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Recent developments of some asymptotic methods and their
applications for nonlinear vibration equations in engineering
problems: A review

Abstract

This review features a survey of some recent developments

in asymptotic techniques and new developments, which are

valid not only for weakly nonlinear equations, but also for

strongly ones. Further, the achieved approximate analytical

solutions are valid for the whole solution domain. The lim-

itations of traditional perturbation methods are illustrated,

various modified perturbation techniques are proposed, and

some mathematical tools such as variational theory, homo-

topy technology, and iteration technique are introduced to

over-come the shortcomings.In this review we have applied

different powerful analytical methods to solve high nonlin-

ear problems in engineering vibrations. Some patterns are

given to illustrate the effectiveness and convenience of the

methodologies.
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1 INTRODUCTION

Most of engineering problems, especially some oscillation equations are nonlinear, and in most

cases it is difficult to solve such equations, especially analytically. Recently, nonlinear oscillator

models have been widely considered in physics and engineering. It is obvious that there are

many nonlinear equations in the study of different branches of science which do not have

analytical solutions. Due to the limitation of existing exact solutions, many analytical and

numerical approaches have been investigated. Therefore, these nonlinear equations must be

solved using other methods. Many researchers have been working on various analytical methods
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for solving nonlinear oscillation systems in the last decades. Perturbation technique is one the

well- known methods [3, 11, 34, 37, 39, 85], the traditional perturbation method contains

many shortcomings. They are not useful for strongly nonlinear equations, so for overcoming

the shortcomings, many new techniques have been appeared in open literatures.

It should be mentioned that several books appeared on the subject of mathematical meth-

ods in engineering problem during the past decade [10, 48, 54, 77, 113, 125, 133, 137, 144–

146, 180, 186, 187].

The aim of this article is to review the recent research on the approximate analytical

methods for nonlinear vibrations. The applications of these methods have been appeared in

open literatures in the last three years. There are hundreds of published papers too numerous to

refer to all of them, but for the purpose of filling the gaps in the present summary, Refs[14, 15,

28, 30, 36, 40, 47, 55, 66, 75, 76, 83, 88, 89, 94, 142, 166, 170, 173, 178, 192, 193, 210, 217]may

offer good help in overcoming the inevitable shortcomings in a condensed presentation. To

show the efficiency and accuracy of the methods some comparisons have done with the results

obtained by those methods and numerical methods and they are valid for whole domain. Some

of the ideas first appeared in this review article, and most cited references were published in

the last three years, revealing the most emerging research fronts. In this review, the basic

idea of each method is presented then some examples are illustrated and discussed to show the

application of these methods.

2 PARAMETERIZED PERTURBATION METHOD (PPM)

Recently, nonlinear oscillator models have been widely considered in physics and engineering.

Study of nonlinear problems which are arisen in many areas of physics and also engineering

is very significant for scientists. Surveys of the literature with numerous references have been

given by many authors utilizing various analytical methods for solving nonlinear oscillation

systems. Non-linear problems continue to be as a challenge, and heed has mainly concentrated

on qualitative changes of systems bifurcations and instability. Parameterized Perturbation

Method (PPM) is one of the well-known methods for solving nonlinear vibration equations.

The method was proposed in by He in 1999 [80].It was rarely used recently, but this method is

a kind of powerful tool for treating weakly nonlinear problems, but they are less effective for

analyzing strongly nonlinear problems [37, 50, 86, 92, 115, 160].

2.1 Basic idea of Parameterized Perturbation Method

For the nonlinear equation L(u) +N(u) = 0, where L and N are general linear and nonlinear

differential operators respectively, a linear transformation can be introduced as:

u = εν (1)

We can assume that ν can be written as a power series in ε,as following

ν = ν0 + εν1 + ε2ν2 + ..., (2)
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And

ν = lim
ε→1

ν = ν0 + ν1 + ν2 + ν3 + ... (3)

2.2 Application of Parameterized Perturbation Method

Two examples have considered showing the applicability of this method.

Example 1

Consider the following Duffing equation:

ü + αu + βu3 = 0, u(0) = A, u̇(0) = 0 (4)

We let u = εν in Eq. (4) and obtain

ν̈ + αν + ε2βν3 = 0, ν(0) = A/ε , ν̇(0) = 0 (5)

Supposing that the solution of Eq. (5)and ω2can be expressed in the form

ν = ν0 + ε2ν1 + ε4ν2 + ε6ν3 (6)

α = ω2 + ε2ω1 + ε4ω2 + ε6ω3 (7)

Substituting Eqs. (6) and (7) into Eq. (5) and equating coefficients of like powers of ε

yields the following equations

ν̈0 + ω2ν0 = 0, ν0(0) = A/ε , ν̇0(0) = 0, (8)

ν̈1 + ω2ν1 + ω1ν0 + βν30 = 0 , ν1(0) = 0 , ν̇1(0) = 0 (9)

Solving Eq. (8) results in

ν0 =
A

ε
cosω t (10)

Equation (9), therefore, can be re-written down as

ν̈1 + ω2ν1 + (ω1 +
3βA2

4ε2
) A
ε
cos (ω t) + βA3

4ε3
cos (3ω t) = 0. (11)

Avoiding the presence of a secular terms needs:

ω1 = −
3βA2

4ε2
(12)

Substituting Eq. (12) into Eq. (7)
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ωPPM =
√

α + 3

4
βA2 (13)

Solving Eq. (11), gives:

ν1 = −
A3β

32ω2ε3
(cos (ω t) − cos (3ω t)) (14)

Its first-order approximation is sufficient, and then we have:

u = εν = ε(ν0 + ε2ν1) = A cos (ω t) − A3β

32ω2ε3
[cos (ω t) − cos (3ω t)] (15)

The exact frequency of this problem is:

ωExact = 2π/4
√
2 ∫

π/2

0

dt√
βA2cos2(t)+βA2+2α

(16)

Table 1 Comparison of the approximate frequencies with the exact period.

A α β Present Study Exact Error %
(PPM) Solution (ωPPM − ωex) /ωex

0.1 0.5 0.1 0.7076 0.7076 0.0000
0.5 0.1 2 0.6892 0.6800 1.3501
1 2 0.5 1.5411 1.5403 0.0520
2 5 2 3.3166 3.2958 0.6313
5 2 5 9.7852 9.5818 2.1228
10 1 0.5 6.2048 6.0772 2.0994
15 0.5 2 18.3848 17.9866 2.2135
20 5 1 17.4642 17.0977 2.1436
The maximum relative error is less than 2.2135% for this example.

Example 2

We consider the following nonlinear oscillator [89];

(1 + u2) ü + u = 0 , u(0) = A , u̇(0) = 0. (17)

We let u = ενin Eq. (17) and obtain

ν̈ + 1.ν + ε2ν2ν̈ = 0, ν(0) = A

ε
, ν̇(0) = 0. (18)

Supposing that the solution of Eq. (18)and ω2can be expressed in the form

ν = ν0 + ε2ν1 + ε4ν2 + ... (19)
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1 = ω2 + ε2ω1 + ε4ω2 + ... (20)

Substituting Eqs. (19) and (20) into Eq. (18) and equating coefficients of like powers of ε

yields the following equations

ν̈0 + ω2ν0 = 0, ν0(0) =
A

ε
, ν̇0(0) = 0, (21)

ν̈1 + ω2ν1 + ω1ν0 + ν20 ν̈0 = 0 , ν1(0) = 0 , ν̇1(0) = 0. (22)

Solving Eq. (21) results in

ν0 =
A

ε
cosω t (23)

Equation (22), therefore, can be re-written down as

ν′′1 + ω2ν1 +
ω1A

ε
cosω t − ω2A3

ε3
cos3 ω t = 0 (24)

Or

ν′′1 + ω2ν1 + (
ω1A

ε
− 3ω2A3

4ε3
) cos 3ω t = 0. (25)

We let

ω1 =
3ω2A2

4ε2
(26)

In Eq. (25) so that the secular term can be eliminated. Solving Eq. (25) yields;

ν1 =
A3

32ε3
(cosω t − cos 3ω t) (27)

Thus we obtain the first-order approximate solution of the original Eq. (17), which reads

u = ε(ν0 + ε2ν1) = A cosω t − A3

32
(cosω t − cos 3ω t) (28)

Substituting Eq. (26) into Eq. (20) results in

1 = ω2 + ε2ω1 = ω2 + 3ω2A2

4
(29)

Then we have;

ωPPM =
1

√
1 + 3

4
A2

(30)

Eq. (30) gives the same frequency as that resulting from the artificial parameter Linstedt–

Poincare method [89].
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3 VARIATIONAL ITERATION METHOD (VIM)

Nonlinear phenomena play a crucial role in applied mechanics and physics. By solving nonlin-

ear equations we can guide authors to know the described process deeply. But it is difficult for

us to obtain the exact solution for these problems. In recent decades, there has been great devel-

opment in the numerical analysis and exact solution for nonlinear partial equations. There are

many standard methods for solving nonlinear partial differential equations. The variational it-

eration method was first proposed by He [82]used to obtain an approximate analytical solutions

for nonlinear problems.In VIM in most cases only one iteration leads to high accuracy of the

solution and it doesn’t need any linearization or discretization, and large computational work.

The VIM is useful to obtain exact and approximate solutions of linear and nonlinear differen-

tial equations [35, 57, 62, 99, 104, 117, 122, 136, 139, 153, 167, 177, 179, 184, 191, 202, 206].We

have considered three examples to show the implement of the VIM.

3.1 Basic idea of Variational Iteration Method

To illustrate its basic concepts of the new technique, we consider following general differential

equation[82]:

Lu +Nu = g (x) (31)

Where, L is a linear operator, and N a nonlinear operator, g(x) an inhomogeneous or forcing

term. According to the variational iteration method, we can construct a correct functional as

follows:

u(n+1)(t) = un(t) + ∫
t

0
λ{Lun(τ) +Nũn(τ) − g(τ)}dτ (32)

Where λ is a general Lagrange multiplier, which can be identified optimally via the varia-

tional theory, the subscript n denotes the nth approximation, ũn is considered as a restricted

variation, i.e. ˜ = 0 n δu.

For linear problems, its exact solution can be obtained by only one iteration step due to

the fact that the Lagrange multiplier can be exactly identified.

3.2 Application of Variational Iteration Method

Example 1

The equation of motion of a mass attached to the center of a stretched elastic wire in dimen-

sionless is[181]:

ü + u − ηu√
1 + u2

= 0 , 0 < λ ≤ 1 (33)

With initial conditions

u(0) = A , u̇(0) = 0 (34)
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Assume that the angular frequency of the system (33) is ω, we have the following linearized

equation:

ü + ω2u = 0 (35)

So we can rewrite Eq. (33) in the form

ü + ω2u + g(u) = 0 (36)

Where g(u) = (1 − ω2)u − ηu√
1+u2

Applying the variational iteration method, we can construct the following functional equa-

tion:

un+1(t) = un(t) + ∫
t

0
λ(ü(τ) + ω2un(τ) − g(τ))dτ (37)

Where g̃ is considered as a restricted variation, i.e.,δg̃ = 0.
Calculating variation with the respect to un and nothing thatδg̃(un) = 0. We have the

following stationary conditions:

λ′′ + ω2λ(τ) = 0,
λ(τ) ∣τ=t = 0,
1 − λ′(τ) ∣τ=t = 0.

(38)

The Lagrange multiplier, therefore, can be identified as;

λ = 1

ω
sinω(τ − t) (39)

Substituting the identified multiplier into Eq.(37) results in the following iteration formula:

un+1(t) = un(t) +
1

ω
∫

t

0
sinω(τ − t) × (ü(τ) + u(τ) − ηu(τ)√

1+u2(τ)
)dτ (40)

Assuming its initial approximate solution has the form

u0 = A cos(ω t) (41)

And substituting Eq. (41) into Eq. (33) leads to the following residual:

R0(t) = −Aω2 cos(ωt) +A cos(ωt) − ( Aη√
1 +A2

+ 1

2

A3ηω2t2

(1 +A2)
+O(t3)) cos(ωt). (42)

By the formulation (40), we can obtain

u1(t) = A cos(ωt) + ∫
t

0

1

ω
sinω(τ − t)R0(τ)dτ., (43)

In order to ensure that no secular terms appear in u1, resonance must be avoided. To do

so, the coefficient of cos(ω t)in Eq. (42) requires being zero, i.e.,
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ωV IM =

√
1 +A2 −

√
1 +A2η

√
1 +A2

(44)

And period of oscillation for this system by variational iteration method is;

TV IM =
2π
√
1 +A2

√
1 +A2 −

√
1 +A2η

(45)

Table 2 Comparison of the approximate periods with the exact period[1].

A η T V IM Texact[181] Error %

0.1 0.1 6.621237 6.62168 0.00669

1 0.1 6.517854 6.537508 0.300634

10 0.1 6.314678 6.322938 0.130635

0.1 0.5 8.863794 8.869257 0.061595

1 0.5 7.814722 7.992133 2.21982

10 0.5 6.445572 6.490208 0.687744

0.1 0.75 12.47385 12.49673 0.183088

1 0.75 9.168186 9.625404 4.750118

10 0.75 6.531632 6.602092 1.067237

Table 2 shows an excellent agreement of the VIM with the exact one.

