dependent nonlinear kinematic hardening model. This 
may indicate that magnitude of the loading and rate of the loading are not large enough to make 
every response go beyond the outer yielding surface. On the other hand, for cyclic tests, where every 
response occurs beyond the inner and outer yielding surfaces, the two-surface model is more appro-
priate than the kinematic hardening model in accounting for both shape of hysteresis and maximum 
stress values. Thus, for the loading type 1 and the loading type 2, we have maximum stress of  MPa 
(42.5ksi) and Mpa (44.9ksi). Also, for the loading type 3 and the loading type 4, maximum stresses 
at each axial strain are obtained as: 33.5 ksi (loading type 4) and 37.5 ksi (loading type 3) at the 0.6% 
axial strain; 41.8 ksi (loading type 4) and 42.1 ksi (loading type 3) at the 1.2% strain; 46.9 ksi (load-
ing type 4) and 44.7 ksi (loading type 3) at the 1.5% strain. All these maximum stresses are much 
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closer to experimental results, compared to those from the nonlinear kinematic hardening model. 
Also, for all the cases, the two-surface model gives reasonably good rounded shape of hysteresis as 
detected in experiments.  
 

 

Figure 12: Numerical results under monotonic loading (two-surface model). 

 

 

Figure 13: Numerical results under cyclic loadings of type 1 and type 2 (two-surface model). 

 

 

Figure 14: Numerical result under cyclic loadings of type 3 (two-surface model). 
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Figure 15:  Numerical result under cyclic loadings of type 4 (two-surface model). 

 
5 CONCLUSIONS 

In this paper, we develop a two-surface model for rate-dependent plasticity as an extension of the 
two-surface model in the rate-independent plasticity by Banerjee et al. (1987). The model combines 
both isotropic and kinematic hardening rules, where the constitutive relation is modified to account 
for rate-effects. In particular, this model has three separate regions with two bounding surfaces. 
Thus, when the stress remains in the lower bound, the response is elastic. Also, when stress exceeds 
the upper bound, the response shows both kinematic and isotropic hardening. In the middle range 
where the stress resides beteween the lower bound and the upper bound, the response only follows 
the kinematic hardening rule. With use of a subroutine UMAT, the present model is implemted in 
the commercial finite element software, ABAQUS. Then, this model is validated through both 
monotic and cycling loading cases with comparison to experiments and the nonlinear kinematic 
hardening model. The present model shows excellent agreement with experiments in both maximum 
stress and shape of hysteresis, while the nonlinear kinematic hardening model is not suitable to 
account for the shape of hysteresis.  
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