Example 2

For the second example, we consider Duffing equation:

ü + u + εu3 = 0 (46)

With initial conditions

u(0) = A , u̇(0) = 0 (47)

Assume that the angular frequency of the Eq.(46) is ω, we have the following linearized

equation:

ü + ω2u = 0 (48)

So we can rewrite Eq. (46) in the form

ü + ω2u + g(u) = 0 (49)

Where g(u) = u + εu3 − ω2u.
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Applying the variational iteration method, we can construct the following functional equa-

tion:

un+1(t) = un(t) + ∫
t

0
λ(ü(τ) + ω2un(τ) − g(τ))dτ (50)

Where g̃ is considered as a restricted variation, i.e.,δg̃ = 0.
Calculating variation with the respect to un and nothing that δg̃(un) = 0. We have the

following stationary conditions:

λ′′ + ω2λ(τ) = 0,
λ(τ) ∣τ=t = 0,
1 − λ′(τ) ∣τ=t = 0.

(51)

The Lagrange multiplier, therefore, can be identified as;

λ = 1

ω
sinω(τ − t) (52)

Substituting the identified multiplier into Eq.(50) results in the following iteration formula:

un+1(t) = un(t) +
1

ω
∫

t

0
sinω(τ − t) × (ün(τ) + un(τ) + εu3

n(τ))dτ (53)

Assuming its initial approximate solution has the form

u0 = A cos(ω t) (54)

And substituting Eq. (54) into Eq. (46) leads to the following residual:

R0(t) = (1 − ω2 + 3

4
εA2)A cos (ωt) + 1

4
εA3 cos (3ωt) . (55)

By the formulation (53), we can obtain

u1(t) = A cos(ωt) + ∫
t

0

1

ω
sinω(τ − t)R0(τ)dτ., (56)

To avoid secular terms appear in u1,the coefficient of cos (ω t) in Eq. (55)requires being

zero, i.e.

ωV IM =
√

1 + 3

4
εA2 (57)

And period of this system is:

TV IM =
2π√

1 + (3/4) εA2
(58)

The exact solution is [89]:
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TExact =
4√

1 + εA2
∫

π/2

0

dt√
1 − k sin2 t

(59)

Where k = 0.5εA2/ (1 + εA2).

Example 3

The governing equation of Mathieu-Duffing system which is considered in this study is de-

scribed by the following high-order nonlinear differential equation[45];

ü + [δ + 2εcos(2t)]u − ϕu3 = 0 (60)

Where dots indicate differentiation with respect to the time (t), ε<<1 is a small parameter,ϕ

is the Parameter of nonlinearity and δ is the transient curve and can be defined as [45];

δ = ϕu2
0(1 −

2ε

2 + ϕu2
0

). (61)

The initial condition considered in this study is defined by [45];

u(0) = 0.1 , u̇(0) = 0 (62)

According to the VIM, we can construct the correction functional of Eq. (60) as follows

u(n+1)(t) = un(t) + ∫
τ

0
λ{ün + [δ + 2εcos(2τ)]un − ϕu3

n}dτ (63)

Where λ is General Lagrange multiplier.

Making the above correction functional stationary, we can obtain following stationary con-

ditions

λ′′(τ) = 0,
λ(τ)τ=t = 0,

1 − λ′(τ) ∣τ=t = 0,
(64)

The Lagrange multiplier, can be identified as:

λ = τ − t (65)

Leading to the following iteration formula

u(n+1)(t) = un(t) + ∫
t

0
(τ − t){ün + [δ + 2εcos(2t)]un − ϕu3

n}dτ (66)

If, for example, the initial conditions are u(0) = 0.1 andu̇(0) = 0, we began withu0(t) = 0.1, by
the above iteration formula (63) we have the following approximate solutions

u1(t) = 0.1 − 0.05ε − 0.05δt2 + 0.05εcos(2t) + 0.0005ϕt2 (67)
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In the same way, we obtain as u2 (t)follows:

u2(t) = 0.1 − 0.05ε − 0.05δt2 + 0.05εcos(2t) + 0.0005ϕt2 + 0.1875ε2 − 0.328125 × 10−3ϕε2

+0.2724609375 × 10−5ϕ2ε2 − 0.5625 × 10−5εϕ2 + 0.9461805556 × 10−4εϕ3

+6.696428 × 10−8δ2ϕ2t8 + 1.171875 × 10−7ε2ϕ2t2 + 0.125 × 10−5ϕ2t4 + 3.75 × 10−8t3εϕ3sin(2t)
+0.140625 × 10−4εδϕ2cos(2t) + 8.4375 × 10−8t2εϕ3cos(2t) + 0.1875 × 10−5t2ε2ϕ2cos(2t)

−0.375 × 10−5tε2ϕ2sin(2t) + 0.00025t2ϕεcos(2t) − 0.375 × 10−5εϕ2cos(2t)t2

−2.34375 × 10−7ε2ϕ2cos2(2t)t2 − 0.87890625 × 10−5ϕε2δcos(2t)2 − 0.025t2δεcos(2t)
+0.00028125ϕε2δcos(2t) − 0.000703125ϕεδ2cos(2t) − 0.0005625ϕεδcos(2t)

−0.140625 × 10−4εδϕ2 + 0.05tδεsin(2t) − 0.5 × 10−3tϕεsin(2t) + 0.75 × 10−5εϕ2sin(2t)t
−1.125 × 10−7tεϕ3sin(2t) − 9.375 × 10−9t4εϕ3cos(2t) + 0.5625 × 10−3ϕεδ + 0.70312 × 10−3ϕεδ2

−0.2724609375 × 10−3ϕε2δ − 0.05δε + 0.00075ϕε + 7.03125 × 10−8εϕ3 + 4.6875 × 10−7ε2ϕ2t4

+0.9461805556 × 10−4ϕε3 − 0.5625 × 10−5εϕ2 − 0.46875 × 10−4ϕε2δt4 + 0.000125ϕεδt4

−0.125 × 10−4t6ϕδ2ε + 2.5 × 10−9ϕ3t6 + 0.2724609375 × 10−5ε2ϕ2 − 0.328125 × 10−3ϕε2

+0.1875 × 10−5t4δεϕ2cos(2t) + 2.23214285710−12ϕ4t8 − 7.03125 × 10−8εϕ3cos(2t)
−0.28125 × 10−5ε2ϕ2cos(2t) − 0.75 × 10−3ϕεcos(2t) + 0.375 × 10−3ϕε2cos(2t)

−0.46875 × 10−4ϕε2cos2(2t) − 0.34722222 × 10−5ϕε3cos3(2t) + 0.5625 × 10−5εϕ2cos(2t) + ...
(68)

And so on. In the same manner, the rest of the components of the iteration formula can

be obtained.

Figures 1 to 3 indicate that the VIM experiences a high accuracy. The figures illustrate

the time history diagram of the displacement, velocity and phase plan, respectively.

 0 1 2 3 4 5 6 7 8
0.0980

0.0985

0.0990

0.0995

0.1000

u

time

 VIM
RK

Figure 1 Comparison of time history diagram of displacements between VIM and RK solutions at
φ = 2,ε = 0.01,u(0) = 0.1,u̇(0) = 0.
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 0 1 2 3 4 5 6 7 8

-0.0010

-0.0005

0.0000

0.0005

0.0010

u

time

 VIM
 RK

.

Figure 2 Comparison of time history diagram of velocity between VIM and RK solutions atφ = 2,ε = 0.01,u(0) =
0.1,u̇(0) = 0.

 0.0980 0.0985 0.0990 0.0995 0.1000

-0.0010

-0.0005

0.0000

0.0005

0.0010

u

u

 VIM
 RK

.

Figure 3 Comparison of VIM with RK ,u̇versus uatϕ= 2, ε = 0.01, δ = 0.02

4 HOMOTOPY PERTURBATION METHOD (HPM)

Until recently, the application of the homotopy perturbation method in nonlinear problems

has been devoted by scientists and engineers, because this method is to continuously deform a

simple problem easy to solve into the difficult problem under study. The homotopy perturba-

tion method proposed by He in 1999[81]. Elementary introduction and interpretation of the

method are given in the following publications [5, 9, 24, 27–33, 59, 63, 64, 68, 84, 91, 93, 95,

96, 98, 101, 102, 123, 148, 168, 174, 176, 208, 218]. HPM can solve a large class of nonlinear

problems with approximations converging rapidly to accurate solutions. This method is the

most effective and convenient one for both weakly and strongly nonlinear equations.

4.1 Basic idea of Homotopy Perturbation Method

To explain the basic idea of the HPM for solving nonlinear differential equations, one may

consider the following nonlinear differential equation[81]:
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A (u) − f (r) = 0 r ∈ Ω (69)

That is subjected to the following boundary condition:

B (u, ∂u
∂t
) = 0 r ∈ Γ (70)

Where A is a general differential operator, B a boundary operator, f (r) is a known analyt-

ical function, Γ is the boundary of the solution domain(Ω), and ∂u/∂t denotes differentiation
along the outwards normal to Γ. Generally, the operator A may be divided into two parts: a

linear part L and a nonlinear part N. Therefore, Eq. (69) may be rewritten as follows:

L (x) +N (x) − f (r) = 0 r ∈ Ω (71)

In cases where the nonlinear Eq. (69) includes no small parameter, one may construct the

following homotopy equation

H (ν, p) = (1 − p) [L (ν) −L (u0)] + p [A (ν) − f (r) ] = 0 (72)

Where

ν (r, p) ∶ Ω × [0,1]→ R (73)

In Eq. (72), p ∈ [0 , 1] is an embedding parameter and u0 is the first approximation that

satisfies the boundary condition. One may assume that solution of Eq. (72) may be written

as a power series in p, as the following:

ν = ν0 + pν1 + p2ν2 +⋯ (74)

The homotopy parameter p is also used to expand the square of the unknown angular

frequency u as follows:

ω0 = ω2 − pω1 − p2ω2 − ... (75)

Or

ω2 = ω0 + pω1 + p2ω2 + ... (76)

Where ω0 is the coefficient of u(r) in Eq. (69) and should be substituted by the right hand

side of Eq. (76). Besides, ωi (i = 1,2, ...) are arbitrary parameters that have to be determined.

The best approximations for the solution and the angular frequency ω are

u = limp→1ν = ν0 + ν1 + ν2 +⋯ (77)

ω2 = ω0 + ω1 + ω2 + ... (78)
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When Eq. (72) corresponds to Eq. (69) and Eq. (77) becomes the approximate solution

of Eq. (69)

4.2 Application of Homotopy Perturbation Method

Example 1

We consider the mathematical pendulum. When friction is neglected; the differential equation

governing the free oscillation of the mathematical pendulum is given by[82];

θ̈ +Ω2 sin θ = 0, θ(0) = A, θ̇(0) = 0 (79)

 
Figure 4 The simple pendulum

When θ designates the deviation angle from the vertical equilibrium position, Ω2 = g
l
where

g is the gravitational acceleration, l the length of the pendulum[82].

In order to apply the homotopy perturbation method to solve the above problem, the

approximation sin θ ≈ θ − (1/6) θ3 + (1/120) θ5is used
Now we apply homotopy perturbation to Eq. (79). We construct a homotopy in the

following form:

H (θ, p) = (1 − p) [θ̈ +Ω2θ] + p [θ̈ +Ω2 (θ − (1/6) θ3 + (1/120) θ5)] = 0 (80)

According to HPM, we assume that the solution of Eq. (80) can be expressed in a series

of p;

θ(t) = θ0(t) + pθ1(t) + p2θ2(t) + ..... (81)

Just the coefficient of θ,(Ω2) expanded into a series in p in a similar way:

Ω2 = ω2 − pω1 − p2ω2 + ... (82)

Substituting Eq.(81) and Eq. (82) into Eq. (80) after some simplification and substitution

and rearranging based on powers of p-terms, we have:

p0 ∶ θ̈0 + ω2θ0 = 0, θ0(0) = A, θ̇0(0) = 0 (83)
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p1 ∶ θ̈1 + ω2θ1 = ω1θ + (
Ω2

6
)ω2θ3 − ( Ω

2

120
)ω2θ5, θ1(0) = 0, θ̇1(0) = 0 (84)

.

.

.

Considering the initial conditions θ0(0) = Aand θ̇0(0) = 0 the solution of Eq. (83) is

θ0 = A cos ωt Substituting the result into Eq. (84), we have:

p1 ∶ θ̈1 + ω2θ1 = ω1A cos (ωt) + 1

6
ω2A 3 cos3 (ωt) − 1

120
ω2A 5 cos5 (ωt) (85)

For achieving the secular term, we use Fourier expansion series as follows:

Φ(ω, t) = (−1
8
ω2A3 + 1

192
ω2A5 − ω1A) cos(ω t) − 1

24
ω2A3cos(3ω t)

+ 1
1920

ω2A5cos(5ω t) + 1
384

ω2A5cos(3ω t)

=
∞
∑
n=0

b2n+1 cos [(2n + 1)ωt]

= b1 cos(ωt) + b3 cos(3ωt) + ...

(86)

Substituting Eq. (86) into right hand of Eq. (85) yields:

p1 ∶ θ̈1 + ω2θ1 = [−(1/8)ω2A3 + (1/192)ω2A5 − ω1A] cos(ω t) +
∞
∑
n=0

b2n+1 cos [(2n + 1)ωt] (87)

Avoiding secular term, gives:

ω1 = −
1

192
ω2A2(−24 +A2) (88)

From Eq. (82) and settingp = 1, we have:

Ω2 = ω2 − ω1 (89)

Comparing Eqs. (88) and (89), we can obtain:

ω = Ω
√

1 − 1

8
A2 + 1

192
A4 (90)

The exact frequency of this problem is:

ωExact = 2π/2
√
2 ∫

π/2

0

A sin2(t)dt
Ω
√
cos (A cos(t)) − cos(A)

(91)
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Table 3 Comparison of the approximate frequencies with the exact period.

A Ω Present Study Exact Error %
(HPM) Solution (ωHPM − ωex) /ωex

0.1 2 1.99875 1.99875 0.0000
0.2 3 2.992503 2.992502 0.0001
0.5 4 3.937665 3.937579 0.0022
0.8 2 1.920555 1.92025 0.0159
1 1 0.938194 0.937792 0.0429
1.2 2 1.822965 1.821145 0.0999
1.5 1 0.863202 0.860608 0.3013
1.8 0.5 0.403012 0.399787 0.8066
2 1 0.763763 0.7525 1.4968

Example 2

The motion of a particle on a rotating parabola is considered for second example. The governing

equation of motion and can be expressed as;

ü + auu̇2 + auü + α1u + α2u
3 + α3u

5 = 0, u(0) = A, u̇(0) = 0 (92)

Now we apply homotopy-perturbation to Eq(92).We construct a homotopy in the following

form:

H (u, p) = (1 − p) [ü + α1u] + p [ü + auu̇2 + auü + α1u + α2u
3 + α3u

5] = 0 (93)

According to HPM, we assume that the solution of (93) can be expressed in a series of p

u(t) = u0(t) + pu1(t) + p2u2(t) + ..... (94)

The coefficient α1 expanded into a series in p in a similar way.

α1 = ω2 − pω1 − p2ω2 + ... (95)

Substituting (94) and (95) into (93) after some simplification and substitution and rear-

ranging based on powers of p-terms, we have:

p0 = ü0 + ω2u0 = 0, u0(0) = A, u̇0(0) = 0 (96)

And,

p1 = ü1 + ω2u1 = ω1u0 − au0u̇
2
0 − au0ü0 − α2u

3
0 − α3u

5
0, u1(0) = 0, u̇ (0) = 0 (97)

Considering the initial conditions u0(0) = A and u̇0(0) = 0 the solution of Eq. (96) is

u0 = A cos (ωt) Substituting the result into Eq. (97), we have:
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Table 4 Comparison of HPM solution and Runge-Kutta algorithm.

Case1: A = 0.5, a = 0.2, Case2: A = 1, a = 0.5, α1 = 1,
α1 = 2, α3 = 0.5 α2 = 0.5, α3 = 0.2

t HPM Runge -Kutta t HPM Runge -Kutta
u(t) u(t) u(t) u(t)

0 0.4 0.4 0 1 1
0.5 0.299437 0.299766 0.5 0.860691 0.853713
1 0.049196 0.049299 1 0.469752 0.457651
1.5 -0.225475 -0.225875 1.5 -0.080103 -0.072308
2 -0.387780 -0.387848 2 -0.600724 -0.581112
2.5 -0.355266 -0.355443 2.5 -0.927124 -0.919896
3 -0.144634 -0.144902 3 -0.988938 -0.989543
3.5 0.137916 0.138260 3.5 -0.774269 -0.769674
4 0.351899 0.352131 4 -0.325557 -0.324619
4.5 0.389486 0.389524 4.5 0.237755 0.215412
5 0.231375 0.231700 5 0.715872 0.692419
5.5 -0.042066 -0.042245 5.5 0.972568 0.966842
6 -0.295018 -0.294619 6 0.955930 0.958391

p1 = ü1 + ω2u1 = ω1A cos(ωt) − aω2A3 cos(ωt) sin2(ωt) − aω2A3 cos3(ωt)
− α2A

3 cos3(ωt) − α3A
5 cos5(ωt) (98)

No secular term in p1 requires that

ω1 = −
1

8
A2 (−4aω2 + 6α2 + 5α3A

2) (99)

Substituting (99) in to Eq (95) and setting p = 1, we can obtain the frequency of the

nonlinear oscillator as follows:

ωHPM =
1

2

√
(2 +A2a) (8α1 + 5A4α3 + 6α2A2)

(2 +A2a)
(100)

Table 4 shows the high accuracy of the Homotopy Perturbation Method with the Runge-

Kutta Method.

Example 3

In this section, we will consider the system with linear and nonlinear springs in series as it is

shown in Fig. 5.

In this figure, k1 is the stiffness coefficient of the first linear spring , the coefficients asso-

ciated with the linear and nonlinear portions of spring force in the second spring with cubic

nonlinear characteristic are described by k2 and k3, respectively. Let ε be defined as:

ε = k2/k3 (101)
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The case of k3 > 0 corresponds to a hardening spring while k3 < 0 indicates a softening

one.

Let x and y denote the absolute displacements of the connection point of two springs, and

the mass m, respectively. By introducing two new variables

u = y − x, r = x. (102)

Telli and Kopmaz [185] obtained the following governing equation for υ and r:

(1 + 3 εη u2)ü + 6 εηuu̇2 + ω2
eu + εω2

eu
3 = 0, (103)

r = x = ξ (1 + εu2)u, y = (1 + ξ + ξ εu2)u, (104)

Where a prime denotes differentiation with respect to time and

ξ = k2/k1, η = ξ

1 + ξ
, ω2

0 =
k2

m(1 + ξ)
. (105)

Eq. (103) is an ordinary differential equation in u. For Eq. (103), we consider the following

initial conditions:

u(0) = A, u̇(0) = 0 (106) 
Figure 5 Nonlinear free vibration of a system of mass with serial linear and Nonlinear stiffness on a frictionless

contact surface[185]

Eq. (103) can be rewritten as the following form:

ü + 1.u = p. [−3 ü ε η u2 − 6 ε η u u̇2 − ω2
0εu

3 − ω2
0u + u] = 0, p ∈ [0,1]. (107)

Substituting Eqs. (74)and (75) into Eq. (107) and expanding, we can write the first two

linear equations as follows:

p0 ∶ ü0 + ω2u0 = 0, u0(0) = A, u̇0(0) = 0 (108)

p1 ∶ ü1 + ω2u1 = −3u”
0ηεu

2
0 − 6ηεu0u

′2
0 ω

2
0εu

3
0 + (1 + γ1 − ω2

0)u0, (109)

⋮

Solving Eq. (108) gives: u0 = A cosω t. Substituting u0 into Eq. (109) , yield:

p1 u1 + ω2u1 = 9A3ηεω2 cos3 ω t − 6ηεω2A3 cosω t

+ (1 + γ1 − ω2
0)A cosω t − ω2

0εA
3 cos3 ω t,

(110)

⋮
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For achieving the secular term, we use Fourier expansion series as follows:

9A3η εω2 cos3 ω t − 6η εω2A3 cosω t − ω2
0εA

3 cos3 ω t

=
∞
∑
n=0

b2n+1 cos [(2n + 1)ωt]

= b1 cos (ω t) + b3 cos(3ω t) + ...
≈ 3A3ε

4
(η ω2 − ω2

0) cos (ω t) + ... .

(111)

Substituting Eq. (111) into Eq. (110) yields:

p1 ∶ ü1 + ω2u1 = [
3A2ε

4
(ηω2 − ω2

0) + (1 + γ1 − ω2
0)] ×A cos(ω t) (112)

Avoiding secular term, gives:

γ1 =
3A2ε

4
(ω2

0 − ηω2) + (ω2
0 − 1) (113)

From Eq. (75) and settingp = 1, we have:

γ1 = ω − 1 (114)

Comparing Eqs. (113) and (114), we can obtain:

ωHPM =
3A2ε

4
(ω2

0 − ηω2) + ω2
0 (115)

Solving Eq. (115), gives:

ωHPM =
ω0

√
(4 + 3A2εη) (4 + 3A2ε)

4 + 3A2εη
, (116)

Table 5 Comparison of error percentages corresponding to various parameters of system

Constant parameters Relative error %
m A ε k1 k2 ωHPM numerical ωHPM−ωnum

ωnum

1 0.5 0.5 50 5 2.220265 2.220231 0.00153
1 0.5 0.5 50 5 3.162277 3.175501 0.41644
1 2 0.5 5 5 1.889822 1.903569 0.72170
1 2 0.5 5 50 2.192645 2.195284 0.12021
3 5 1 8 16 1.612706 1.615107 0.14866
3 5 1 10 5 1.739775 1.749115 0.53398
5 10 2 12 16 1.545360 1.545853 0.03189
2 2 -0.1 10 10 1.434860 1.446389 0.00520
3 4 -0.02 30 10 1.313064 1.318370 0.40247
4 10 -0.008 6 3 0.703731 0.705412 0.23830

Table 5 represents the comparisons of angular frequencies for different parameters via

numerical is presented in Table 1. The maximum relative error between the HPM results and

numerical results is 0.72170 %.
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5 ITERATION PERTURBATION METHOD (IPM)

The study of nonlinear oscillators is of interest to many researchers and various methods of

solution have been proposed. The iteration perturbation method (IPM) is considered to be

one of the powerful methods which is capable for nonlinear problems, it can converge to an

accurate solution for smooth nonlinear systems. The iteration perturbation method was first

proposed by He [87] in 2001 and used to give approximate solutions of the problems of nonlinear

oscillators. The application of this method is used in [26, 61, 149].

5.1 Basic idea of Iteration Perturbation Method

Many researchers have devoted their attention to obtaining approximate solution of nonlinear

equations in the form:

ü + u + εf(u, u̇) = 0, (117)

Subject to the following initial conditions:

u(0) = A, u̇(0) = 0 (118)

We rewrite Eq. (117) in the following form:

ü + u + εu.g(u, u̇) = 0, (119)

Where g(u, u̇) = f/u.
We construct an iteration formula for the above equation:

ün+1 + un+1 + εun+1.g(un, u̇n) = 0, (120)

Where we denote by un the n th approximate solution. For nonlinear oscillation,Eq. (120)

is of Mathieu type. We will use the perturbation method to find approximately un+1the

technique is called iteration perturbation method.

In order to assess the advantages and the accuracy of the iteration perturbation method

we will consider the following examples.

Here, we will introduce a nonlinear oscillator with discontinuity in several different forms:

d
2

u

dt2
+ h(u) + βsgn(u)u = 0, (121)

Or

d
2

u

dt2
+ h(u) + βu ∣u∣ = 0, (122)

With initial conditions

u(0) = A, du(0)
dt

= 0 (123)
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In this work, we assume that h(u)is in a polynomial form. The reason for this assumption

is that the discontinuity equations found in the literature belong to this family. Since there

are no small parameters in Eq. (122) the traditional perturbation methods cannot be applied

directly. In the following example, we assume a linear form h(u).

5.2 Application of Iteration Perturbation Method

Example 1

We let h(u) = αu, in Eq. (122). We can rewrite Eq. (122) in the following form;

u′′ + α.u + βu ∣u∣ = 0 (124)

To apply the Iteration Perturbation Method, the solution is expanded and the series of ε

is introduced as follows:

u = u0 +
n

∑
i=0

εiui (125)

α = ω2 +
n

∑
i=0

εiai (126)

β =
n

∑
i=0

εidi (127)

Substituting Eqs. (125), (126) and (127) into Eq. (124) and equating the terms with the

identical powers of ε, a series of linear equations are obtained. Expanding the first two linear

terms becomes as follows;

ε0 ∶ ü0 + ω2u0 = 0 , u0(0) = A , u̇0(0) = 0 (128)

ε1 ∶ u′′1 + ω2u1 + a1u0 + d1u0 ∣u0∣ = 0 , u1(0) = 0 , u̇1(0) = 0 (129)

Substituting the solution into Eq. (128), e.g.u0 = A cos(ω t), the deferential equation for

u1 becomes;

u′′1 + ω2u1 + a1A cos(ω t) + d1A cos(ω t) ∣A cos(ω t)∣ = 0 ,
u1(0) = 0, u′1(0) = 0

(130)

Note that the following Fourier series expansion is valid.

∣A cos(ωt)∣ cos(ωt)2n−1 =
∞
∑
k=0

c2k+1 cos((2k + 1)ωt)

= c1 cos(ωt) + c3 cos(3ωt) + ...
(131)

Where ci can be determined by Fourier series, for example,
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c1 = 2
π ∫

π
0 ∣cos(ωt)∣

2n
cos(ωt)d(ωt)

= 2
π
(∫

π
2

0 cos(ωt)
2n+1

d(ωt) − ∫
π
0 cos(ωt)2n+1d(ωt))

= 2√
π

Γ(n+1)
Γ(n+3/2)

(132)

Eq. (132) in Eq. (130) gives

u′′1 + ω2u1 + a1A cos(ωt) + d1A
∞
∑
k=0

c2k+1 cos((2k + 1)ωt) = 0 (133)

Avoiding the presence of a secular term requires that

a1 + d1c1A2 = 0 (134)

Also, substituting ε = 1,into Eqs. (125) and (126) gives:

α = ω2 + a1 (135)

β = d1 (136)

From Eqs. (134) ,(135)and (136), the first-order approximation to the angular frequency is:

ω =
√

α + 8εA

3π
(137)

Case 1:

If α = 1,we have

ωIPM =
√

1 + 8εA

3π
(138)

It is the same as that obtained by the Homotopy perturbation method and the Variational

method [95, 182].

Case 2:

If α = 0, we have

ωIPM =
√

8εA

3π
(139)

The obtained frequency in Eq. (139) is valid for the whole solution domain 0 < A <∞.
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Example 2

If h(u) = αu3, in Eq. (122). Then we have

d2u

dt2
+ α.u3 + βu ∣u∣ = 0 (140)

To apply the Iteration Perturbation Method, the solution is expanded and the series of ε

is introduced as follows:

u = u0 +∑ i = 0nεiui (141)

0 = ω2 +
n

∑
i=0

εiai (142)

1 =
n

∑
i=0

εidi (143)

Substituting Eqs. (141),(142) and (143) into Eq. (140) and equating the terms with the

identical powers of ε, a series of linear equations are obtained. Expanding the first two linear

terms becomes as follows;

ε0 ∶ ü0 + ω2u0 = 0 , u0(0) = A , u̇0(0) = 0 (144)

ε1 ∶ u′′1 + ω2u1 + a1u0 + d1αu3
0 + βu0 ∣A cos(ωt)∣ = 0, u1(0) = 0 , u̇1(0) = 0 (145)

Substituting the solution into Eq. (144), e.g.u0 = A cos(ωt), the deferential equation for u1

becomes;

u′′1 + ω2u1 + a1A cos(ωt) + d1αA3 cos3(ωt)
+βA cos(ωt) ∣A cos(ωt)∣ = 0 (146)

We have the following identity;

cos3(ω t) = 3

4
cos(ω t) + 1

4
cos(3ω t) (147)

Note that the following Fourier series expansion is valid.

∣A cos(ωt)∣2n−1 cos(ωt) =
∞
∑
k=0

c2k+1 cos((2k + 1)ωt)

= c1 cos(ωt) + c3 cos(3ωt) + ...
(148)

ci can be determined by Fourier series, for example :
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c1 = 2
π ∫

π
0 ∣cos(ωt)∣

2n
cos(ωt)d(ωt)

= 2
π
(∫

π
2

0 cos(ωt)
2n+1

d(ωt) − ∫
π
0 cos(ωt)2n+1d(ωt))

= 2√
π

Γ(n+1)
Γ(n+3/2)

(149)

By means of Eqs. (147),(148) and (149) we find that

u′′1 + ω2u1 + (a1 + d1A2 3
4
)A cos(ωt) + d1A3 1

4
cos(3ωt))

+A2
∞
∑
k=0

c2k+1 cos((2k + 1)ωt) = 0
(150)

No secular term in u1requires that

a1 + d1αA2 3

4
+ βA 8

3π
= 0 (151)

Also, substituting ε = 1,into Eqs. (142) and (143) gives:

0 = ω2 + a1 + ... (152)

1 = d1 (153)

From Eqs. (151) ,(152)and (153), the first-order approximation to the angular frequency is:

ωIPM =
√

3αA2

4
+ 8βA

3π
(154)

Case 1:

If α = β,β = ε we have

ωIPM =
√

3βA2

4
+ 8εA

3π
(155)

This agrees well with that obtained by the Homotopy perturbation method and the Vari-

ational method [95, 182].

And its period is given by

TIPM =
2π

ω
= 2π
√

3βA2

4
+ 8εA

3π

(156)

Case 2:

If ε = 0, its period can be written as;

TIPM =
4π√
3
β−

1
2A−1 (157)
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The exact period was obtained by Acton and Squire in 1985 [2].

Tex = 7.4164β−
1
2A−1 (158)

The maximal relative error is less than 2.2% for allβ > 0!

6 ENERGY BALANCE METHOD (EBM)

Nonlinear oscillator models have been widely used in many areas of physics and engineering

and are of significant importance in mechanical and structural dynamics for the comprehensive

understanding and accurate prediction of motion. This method was proposed by He [90] in

2002. This method can be seen as a Ritz method and leads to a very rapid convergence of

the solution, and can be easily extended to other nonlinear oscillations. In short, this method

yields extended scope of applicability, simplicity, flexibility in application, and avoidance of

complicated numerical and analytical integration as compared to others among the previous

approaches, such as, the perturbation methods, and so could widely applicable in engineering

and science.Energy balance method used heavily in the literature in [17, 19, 22, 25, 55, 56, 58,

60, 65–67, 116, 120, 141, 150, 178, 209]and the references therein.

6.1 Basic idea of Energy Balance Method

In the present paper, we consider a general nonlinear oscillator in the form [90]:

ü + f(u(t)) = 0 (159)

In which u and t are generalized dimensionless displacement and time variables, respec-

tively. Its variational principle can be easily obtained:

J(u) = ∫
t

0
(−1

2
u̇2 + F (u)) dt (160)

Where T = 2π
ω

is period of the nonlinear oscillator, F (u) = ∫ f(u)du.
Its Hamiltonian, therefore, can be written in the form;

H = 1

2
u̇2 + F (u) + F (A) (161)

Or

R(t) = −1
2
u̇2 + F (u) − F (A) = 0 (162)

Oscillatory systems contain two important physical parameters, i.e. ω is the frequency and

A is the amplitude of the oscillation. So let us consider such initial conditions:

u(0) = A, u̇(0) = 0 (163)

We use the following trial function to determine the angular frequency ω
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u(t) = A cosω t (164)

Substituting (164) into u term of (162), yield:

R(t) = 1

2
ω2A2 sin2 ω t + F (A cosω t) − F (A) = 0 (165)

If, by chance, the exact solution had been chosen as the trial function, then it would be

possible to make R zero for all values of t by appropriate choice of ω. Since Eq. (164) is only

an approximation to the exact solution, R cannot be made zero everywhere. Collocation at

ω t = π
4
gives:

ω =
√

2(F (A)) − F (A cosω t)
A2 sin2 ω t

(166)

Its period can be written in the form:

T = 2π
√

2(F (A))−F (A cosω t)
A2 sin2 ω t

(167)

6.2 Application of Energy Balance Method

Example 1

In this section, we will consider the system with linear and nonlinear springs in series.

In Eq. (103), Its Variational principle can be easily obtained:

J(u) = ∫
t

0
(−1

2
u̇2 (1 + 3

2
ε η u2) + ω2

0(
1

2
u2 + 1

4
εu4))dt (168)

Its Hamiltonian, therefore, can be written in the form:

H = 1
2
u̇2 (1 + 3

2
ε η u2) + ω2

0(12 u
2 + 1

4
εu4)

= 1
2
ω2
0A

2 + 1
4
ω2
0 εA

4 (169)

or

R(t) = 1
2
u̇2 (1 + 3

2
ε η u2) + ω2

0(12 u
2 + 1

4
εu4)

−1
2
ω2
0A

2 − 1
4
ω2
0 εA

4 = 0 (170)

Oscillatory systems contain two important physical parameters, i.e. the frequency ω and

the amplitude of oscillation, A. So let us consider such initial conditions:

u(0) = A, u̇(0) = 0 (171)

Assume that its initial approximate guess can be expressed as:

u(t) = A cosωt (172)
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Substituting Eq. (172) into Eq. (170), yields:

R(t) = 1

2
(−Aω sinωt)2(1 + 3

2
ε η (A cosωt)2) + ω2

0(
1

2
(A cosωt)2

+1
4
ε (A cosωt)4) − 1

2
ω2
0A

2 − 1

4
ω2
0 εA

4 = 0
(173)

Which trigger the following result:

ω = ω0

√
2

A sinωt

¿
ÁÁÀ −(1

2
(A cosωt)2 + 1

4
ε (A cosωt)4) + 1

2
A2 + 1

4
εA4

(1 + 3
2
ε η (A cosωt)2)

(174)

If we collocate at ωt = π
4
, we obtain:

ωEBM =
ω0

√
(4 + 3A2εη) (4 + 3A2ε)

4 + 3A2εη
, (175)

Its period can be written in the form:

TEBM =
2π (4 + 3A2εη)

ω0

√
(4 + 3A2εη) (4 + 3A2ε)

(176)

To further illustrate and verify the accuracy of this approximate analytical approach, com-

parison of the time history oscillatory displacement responses for the system with linear and

nonlinear springs in series with numerical solutions are depicted in Figures 6 and 7. Figures

6 and 7 represent the displacements of u(t) for a mass with different initial conditions and

spring stiffnesses.
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Figure 6 Comparison between approximate solutions and numerical solutions for m = 1, A = 2, ε = 0.5, k1 =
5, k2 = 5
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Figure 7 Comparison between approximate solutions and numerical solutions form = 3, A = 5, ε = 1, k1 =
8, k2 = 16

Example 2

From Hamden [79], it is known that the free vibrations of an autonomous conservative oscillator

with inertia and static type fifth-order non-linearties is expressed by

ẍ + λx + ε1x2ẍ + ε1xẋ2 + ε2x4ẍ + 2ε2x3ẋ2 + ε3x3 + ε4x5 = 0, (177)

With the initial conditions:

x(0) = A ẋ(0) = 0 (178)

Motion is assumed to start from the position of maximum displacement with zero initial

velocity. λ is an integer which may take values of λ = 1,0 or −1, and ε1, ε2, ε3 and ε4 are

positive parameters.

The solution of nonlinear equation with the Energy Balance method is:

ẍ + λx + ε1x2ẍ + ε1x ẋ2 + ε2x4ẍ + 2ε2x3ẋ2 + ε3x3 + ε4x5 = 0, (179)

in which x and t are generalized dimensionless displacement and time variables, respectively.

Its Variational principle can be easily obtained:

x(0) = A, ẋ(0) = 0 (180)

in which xand tare generalized dimensionless displacement and time variables, respectively.

Its Variational principle can be easily obtained:

J(x) = ∫
t

0
(−1

2
ẋ2 (1 + ε1x2 + ε2x4) + λ

2
x2 + ε3

4
x4 + ε4

6
x6)dt (181)

Its Hamiltonian, therefore, can be written in the form:
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H = 1

2
ẋ2 (1 + ε1x2 + ε2x4) + λ

2
x2 + ε3

4
x4 + ε4

6
x6 = λ

2
A2 + ε3

4
A4 + ε4

6
A6 (182)

Or

R(t) = 1

2
ẋ2 (1 + ε1x2 + ε2x4) + λ

2
x2 + ε3

4
x4 + ε4

6
x6 − λ

2
A2 − ε3

4
A4 − ε4

6
A6 = 0 (183)

Oscillatory systems contain two important physical parameters, i.e. the frequency ωand

the amplitude x(t) = A cosω t of oscillation, A. So let us consider such initial conditions:

x(0) = A, ẋ(0) = 0 (184)

Assume that its initial approximate guess can be expressed as:

x(t) = A cosωt (185)

Substituting Eq. (185) into Eq. (183) yields:

R(t) = 1

2
(−A sinωt)2(1 + ε1(A cosωt)2 + ε2(A cosωt)4) + λ

2
(A cosωt)2 + ε3

4
(A cosωt)4

+ε4
6
(A cosωt)6 − λ

2
A2 − ε3

4
A4 − ε4

6
A6 = 0

(186)

Which trigger the following results

ω =
√
2

A sinωt

¿
ÁÁÁÀ

λ
2
(A2 − (A cosωt)2) + ε3

4
(A4 − (A cosωt)4) + ε4

6
(A6 − (A cosωt)6)

1 + ε1 (A cosωt)2 + ε2 (A cosωt)4
(187)

If we collocate at ωt = π
4
, we obtain:

ωEBM =
√
3

3

√
12λ + 9ε3A2 + 7ε4A4

4 + 2ε1A2 + ε2A4
(188)

Substituting Eq. (188) into Eq. (185) yields:

x(t) = A cos
⎛
⎝

√
3

3

√
12λ + 9ε3A2 + 7ε4A4

4 + 2ε1A2 + ε2A4
t
⎞
⎠

(189)

The numerical solution with Runge-Kutta method for nonlinear equation is:

ẋ1 = x2 x1(0) = A (190)

And
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ẋ2 = −
1

1 + ε1x2
1 + ε2x4

1

(λx1 + ε1x1x
2
2 + 2ε2x3

1x
2
2 + ε3x3

1 + ε4x5
1) , x2(0) = 0 (191)

Motion is assumed to start from the position of maximum displacement with zero initial

velocity. λ Is an integer which may take values of λ = 1,0or−1, and ε1, ε2, ε3and ε4 are positive

parameters .The values of parameters ε1, ε2, ε3 and ε4associated for a mode is shown in Table 6.

Table 6 Values of dimensionless parameters εi in Eq. (189) for a mode

Mode ε1 ε2 ε3 ε4
1 0.326845 0. 129579 0. 232598 0. 087584

2 1.642033 0.913055 0.313561 0.204297

3 4.051486 1.665232 0.281418 0.149677
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Figure 8 The Comparison between energy balance method solution and the numerical solution (Runge-Kutta
method), with λ=1, A=1 for mode-1.
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Figure 9 The comparison between energy balance method solution and the numerical solution (Runge-Kutta
method), with λ=1, A=1 for mode-2.
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Figure 10 The comparison between energy balance method solution and numerical solution (Runge-Kutta
method), with λ=1, A=1 for mode-3.

It can be seen from Figures 8-9 EBM results have a good agreement with the numerical

solution for 3 modes. Figures show the motion of the system is a periodic motion and the

amplitude of vibration is a function of the initial conditions.

Example 3

Consider a straight Euler-Bernoulli beam of lengthL, a cross-sectional area A, the mass per unit

length of the beam m, a moment of inertia I, and a modulus of elasticity E that is subjected

to an axial force of magnitude P as shown in Fig. 11. The equation of motion including the

effects of mid-plane stretching is given by:

m
∂2w′

∂t′2
+EI

∂4w′

∂x′2
+ P̄ ∂2w′

∂x′2
− EA

2L

∂2w′

∂x′2
∫

L

0
(∂

2w′

∂x′2
)
2

dx′ = 0 (192)

For convenience, the following non-dimensional variables are used:

x = x′/L,w = w′/ρ ,t = t′(EI/ml4)1/2, P = P̄L2/EI (193)

Where ρ = (I/A)1/2 is the radius of gyration of the cross-section. As a result Eq. (192) can

be written as follows:

∂2w

∂t2
+ ∂4w

∂x4
+ P ∂2w

∂x2
− 1

2

∂2w

∂x2 ∫
L

0
(∂

2w

∂x2
)
2

dx = 0 (194)

Assuming w(x, t) = V (t)ϕ (x)whereϕ (x)is the first eigenmode of the beam [189] and ap-

plying the Galerkin method, the equation of motion is obtained as follows:

d2V (t)
dt2

+ (α1 + Pα2)V (t) + α3 V
3(t) = 0 (195)
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The Eq. (195) is the differential equation of motion governing the non-linear vibration of

Euler-Bernoulli beams. The center of the beam is subjected to the following initial conditions:

V (0) = ∆ ,
dV (0)
dt

= 0 (196)

Where ∆ denotes the non-dimensional maximum amplitude of oscillation and α1, α2 and

α3 are as follows:

α1 = (∫
1

0
(∂

4ϕ(x)
∂x4

) ϕ(x)dx)/∫
1

0
ϕ2(x)dx (197a)

α2 = (∫
1

0
(∂

2ϕ(x)
∂x2

) ϕ(x)dx)/∫
1

0
ϕ2(x)dx (197b)

α3 =
⎛
⎝
(−1

2
)∫

1

0

⎛
⎝
∂2ϕ(x)
∂x2 ∫

1

0
(∂

2ϕ(x)
∂x2

)
2

dx
⎞
⎠

ϕ(x)dx
⎞
⎠
/∫

1

0
ϕ2(x)dx (197c)

 
Figure 11 A schematic of an Euler-Bernoulli beam subjected to an axial load.

Variational formulation of Eq. (195) can be readily obtained as follows:

J(V ) = ∫
t

0
(−1

2

dV (t)
dt

+ 1

2
(α1 + Pα2)V 2(t) + α3 V

4(t)) dt . (198)

Its Hamiltonian, therefore, can be written in the form:

H = −1
2

dV (t)
dt

+ 1

2
(α1 + Pα2)V 2(t) + α3 V

4(t) (199)

And

Ht=0 =
1

2
∆2(α1 + Pα2) +

1

4
α4∆

4 (200)

Ht −Ht=0 =
1

2

dV (t)
dt

+ 1

2
(α1 + Pα2)V 2(t) + α3 V

4(t) − 1

2
∆2(α1 + Pα2) −

1

4
α4∆

4 (201)
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We will use the trial function to determine the angular frequency ω, i.e.

V (t) = A cosω t (202)

If we substitute Eq. (204) into Eq. (203), it results the following residual equation

1
2
(−∆ω sin (ωt))2 + 1

2
(α1 + Pα2) (∆ cos (ω t))2 + 1

2
α3 (∆ cos (ωt))4

−1
2
∆2 (α1 + Pα2) − 1

4
α3∆

4 = 0 (203)

If we collocate atω t = π
4
we obtain:

1

4
∆2 ω2 − 1

4
∆2 (α1 + Pα2) −

3

16
α3∆

4 = 0 (204)

The non-linear natural frequency and the deflection of the beam center become as follows:

ωNL =
√
4 (α1 + Pα2) + 3α3∆2

2
(205)

According to Eq. (207) and Eq. (204), we can obtain the following approximate solution:

V (t) =∆cos(
√
4 (α1 + Pα2) + 3α3∆2

2
t) (206)

Non-linear to linear frequency ratio is:

ωNL

ωL
= 1

2

√
4 (α1 + pα2) + 3α3∆2

√
α1 + pα2

(207)

Table 7 shows the comparison of non-linear to linear frequency ratio (ωNL/ωL).

Table 7 Comparison of non-linear to linear frequency ratio (ωNL/ωL).

∆ Present Study Exact Pade approximate Pade approximate Error %
(EBM) solution P{4,2}[12] P{6,4}[12] (ωEBM − ωex) /ωex

0.2 1.044031 1.0438823 1.0438824 1.0438823 0.014211
0.4 1.16619 1.1644832 1.1644868 1.1644832 0.146604
0.6 1.345362 1.3397037 1.3397374 1.3397039 0.422385
0.8 1.56205 1.5505542 1.5506741 1.5505555 0.741395
1 1.802776 1.7844191 1.7846838 1.7844228 1.028712
1.5 2.462214 2.4254023 2.4261814 2.4254185 1.517775
2 3.162278 3.1070933 3.1084562 3.1071263 1.776077

To show the accuracy of Energy Balance Method (EBM) , comparisons of the time history

oscillatory displacement response for Euler-Bernoulli beams with exact solutions are presented

in Figs. 12 and 13.

It can be observed that the results of EBM require smaller computational effort and only a

first-order approximation leads to accurate solutions. The Influence of α3 on nonlinear to linear

frequency and α1are presented in figures 14 and 15. It has illustrated that Energy Balance
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Figure 12 Comparison of analytical solution of W (t)based on timewith the exact solution for simply supported
beam, ∆ = 0.6, α1 = 1, α2 = 0, α3 = 3
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Figure 13 Comparison of analytical solution of W (t)based on timewith the exact solution for simply supported
beam, ∆ = 1.5, α1 = 1, α2 = 0, α3 = 3
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Figure 14 Influence ofα3 on nonlinear to linear frequency base on ∆ forα1 = 1, α2 = 0.5, p = 2
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Figure 15 Influence ofα3 on nonlinear to linear frequency base on ∆ forα2 = 1, α3 = 3, p = 3

Method is a very simple method and quickly convergent and valid for a wide range of vibration

amplitudes and initial conditions. The accuracy of the results shows that the Energy Balance

Method can be potentiality used for the analysis of strongly nonlinear oscillation problems

accurately.

7 PARAMETER–EXPANSION METHOD (PEM)

Various perturbation methods have been applied frequently to analyze nonlinear vibration

equations. These methods are characterized by expansions of the dependent variables in power

series in a small parameter, resulting in a collection of linear deferential equations which can

be solved successively. He proposed the parameter expanding method for the first time in his

review article [100].The main property of the method is to use parameter-expansion technique

to eliminate the secular terms and to achieve the frequency. PEM was successfully applied to

various engineering problems [8, 42, 69, 97, 103, 118, 134, 147, 161, 190, 195–197, 201].

7.1 Basic idea of Parameter–Expansion Method

In order to use the PEM, we rewrite the general form of Duffing equation in the following

form[100]:

ü + εu + 1 .N(u, t) = 0. (208)

Where N(u, t) includes the nonlinear term. Expanding the solution u,ε as a coefficient of

u,and 1 as a coefficient of N(u, t), the series of p can be introduced as follows:

u = u0 + pu1 + p1 u2 + p2 u3 + ... (209)

ε = ω2 + pd1 + p1 d2 + p2 d3 + ... (210)
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1 = pa1 + p1 a2 + p2 a3 + ... (211)

Substituting (209)-(211) into (208)and equating the terms with the identical powers of p,

we have

p0 ∶ ü0 + ω2 u0 = 0 , (212)

p1 ∶ ü1 + ω2 u1 + d1u0 + a1N(u0, t) = 0 ,

⋮ (213)

Considering the initial conditions u0(0) = A and u̇0(0) = 0, the solution of (212) is u0 =
A cos(ω t). Substituting u0 into (213), we obtain

p1 ∶ ü1 + ω2 u1 + d1A cos (ω t) + a1N(A cos (ω t), t) = 0 . (214)

For achieving the secular term, we use Fourier expansion series as follows:

N(A cos (ω t), t) =
∞
∑
n=0

b2k+1 cos((2k + 1)ωt) . (215)

Substituting (215) into(214) yields;

p1 ∶ ü1 + ω2 u1 + (d1A + a1 b1 ) cos (ω t) = 0 . (216)

For avoiding secular term, we have

(d1A + a1 b1 ) = 0 . (217)

Setting p = 1 in (210)and (211) ,we have:

d1 = ε − ω2A = 0 , (218)

a1 = 1. (219)

Substituting (218) and (219) into (217), we will achieve the first-order approximation fre-

quency (208) .Note that, from (211) and (219) , we can find that ai = 0 for alli = 1,2,3,4, ...

7.2 Application of Parameter–Expansion Method

Example 1

To illustrate the basic solution procedure, we consider the following nonlinear oscillator:

ü + αu + β u3 = F0 cos ω t , u(0) = A , u̇(0) = 0. (220)

We rewrite it in this form
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ü + α .u + 1.(β u3 − F0 cos ω t) = 0. (221)

Assume that the solution can be expressed as a power series in an artificial Parameter to p

u = u0 + pu1 + p2u2 + ... , (222)

Where p is a bookkeeping parameter.

We assume that the coefficients α and 1 on the left side of Eq.(221) can be respectively

expanded into a series in p:

α = ω2 + pω1 + p2ω2 + ... , (223)

1 = a1p + a2p2 + ... . (224)

Substituting Eqs.(223) and (224) into Eq. (221) and equating the terms with the identical

powers p, we have:

p0 ∶ ü0 + ω2u0 = 0 , u0(0) = A, u̇0(0) = 0, (225)

p1 ∶ ü1 + ω2u1 + ω1u0 + a1β u3
0 − a1F0 cosω t = 0 (226)

Solving Eq.(225) , we have:

u0 = A cosω t (227)

Substituting the result into Eq. (226),we have:

ü1 + ω2u1 + ω1A cosω t + a1β A3 cos3 ω t − a1.F0 cosω t = 0 (228)

We have the following identity

cos3(ω t) = 3

4
cos(ω t) + 1

4
cos(3ω t) (229)

And

ü1 + ω2u1 + (ω1A +
3

4
a1βA

3 − a1F0) cosω t + A3

4
cos 3ω t = 0 (230)

No secular terms in u1 requires

ω1A +
3

4
a1βA

3 − a1F0 = 0 . (231)

If the first-order approximation is sufficient, then we set p = 1and from (223)and (224) we

have:

Latin American Journal of Solids and Structures 9(2012) 145 – 234



182 M. Bayat et al / Asymptotic methods: applications for nonlinear vibration

α = ω2 + ω1, (232)

1 = a1 . (233)

From Eqs. (231) , (232), (233) we obtain;

ω2 =
√

α + 3

4
βA2 − F0

A
(234)

If we assume α = ω2
n, β = µ, we have:

ωPEM =
√

ω2
n +

3

4
µA2 − F0

A
(235)

The same result was obtained in [162].

Example 2

Consider the following nonlinear oscillator[46, 132]:

ü + u3

1 + u2
= 0 , u(0) = A , u̇(0) = 0 (236)

We rewrite it in the form

ü + 0 . u + 1.üu2 + 1.u3 = 0 . (237)

Assume that the solution can be expressed as a power series in an artificial parameter p:

u=u0+pu1 + p2u2 + ... (238)

Where p is a bookkeeping parameter. We assume that the coefficients 0 and 1 on the left

side of Eq. (238) can be respectively expanded into a series in p

0=ω2+pω1 + p2ω2 + ... (239)

1 = a1p + a2p2 + ... (240)

1 = b1p + b2p2 + ... (241)

Substituting Eqs. (239), (240)and (241) into Eq. (237) and equating the terms with the

identical powers of p, we have

p0 ∶ ü0 + ω2u0 = 0, u0(0) = A , u̇0(0) = 0, (242)
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p1 ∶ ü1 + ω2u1 + ω1u0 + a1u0 + a1ü0u
2
0 + b1u3

0 = 0 , u1(0) = 0 , u̇1(0) = 0, (243)

The solution of Eq. (242) can be easily obtained

u0 = A cos ω t (244)

Substituting the result into Eq. (243), we have:

p1 ∶ ü1 + ω2u1 + (ω1A +
3

4
b1A

3 − 3

4
a1ω

2A3) cos (ω t) + 1

4
A3 (b1 − a1ω2) cos(3ω t) = 0. (245)

Using Fourier series expansion, we have

No secular terms in u1requires

ω1A +
3

4
b1A

3 − 3

4
a1ω

2A3 = 0. (246)

If the first-order approximation is sufficient, then we set p = 1 and from (239)and (240) we

have

0=ω2+ω1 (247)

1 = a1. (248)

1 = b1. (249)

From Eqs. (246),(247),(248) and (249), we have:

ωPEM =
√

3A2

4 + 3A2
(250)

Which agrees well with the exact solution The obtained frequency is valid for all 0 < A <∞.

Table 8 Comparison of approximate and exact frequencies[73].

A ωPEM ωExact
ωPEM−ωExact

ωExact
× 100

0.05 0.04232 0.04326 2.172908
0.1 0.08439 0.08628 2.190542
0.5 0.38737 0.39736 2.514093
1 0.63678 0.65465 2.729703
5 0.96698 0.97435 0.756402
10 0.99092 0.9934 0.249648

Which has an excellent agreement with the exact one for all 0 < A <∞[132].
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8 VARIATIONAL APPROACH (VA)

The study of nonlinear oscillators is an interest for many researchers, because there are many

practical engineering components consisting of vibrating systems that can be modeled using

oscillatory systems. Nonlinear analytical techniques for solving nonlinear problems have been

dominated by different methods of investigation of these problems which appeared in numerous

domains of physics and engineering. Overview of the literary texts with multiple mentions

has been given by many wordsmiths utilizing miscellaneous analytical methods for solving

nonlinear oscillation systems. Various variational methods have made, and will continue to

make, an impact in key areas for science and technology development. The method was

proposed by He in 2007[107]. He suggested a new variational method which is very effective

for nonlinear oscillators. The application of this method widely used in many scientific papers

[7, 16, 18, 21, 71, 119, 121, 135, 143, 151, 152, 154, 169, 175, 212].

8.1 Basic idea of Variational Approach

He suggested a variational approach which is different from the known variational methods in

open literature [107]. Hereby we give a brief introduction of the method:

u′′ + f(u) = 0 (251)

Its variational principle can be easily established utilizing the semi-inverse method:

J(u) = ∫
T /4

0
(−1

2
u′2 + F (u))dt (252)

Where T is period of the nonlinear oscillator,∂F/∂u = f .Assume that its solution can be

expressed as

u(t) = A cos(ωt) (253)

Where A and ω are the amplitude and frequency of the oscillator, respectively. Substituting

Eq.(253) into Eq.(252) results in:

J(A,ω) = ∫
T /4
0 (−1

2
A2ω2 sin2 ωt + F (A cosωt)) dt

= 1
ω ∫

π/2
0 (−1

2
A2ω2 sin2 t + F (A cos t)) dt

= −1
2
A2ω ∫

π/2
0 sin2 tdt + 1

ω ∫
π/2
0 F (A cos t)dt

(254)

Applying the Ritz method, we require:

∂J

∂A
= 0 (255)

∂J

∂ω
= 0 (256)

But with a careful inspection, for most cases we find that
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∂J

∂ω
= −1

2
A2∫

π/2

0
sin2 tdt − 1

ω2 ∫
π/2

0
F (A cos t)dt < 0 (257)

Thus, we modify conditions Eq. (255) and Eq. (256) into a simpler form:

∂J

∂ω
= 0 (258)

From which the relationship between the amplitude and frequency of the oscillator can be

obtained.

8.2 Application of Variational Approach

Example 1

We consider the physical model of nonlinear equation in the following figure with F (t) =
F0 sinω0t, indicated in Fig. 16.

 
Figure 16 The physical model of nonlinear equation.

The motion equation is:

θ̈ + 4k

3m
sin θ − 3F0

ml
sinω0t = 0, θ(0) = A , θ̇(0) = 0 (259)

This equation is as known as Mathieu equation or the system with dependent coefficients

to time. In which θ and t are generalized dimensionless displacements and time variables,

respectively. And consider F = 4
3

k
m

as constant.

The approximation sin(θ) = θ − (1/6)θ3 + (1/120)θ5is used.
Its variational formulation can be readily obtained Eq. (259) as follows:

J(θ) = ∫
t

0
(1
2
θ̈2 + 2

3

k

m
θ2 − 1

18

k

m
θ4 + 1

540

k

m
θ6 − 3F0sin(ω0t)

ml
θ)dt (260)

Choosing the trial function θ(t) = A cos (ωt) into Eq.(260) we obtain:

J(A) = ∫
T /4

0
(

1
2
A2ω2sin2(ωt) + 2

3
k
m
A2 cos2(ωt) − 1

18
k
m
A4 cos4(ωt)

+ 1
540

k
m
A6 cos6(ωt) − 3F0sin(ω0t)

ml
A cos(ωt)

)dt (261)

The stationary condition with respect to A leads to:
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∂J

∂A
= ∫

T /4

0
(

Aω2sin2(ωt) + 4
3

k
m
A cos2(ωt) − 2

9
k
m
A3 cos4(ωt)

+ 1
90

k
m
A5 cos6(ωt) − 3F0sin(ω0t)

ml
cos(ωt)

) dt = 0 (262)

Or

∂J

∂A
= ∫

π/2

0
(

Aω2sin2t + 4
3

k
m
A cos2 t − 2

9
k
m
A3 cos4 t

+ 1
90

k
m
A5 cos6 t − 3F0sin(ω0t)

ml
cos t

) dt = 0 (263)

Solving Eq.(263), according to ω, we have:

ω 2 =
∫

π
2

0 (
4
3

k
m
A cos2 t − 2

9
k
m
A3 cos4 t + 1

90
k
m
A5 cos6 t − 3F0sin(ω0t)

ml
cos t)dt

∫
π
2

0 Asin2t dt
(264)

Then we have:

ω V AM =
1

12

¿
ÁÁÀ1728F0sin (12πω0) − 1728F0ω0 + kAlπ (ω2

0 − 1) (192 +A4 − 24A2)
(mω2

0 −m)lAπ
(265)

According to Eqs. (253) and (265), we can obtain the following approximate solution:

θ(t) = A cos( 1
12

¿
ÁÁÀ1728F0sin (12πω0) − 1728F0ω0 + kAlπ (ω2

0 − 1) (192 +A4 − 24A2)
(mω2

0 −m)lAπ
t) (266)

We compared the numerical solution and variational approach method for different param-

eters:

 0 1 2 3 4

-0.4

-0.2

0.0

0.2

0.4

0.6

θ 
(t

) 

time

 VA
 NUM

Figure 17 Comparison of analytical solution of θ based on time with the numerical solution for
L=0.5 m , m=20 kg , k=800 N/m , F0=1N , ω0=2 rad/sec , A=π/6.
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Figure 18 Comparison of analytical solution of θ based on time with the numerical solution for L=0.5 m ,
m=20 kg , k=800 N/m , F0=1N , ω0=2 rad/sec , A=π/6.

Figure 17 represents a comparison of analytical solution of θ(t) based on time with the

numerical solution and Figure 18 shows comparison of analytical solution of dθ/dt based on

time with the numerical solution.

Example 2

In this example, we consider the following nonlinear oscillator [71]:

( 1

12
l2 + r2 θ2) θ̈ + r2θ θ̇2 + r g θ cos (θ) = 0 (267)

With the boundary conditions of:

θ(0) = A, θ̇(0) = 0 (268)

In order to apply the variational approach method to solve the above problem, the approx-

imation cos θ ≈ 1 − 1
2
θ2 + 1

24
θ4 is used.

Its variational formulation is:

J(θ) = ∫
T /4

0
(− 1

24
l2θ̇2 − 1

2
r2θ2 θ̇2 + 1

2
r g θ2 − 1

8
r g θ4 + 1

144
g r θ6) dt (269)

Choosing the trial function θ(t) = A cos(ω t) into Eq.(269) we obtain

J(A, ω) = ∫
T /4

0
( −

1
24
l2 (Aω sin (ωt))2 − 1

2
r2 (A cos (ω t))2 (Aω sin (ωt))2

+1
2
r g (A cos (ω t))2 − 1

8
r g (A cos (ω t))4 + 1

144
g r (A cos (ω t))6

) dt (270)

The stationary condition with respect to A reads:
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∂J

∂A
= ∫

T /4

0
( −

1
12

l2ω2Asin2 (ω t) − 2 r2ω2A3 sin2 (ω t) cos2 (ωt)
+ r g Acos2 (ω t) − 1

2
r g A3 cos4 (ω t) + 1

24
r g A5 cos6 (ω t) ) dt = 0 (271)

Or

∂J

∂A
= ∫

π/2

0
( −

1
12
l2Asin2 t ω2 − 2 r2 ω2A3 sin2 t cos2 t

+ r g Acos2 t − 1
2
r g A3 cos4 t + 1

24
r g A5cos6 t

) dt = 0 (272)

Then we have ;

ω2 = ∫
π/2
0 (r gAcos2 t− 1

2r gA3 cos4 t+ 1
24r gA5cos6 t)dt

∫
π/2
0 ( 1

12 l2Asin2 t+2 r2 A3 sin2 t cos2 t)dt (273)

Solving Eq. (273), according to ω, we have:

ω = 1

4

√
r g (192 − 72A2 + 5A4)

6A2r2 + l2
(274)

Hence, the approximate solution can be readily obtained:

θ(t) = A cos
⎛
⎝
1

4

√
r g (192 − 72A2 + 5A4)

6A2r2 + l2
t
⎞
⎠

(275)

For comparison of the approximate solution, frequency obtained from solution of nonlinear

equation with the Variational Approach is:

ω V A =
√
6

12

√
r g (288 − 108A2 + 7A4)

6A2r2 + l2
(276)

The numerical solution (with Runge-Kutta method of order 4) for nonlinear equation is:

θ̇ = y θ(0) = A

ẏ = −r
2θu2 + r g θ cos(θ)

1
12

l2 + r2 θ2
y(0) = 0 (277)

We compared the numerical solution with the variational approach in Figs 8.4 and 8.5.

Fig. 19 shows the displacement of the system for l=2.5, r=0. 5, g=10, A=1. Fig. 20 represents

the variation of frequency various parameters of amplitude (A).Comparing with the numerical

results, it has been shown that the results of VA require smaller computational effort and only

a first-order approximation of the VA leads to high accurate solutions.
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Figure 19 Comparison of (θ)of the VA solution and Runge-Kutta solution
l=2.5, r=0. 5, g=10 , A=1
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ω
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Figure 20 variation of the frequency respect to amplitude (A) for
l=2.5, r=0. 5, g=10

Example 3

The mathematical pendulum is considered again as an example. The differential equation

governing for the free oscillation of the mathematical pendulum is given by [138]

θ̈ −Ω2cos (θ) sin (θ) + g

r
sin (θ) = 0 (278)

With the boundary conditions of:

θ (0) = A, θ̇ (0) = 0 (279)
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In order to apply the variational approach method to solve the above problem, the approx-

imation cos θ ≈ 1 − 1
2
θ2 + 1

24
θ4and sin θ ≈ θ − 1

6
θ3 is used.

Its variational formulation can be readily obtained as follows:

J(θ) = ∫
T /4

0
(−1

2
θ̇ 2 − 1

2
Ω2 θ 2 + 1

6
Ω2θ4 − 1

48
Ω2θ6 + 1

1152
Ω2θ8 + 1

2

g

r
θ2 − 1

24

g

r
θ4) dt (280)

Choosing the trial function θ(t) = A cos(ω t) into Eq.(281) we obtain

J(A, ω) = ∫
T /4

0

⎛
⎜⎜
⎝

−1
2
(Aω sin (ωt))2 − 1

2
Ω2 (A cos (ω t)) 2 + 1

6
Ω2 (A cos (ω t))4

− 1
48
Ω2 (A cos (ω t))6 + 1

1152
Ω2 (A cos (ω t))8 + (1

2
)g
r
(A cos (ω t))2

−( 1
24
)g
r
(A cos (ω t))4

⎞
⎟⎟
⎠
dt

(281)

The stationary condition with respect to A reads:

∂J

∂A
= ∫

T /4

0
( −Aω2sin2 (ωt) −Ω2Acos2 (ωt) + 2

3
Ω2A3cos4 (ωt) − 1

8
Ω2A5cos6 (ωt)

+ 1
144

Ω2A7cos8 (ωt) + g
r
Acos2 (ωt) − 1

6
g
r
A3cos4 (ωt) ) dt = 0

(282)

Or

∂J

∂A
= ∫

π/2

0
( −Aω2sin2 t −Ω2Acos2 t + 2

3
Ω2A3cos4 t − 1

8
Ω2A5cos6t

+ 1
144

Ω2A7cos8 t + g
r
Acos2 t − 1

6
g
r
A3cos4 t

) dt = 0 (283)

Then we have;

ω2 =
∫

π/2
0 ( −Ω

2Acos2 t + 2
3
Ω2A3cos4 t − 1

8
Ω2A5cos6t + 1

144
Ω2A7cos8 t

+g
r
Acos2 t − 1

6
g
r
A3cos4 t

) dt

A ∫
π/2
0 sin2 t dt

(284)

Solving Eq. (284), according to ω, we have:

ω = 1

96

√
−9216Ω2 + 4608Ω2A2 − 720Ω2A4 + 35Ω2A6 + 9216 g

r
− 1152 g

r
A2 (285)

Hence, the approximate solution can be readily obtained:

θ (t) = A cos( 1

96

√
−9216Ω2 + 4608Ω2A2 − 720Ω2A4 + 35Ω2A6 + 9216 g

r
− 1152 g

r
A2 t) (286)

To compare the results of VA, frequency obtained from VA is:
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ω V A =
√
6

96

√
−1536Ω2 + 768Ω2A2 − 112Ω2A4 + 5Ω2A6 + 1536 g

r
− 192 g

r
A2 (287)

The numerical solution (with Runge-Kutta Method of order 4) for nonlinear equation is:

θ̇ = yθ(0) = A
ẏ = Ω2cos (θ) sin (θ) − g

r
sin (θ) y(0) = 0 (288)

 time
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Figure 21 Comparison of displacement (θ) of the VA solution and Runge-kutta solution for
Ω =1, r= 5, g=10, A=0.5
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Figure 22 Comparison of velocity (θ̇) of the VA solution and Runge-kutta solution for
Ω =1, r= 5, g=10, A=0.5

Some comparisons are presented to show the accuracy of the method. Figures 21 and 22

show comparison of analytical solution of θ and θ̇ based on time with the numerical solution.

The variation of amplitude A on the frequency of the system is shown in figure 23. It can

be approved that VA is powerful in finding analytical solutions for a wide class of nonlinear

problems.
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Figure 23 variation of the frequency respect to amplitude (A)for
Ω =1, r= 5, g=10

9 IMPROVED AMPLITUDE-FREQUENCY FORMULATION (IAFF)

Most of engineering problems, especially some oscillation equations are nonlinear, and in most

cases, it is difficult to solve such equations, especially analytically. One of the well-known

methods to solve nonlinear problems is improved amplitude frequency formulation (IAFF). He

in his previous review paper [100] in traduced the Ancient Chinese method including improved

amplitude frequency formulation (IAFF). Geng and Cai [74]found the method to be very

effective in solving strongly nonlinear oscillators. To illustrate the basic idea of the method,

we consider an algebraic equation, this method applied correctly in many open literatures

[1, 38, 52, 72, 106, 108, 109, 163–165, 182, 183, 200, 211, 214–216].

9.1 Basic idea of Improved Amplitude-Frequency Formulation

We consider a generalized nonlinear oscillator in the form [109]:

u′′ + f(u) = 0, u(0) = A,u′(0) = 0, (289)

We use two following trial functions

u1(t) = A cos(ω1t), (290)

And

u2(t) = A cos(ω2t), (291)

The residuals are

R1(ωt) = −Aω2
1 cos(ω1t) + f (A cos(ω1t)) , (292)
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And

R2(ωt) = −Aω2
2 cos(ω2t) + f (A cos(ω2t)) , (293)

The original Frequency-amplitude formulation reads :

ω2 = ω2
1R2 − ω2

2R1

R2 −R1
, (294)

He used the following formulation [100] and Geng and Cai improved the formulation by

choosing another location point [74].

ω2 = ω2
1R2(ω2t = 0) − ω2

2R1(ω1t = 0)
R2 −R1

, (295)

This is the improved form by Geng and Cai.

ω2 = ω2
1R2(ω2t = π/3) − ω2

2R1(ω1t = π/3)
R2 −R1

, (296)

The point is:cos(ω1t) = cos(ω2t) = k
Substituting the obtained ω into u(t) = A cos(ωt) , we can obtain the constant k inω2

equation in order to have the frequency without irrelevant parameter.

To improve its accuracy, we can use the following trial function when they are required.

u1(t) =
m

∑
i=1

Ai cos (ωit), and u2(t) =
m

∑
i=1

Ai cos(Ωit) (297)

or

u1(t) =

m

∑
i=1

Ai cos(ωit)
m

∑
j=1

Bj cos(ωjt)
, and u2(t) =

m

∑
i=1

Ai cos(Ωit)
m

∑
j=1

Bj cos(Ωjt)
, (298)

But in most cases because of the sufficient accuracy, trial functions are as follow and just

the first term:

u1(t) = A cos t, and u2(t) = a cos(ωt) + (A − a) cos(ωt), (299)

And

u1(t) = A cos t, and u2(t) =
A(1 + c) cos(ωt)
1 + c cos(2ωt)

, (300)

Where a and c are unknown constants. In addition we can set: cos t = k in u1, and

cos (ωt) = k in u2.
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9.2 Application of Improved Amplitude-Frequency Formulation

In this section, three practical examples are illustrated to show the applicability, accuracy and

effectiveness of the proposed approach.

Example 1

A two-mass system connected with linear and nonlinear stiffnesses. Consider the two-mass

system model as shown in Fig. 24. The equation of motion is given as [44];

mẍ + k1(x − y) + k2(x − y)3 = 0
mÿ + k1(y − x) + k2(y − x)3 = 0

(301)

With initial conditions

x(0) =X0, ẋ(0) = 0,
y(0) = Y0, ẏ(0) = 0, (302) 

Figure 24 Two masses connected by linear and nonlinear stiffnesses.

Where double dots in Eq. (301) denote double differentiation with respect to time t, k1
and k2 are linear and nonlinear coefficients of the spring stiffness, respectively. Dividing Eq.

(301) by mass m yields

ẍ + k1

m
(x − y) + k2

m
(x − y)3 = 0

ÿ + k1

m
(y − x) + k2

m
(y − x)3 = 0 (303)

Introducing intermediate variables u and ν as follows [127]:

x ∶= u (304)

y − x ∶= ν (305)

And transforming Eqs. (304) and (305) yields

ü − αν − βν3 = 0 (306)

ν̈ + ü + αν + βν3 = 0 (307)

Where α = k1/m and α = k2/m Eq. (306) is rearranged as follows:
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ü = αν − βν3. (308)

Substituting Eq. (178) into Eq. (307) yields

ν̈ + 2αν + 2βν3 = 0 (309)

With initial conditions

ν(0) = y(0) − x(0) = Y0 −X0 = A, ν̇(0) = 0 (310)

We use trial functions, as follows:

ν1(t) = A cos t, (311)

And

ν2(t) = A cos (2 t), (312)

Respectively, the residual equations are:

R1(t) = Acos(t) (−1 + 2α + 2βA2cos2(t)) , (313)

And

R2(t) = 2Acos(2 t) (−2 + α + βA2cos2(2 t)) , (314)

Considering cos t1 = cos 2 t2 = k, we have:

ω2 = ω2
1R2 − ω2

2R1

R2 −R1
= 2α + 2βk2A2, (315)

We can rewrite ν(t) = A cos(ω t) in the form:

ν(t) = A cos (
√
2α + 2βk2A2 t) , (316)

In view of the approximate solution, we can rewrite the main equation in the form:

ν̈ + (2α + 2β k2A2)ν = (2β k2A2)ν − 2β ν3 (317)

If by any chance ν(t) = A cos(
√
2α + 2βk2A2 t) is the exact solution, then the right side of

Eq. (317) vanishes completely. Considering our approach which is just an approximation one,

we set:

∫
T /4

0
(2βk2A2ν − 2βν3) cos ωtdt = 0 , T = 2π/ω (318)
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Considering the term ν(t) = A cos (
√
2α + 2βk2A2 t)and substituting the term to Eq. (318)

and solving the integral term, we have:

k = 1

2

√
3 , (319)

So, substituting Eq. (319) into Eq. (315), we have:

ωIAFF =
1

2

√
8α + 6βA2 (320)

Table 9 Comparison of nonlinear frequencies in Eq. (320) with e exact solution

Constants Results
m k1 k2 X0 Y0 IAFF solutionω Exact solutionωExact Relative error %
1 5 5 5 1 11.4018 11.1921 1.873643
1 1 1 10 -5 18.4255 18.0302 2.192433
1 10 5 20 25 14.4049 14.1514 1.791342
5 10 10 20 30 17.4356 17.0672 2.158526
10 50 -0.01 -20 40 2.1448 2.0795 3.140178

 time
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Figure 25 Comparison of the analytical approximates with the exact solution [44] for k1 = 5 , k2 = 5, with
x(0) = 5

The first-order approximate solutions is of a high accuracy and the percentage error im-

proves significantly from lower order to higher order analytical approximations for different

parameters and initial amplitudes. Hence, it is concluded that excellent agreement with the

exact so. Table 9 gives the comparison of obtained results with the exact solutions for different

m, k1, k2, and initial conditions. The maximum relative error between the IAFF results and

exact results is 3.140178%.A comparison of the time history oscillatory displacementresponse

for the two masses with exact solutionsare presented in Figs. 25 to 28.
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Figure 26 Comparison of the analytical approximates with the exact solution [44] for k1 = 5 , k2 = 5, with
y(0) = 1
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Figure 27 Comparison of the analytical approximates with the exact solution [44]fork1 = 5 , k2 = 5, withx(0) =
10
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Figure 28 Comparison of the analytical approximates with the exact solution [44] fork1 = 5 , k2 = 5, withy(0) =
−5
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Example 2

Consider a two-mass system connected with linear and nonlinear springs and fixed to a body

at two ends as shown in Fig. 29 [43].

mẍ + k1x + k2(x − y) + k3(x − y)3 = 0
mÿ + k1x + k2(y − x) + k3(y − x)3 = 0

(321)

With initial conditions

x(0) =X0, ẋ(0) = 0,
y(0) = Y0, ẏ(0) = 0, (322) 

Figure 29 Two-mass system connected with the fixed bodies.

Where double dots in Eq. (321) denote double differentiation with respect to time , k1 and

k2 are linear and nonlinear coefficients of the spring stiffness and k3 is the nonlinear coefficient

of the spring stiffness. Dividing Eq. (321) by mass m yields

ẍ + k1

m
x + k2

m
(x − y) + k3

m
(x − y)3 = 0

ÿ + k1

m
x + k2

m
(y − x) + k3

m
(y − x)3 = 0 (323)

Like in Example 1, transforming the above equations using intermediate variables in Eqs.

(304) and (305) yields;

ü + αu − βν − ξν3 = 0 (324)

ü + ν̈ + αu − αν + βν + ξν3 = 0 (325)

Where α = k1/m,β = k2/m and ξ = k3/m. Eq. (324) is rearranged as follows:

ü = −αu + βν + ξν3 (326)

Substituting Eq. (326) into Eq. (325) yields

ν̈ + (α + 2β)ν + 2ξν3 = 0 (327)

With initial conditions

ν(0) = y(0) − x(0) = Y0 −X0 = A, ν̇(0) = 0 (328)

We use trial functions, as follows:
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ν1(t) = A cos t, (329)

And

ν2(t) = A cos (2 t), (330)

Respectively, the residual equations are:

R1(t) = Acos(t) (−1 + α + 2β + 2ξA2cos2(t)) , (331)

And

R2(t) = Acos(2 t) (−4 + α + 2β + 2ξA2cos2(2t)) , (332)

Considering cos t1 = cos 2 t2 = k, we have:

ω2 = ω2
1R2 − ω2

2R1

R2 −R1
= α + 2β + 2ξk2A2, (333)

We can rewrite ν(t) = A cos (ωt) in the form:

ν(t) = A cos(
√
α + 2β + 2ξk2A2 t) , (334)

In view of the approximate solution, we can rewrite the main equation in the form:

ν̈ + (α + 2β + 2 ξ k2A2)ν = (2 ξ k2A2)ν − 2 ξ ν3 (335)

If by any chance Eq. (334)is the exact solution, then the right side of Eq. (335) vanishes

completely. Considering our approach which is just an approximation one, we set:

∫
T /4

0
(2ξk2A2ν − 2ξν3) cos ωtdt = 0 T = 2π/ω (336)

Considering the term ν(t) = A cos(
√
2α + 2βk2A2 t)and substituting the term to Eq. (336)

and solving the integral term, we have:

k = 1

2

√
3 , (337)

So, substituting Eq. (337) into Eq. (333), we have:

ωIAFF =
1

2

√
4α + 8β + 6ξA2 (338)

Table 10 shows an excellent agreement of the IAFF and exact solutions. From the Figs.

30 to 33, motions of the systems are periodic motions and the amplitude of vibrations is

function of the initial conditions. These expressions are valid for a wide range of vibration

amplitudes and initial conditions. The proposed methods are quickly convergent and can also

be readily generalized to two-degree-of-freedom oscillation systems with quadratic nonlinearity

by combining the transformation technique.
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Table 10 Comparison of angular frequencies in Eq. (338) with exact solution.

Constants Results
m k1 k2 k3 X0 Y0 IAFF solutionω Exact solution ωExact Relative error
1 1 1 1 5 1 5.1961 5.1078 1.728729
1 1 1 5 5 10 13.8022 13.5121 2.146965
1 25 20 -0.05 -10 10 1.8708 1.8413 1.602129
5 10 20 30 -10 10 60.0833 58.7856 2.207513
10 50 70 90 20 -40 220.4972 215.7113 2.21866
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Figure 30 Comparison of the analytical approximates with the exact solution [43] fork1 = 5 , k2 = 5, k3 = 1
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Example 3

In order to assess the advantages and the accuracy of Improved Amplitude-frequency Formu-

lation for solving nonlinear oscillator, we will consider the following nonlinear oscillator;

ü + auu̇2 + auü + α1u + α2u
3 + α3u

5 = 0, (339)

with the initial conditions of:

u(0) = A , u̇(0) = 0 , (340)

We use trial functions, as follows:

u1(t) = A cos t, (341)
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And

u2(t) = A cos (2t), (342)

Respectively, the residual equations are:

R1(t) = A cos(t) (−2aA2 cos2 (t) + aA2 − 1 + α1 + α2A
2 cos 2(t) + α3A

4 cos4(t)) , (343)

And

R2(t) = A cos (2t) (−8aA2 cos2(2t) + 4aA2 − 4 + α1 + α2A
2 cos2(2t) + α3A

4 cos4(2t)) , (344)

Considering cos t = cos 2 t = k, we have:

ω2 = ω2
1R2 − ω2

2R1

R2 −R1
= α1 + α2A

2k2 + α3A
4k4

2aA2k2 − aA2 + 1
, (345)

We can rewrite u(t) = A cos (ω t)in the form:

u(t) = A cos
⎛
⎝

√
α1 + α2A2k2 + α3f4k4

2aA2k2 − aA2 + 1
t
⎞
⎠
, (346)

In view of the approximate solution, we can rewrite the main equation in the form:

ü + α1 + α2A
2k2 + α3f

4k4

2aA2k2 − aA2 + 1
u = α1 + α2A

2k2 + α3f
4k4

2aA2k2 − aA2 + 1
u − auu̇2 + uü − α1u − α2u

3 − α3u
5, (347)

If by any chance u(t) = A cos (
√

α1+α2A2k2+α3A4k4

2aA2k2−aA2+1 t) is the exact solution, then the right

side of Eq.(347) vanishes completely. Considering our approach which is just an approximation

one, we set:

∫
T

0
[

α1+α2A
2k2+α3f

4k4

2aA2k2−aA2+1 u

−au u̇2 + u ü − α1u − α2u
3 − α3u

5
] cos(ω t)dt = 0 , T = 2π

ω
, (348)

Considering the term u(t) = A cos(ω t)and substituting the term to Eq. (349) and solving

the integral term, we have:

k4 = 1
16

1
A4α2

3(aA2+2)2 ( 5A
4α3a + 8α1a + 4A2α2a − 4α2

+ ( 5A8α2
3a

2 + 32A4α3a
2α1 + 16A6α3a

2α2 − 64A4α3aα2 + 64α2
1a

2 + 64α1a
2A2α2 − 64α1aα2

+ 16A4α2
2a

2 − 32A2α2
2a + 16α2

2 − 20A6α2
3a + 48A2α3α2 + 40A4α2

3 − 96A2α3α1a )
1
2 )2 ,

(349)
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So, substituting Eq. (349) into Eq. (345), we have:

ω = 1

2

√
5A4α3 + 6A2α2 + 8α1

aA2 + 2
, (350)

We can obtain the following approximate solution:

u(t) = A cos (1
2

√
5A4α3 + 6A2α2 + 8α1

aA2 + 2
t), (351)
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-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

u(
t)

time

 IAFF
 RKM

Figure 34 Comparison of displacement u(t)of the IAFF solution with the RKM solutionA = 0.5 , a = 0.5 , α1 =
1 , α2 = 1 , α3 = 1

 0 1 2 3 4 5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

u(
t)

time

 IAFF
 RKM

Figure 35 Comparison of u(t) of the IAFF solution with the RKM solution
A = 2 , a = 0.8 , α1 = 0.5 , α2 = 0.6 , α3 = 0.2

Figs. 34 and 35 represent a comparison of the analytical solution of u(t) based on time

with the numerical solution. The time history diagram of u(t) starts without an observable

deviation with A = 0.5 and A = 2. The behavior of the system is a periodic motion and the
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amplitude of vibration is a function of the initial conditions. The best accuracy can be seen at

extreme points. Although deviations of solutions are expected to increase as time progresses,

the analytical solutions have adequate accuracy for the period shown

10 MAX-MIN APPROACH (MMA)

In this section, we consider a novel method called Max-Min Approach (MMA). Maximal and

minimal solution thresholds of a nonlinear problem can be easily found, and an approximate

solution of the nonlinear equation can be easily deduced using He Chengtian’s interpolation,

which has millennia history. Some examples are illustrated to show the efficiency and accuracy

of the proposed method for high nonlinear vibration problems. This methodology has been uti-

lized to achieve approximate solutions for nonlinear free vibration of conservative thick circular

sector slabs. In Max-Min Approach (MMA), contrary to the conventional methods, only one

iteration leads to high accuracy of solutions. Max-Min Approach (MMA) operates very well in

the whole range of the parameters involved. Excellent agreement of the approximate frequen-

cies and periodic solutions with the exact ones could be established. Some patterns are given to

illustrate the effectiveness and convenience of the methodology. It has been indicated that the

numerical results have same conclusion; while MMA is much easier, more convenient and more

efficient than other approaches. The MMA is a novel method which alleviates drawbacks of the

traditional numerical techniques. The method first was proposed by He [110].The application

of this method widely used in many scientific papers [13, 20, 23, 70, 73, 171, 188, 207].

10.1 Basic idea of Max-Min Approach

We consider a generalized nonlinear oscillator in the form

ü + uf(u) = 0, u(0) = A, u̇(0) = 0, (352)

Where f(u) is a non-negative function of u. According to the idea of the max–min method,

we choose a trial-function in the form

u(t) = A cos (ω t), (353)

Where ω the unknown frequency to be further is determined.

Observe that the square of frequency, ω2, is never less than that in the solution

u1(t) = A cos (
√
fmin t), (354)

of the following linear oscillator

ü + ufmin = 0, u(0) = A, u̇(0) = 0, (355)

Where fmin is the minimum value of the functionf(u).
In addition, ω2 never exceeds the square of frequency of the solution
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u1(t) = A cos (
√
fmax t), (356)

of the following oscillator

ü + ufmax = 0, u(0) = A, u̇(0) = 0, (357)

Where fmax is the maximum value of the function f(u).
Hence, it follows that

fmin

1
< ω2 < fmax

1
. (358)

According to He Chentian interpolation [110, 112], we obtain

ω2 = mfmin + nfmax

m + n
, (359)

Or

ω2 = fmin + k fmax

1 + k
, (360)

Where m and n are weighting factors, k = n/m. So the solution of Eq. (352) can be expressed

as

u(t) = A cos

√
fmin + k fmax

1 + k
t, (361)

The value of k can be approximately determined by various approximate methods [105,

110, 112]. Among others, hereby we use the residual method [110]. Substituting (361) into

(352) results in the following residual:

R(t;k) = −ω2A cos(ω t) + (A cos(ω t)) ⋅ f (A cos(ω t)) (362)

Where ω =
√

fmin+k fmax

1+k
If, by chance, Eq. (361) is the exact solution, then R(t;k) is vanishing completely. Since

our approach is only an approximation to the exact solution, we set

∫
T

0
R(t;k) cos

√
fmin + k fmax

1 + k
t dt = 0, (363)

where T = 2π/ω. Solving the above equation, we can easily obtain

k = fmax − fmin

1 −
√

A
π ∫

π
0 cos2 x.f (A cos x)dx

. (364)

Substituting the above equation into Eq. (361), we obtain the approximate solution of Eq.

(352).
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10.2 Application of Max-Min Approach

In this section, three examples are illustrated and solved to show the applicability, accuracy

and effectiveness of Max-Min Approach.

Example 1

We can re-write Eq. (309) from the previous section in the following form;

ν̈ + (2α + 2βν2)ν = 0. (365)

We choose a trial-function in the form

ν = A cos (ωt) (366)

Where ω the frequency to be is determined the maximum and minimum values of 2α+2βν2
will be 2α + 2βA2 and 2α respectively, so we can write:

2α

1
< ω2 = 2α + 2βν2 < 2α + 2βA2

1
(367)

According to He Chengtian’s inequality , we have

ω2 = m.2α + n.(2α + 2βA2)
m + n

= 2α + 2k βA2 (368)

Where m and nare weighting factors, k = n/m + n. Therefore the frequency can be approx-

imated as:

ω =
√
2α + 2k βA2 (369)

Its approximate solution reads

ν = A cos
√
2α + 2k βA2 t (370)

In view of the approximate solution, Eq.(370) we re-write Eq.(365) in the form

ν̈ + (2α + 2k βA2)ν = (2α + 2k βA2)ν − 2βν3 (371)

If by any chance Eq.(370) is the exact solution, then the right side of Eq.(371) vanishes

completely. Considering our approach which is just an approximation one, we set:

∫
T /4

0
(2k βA2ν − 2βν3) cos ωtdt = 0 (372)

Where T = 2π/ω. Solving the above equation, we can easily obtain

k = 3

4
(373)
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Finally the frequency is obtained as

ω = 1

2

√
8α + 6βA2 (374)

According to Eqs. (366) and (374) , we can obtain the following approximate solution:

ν(t) = A cos(1
2

√
8α + 6βA2 t) (375)

The first-order analytical approximation for u(t)is

u(t) =∬ (αν + βν3)dt dt = − 1

9ω2
A cos(ωt) (9α + 6βA2 +Aβ cos2(ωt)) . (376)

Therefore, the first-order analytical approximate displacements x(t) and y(t) are

x(t) = u(t)
x(t) = u(t) +A cos (ωt) (377)

Table 11 Comparison of frequency corresponding to various parameters of the system.

Constant parameters Approximate Solution Exact solution Relative error %
m k1 k2 X0 Y0 ωMMA ω Exact[44]

ωMMA−ωEx

ωEx

1 0.5 0.5 1 5 3.605551 3.539243 1.873506
1 1 1 5 1 5.09902 5.005246 1.873506
5 2 0.5 5 10 4.421538 4.333499 2.031592
10 5 5 10 20 8.717798 8.533586 2.158667
20 40 50 20 10 19.46792 19.05429 2.17082
50 100 50 -10 20 36.79674 36.00234 2.206522

From table 11, the relative error of the MMA is 2.2065% for the first-order analytical ap-

proximations, for different values of m,k1, k2,X0 and Y0. The first-order approximate solution

gives an excellent agreement with the exact one.To further illustrate and verify the accuracy

of this approximate analytical approach, a comparison of the time history oscillatory displace-

ment and velocity responses for the two masses with exact solutions is depicted in Figs. 36

and 37. Figs. 38 and 39 represent the effects of amplitude on the phase plan of the system. It

is apparent that the first-order analytical approximations show excellent agreement with the

exact solution using the Jacobi elliptic function.

Example 2

A two-mass system connected with linear and nonlinear stiffnesses fixed to the body was solved

by IAFF is considered again in this section. We can re-write Eq. (327) in the following form;

ν̈ + ((α + 2β) + 2ξν2)ν = 0 (378)
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Figure 36 Comparison of analytical solution of displacement x(t)and y(t)based on time twith the exact
solution[44] for m = 10, k1 = 5, k2 = 5 , X0 = 10, Y0 = 20
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Figure 37 Comparison of analytical solution of dx/dt and dy/dt based on time t with the exact solution [44]
for m = 10, k1 = 5, k2 = 5X0 = 10, Y0 = 20
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Figure 38 Comparison of analytical solution of dx/dt based on x(t) with the exact solution [44] for m =
10, k1 = 5, k2 = 5
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Figure 39 Comparison of analytical solution of dy/dt based on y(t) with the exact solution [44] for m =
10, k1 = 5, k2 = 5

We choose a trial-function in the form

ν = A cos (ωt) (379)

Where ω the frequency to be is determined the maximum and minimum values of α+ 2β +
2ξν2 will be α + 2β + 2ξA2 and α + 2β respectively, so we can write:

α + 2β
1
< ω2 = α + 2β + 2ξν2 < α + 2β + 2ξA2

1
(380)

According to He Chengtian’s inequality , we have

ω2 = m.(α + 2β) + n.(α + 2β + 2ξA2)
m + n

= α + 2β + 2ξkA2 (381)

Where m and n are weighting factors, k = n/m + n. Therefore the frequency can be

approximated as:

ω =
√
α + 2β + 2ξkA2 (382)

Its approximate solution reads

ν = A cos
√
α + 2β + 2ξkA2 t (383)

In view of the approximate solution, Eq. (382) we re-write Eq. (378)in the form;

ν̈ + (α + 2β + 2ξkA2)ν = (2ξkA2) ν − 2ξν3 (384)

If by any chance Eq. (383) is the exact solution, then the right side of Eq.(384) vanishes

completely. Considering our approach which is just an approximation one, we set:
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∫
T /4

0
(2ξkA2ν − 2ξν3 ) cos ωtdt = 0 (385)

Where T = 2π/ω. Solving the above equation, we can easily obtain

k = 3

4
(386)

Finally the frequency is obtained as

ω = 1

2

√
4α + 8β + 6ξA2 (387)

According to Eqs. (387) and (379) , we can obtain the following approximate solution:

ν(t) = A cos(1
2

√
4α + 8β + 6ξA2 t) (388)

The first-order analytical approximation for u(t)is

u(t) = −cos(
√
αt)(−X0 α2+10X0 αω2−9X0 ω4+ξA3α−7ξA3ω2−9Aβω2+Aαβ)

α2−10αω2+9ω4

−27A(cos(ωt)((ξA2+ 4
3β)(ω

2− 1
9α))+cos(3ωt)( 1

27ξA
2(ω2−α)))

4α2−40αω2+36ω4

(389)

Therefore, the first-order analytical approximate displacements x(t) and y(t) are

x(t) = u(t)
x(t) = u(t) +A cos (ω t) (390)

Table 12 Comparison of frequency corresponding to various parameters of system

Constant parameters Approximate Solution Exact Solution Relative error %
m k1 k2 k3 X0 Y0 ωMMA ω Exact[43]

ωMMA−ωEx

ωEx

1 0.5 0.5 0.5 1 5 3.674235 3.611743 1.730234
1 1 1 2 5 1 7.141428 7.004694 1.952045
5 2 0.5 5 5 10 6.17252 6.042804 2.146618
10 5 5 10 10 20 12.30853 12.04665 2.173874
20 40 50 50 20 10 19.54482 19.13632 2.134672
50 100 50 100 -10 20 52.00000 50.87391 2.213492

Example 3

Table 12 gives the comparison of obtained results with exact ones are tabulated in Table 12

for different value of m,k1, k2, k3 and initial conditions. Comparisons of results for different

parameters via numerical and MMA are presented in Figures 40 to 43. From figures 40 and 41,

it is obvious that the motion of the system is periodic. Figures 42 and 43 represent comparison
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Figure 40 Comparison of analytical solution of displacement x(t)and y(t)based on time t with the exact
solution [43]for m = 1, k1 = 1, k2 = 1 , k3 = 2, X0 = 5, Y0 = 1
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Figure 41 Comparison of analytical solution of dx/dt and dy/dt based on time t with the exact solution [43]for
m = 1, k1 = 1, k2 = 1 , k3 = 2, X0 = 5, Y0 = 1
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Figure 42 Comparison of analytical solution of dx/dt based on x(t) with the exact solution [43]for m = 1, k1 =
1, k2 = 1 , k3 = 2, X0 = 5, Y0 = 1
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dy

/d
t

-10 -5 0 5 10

-20

-15

-10

-5

0

5

10

15

20

25 MMA
Exact

Figure 43 Comparison of analytical solution of dy/dt based on y(t) with the exact solution [43]for m = 1, k1 =
1, k2 = 1 , k3 = 2, X0 = 5, Y0 = 1

of analytical solution of dx/dt and dy/dt based on time with the numerical solution for different

parameters of the system.

We consider geometrically non-linear Tapered beams.In dimensionless form, Goorman is

given the governing differential equation corresponding to fundamental vibration mode of a

tapered beam [78]:

(d
2u

dt2
) + ε1 (u2 (d

2u

dt2
) + u(du

dt
)
2

) + u + ε2u3 = 0 (391)

Where u is displacement and ε1 and ε2 are arbitrary constants. Subject to the following

initial conditions:

u(0) = A, du(0)
dt

= 0 (392)

We can re-write Eq. (391) in the following form

(d
2u

dt2
) +
⎛
⎝
1 + ε1 (dudt )

2 + ε2u2

1 + ε1u2

⎞
⎠
u = 0 (393)

We choose a trial-function in the form

u = A cos (ωt) (394)

Where ω the frequency to be is determined.

By using the trial-function, the maximum and minimum values of ω2 will be:

ωmin = 1+ε1A2ω2

1
,

ωmax = 1+ε2A2

1+ε1A2 .
(395)

So we can write:
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1 + ε1A2ω2

1
< ω2 < 1 + ε2A2

1 + ε1A2
(396)

According to the Chengtian’s inequality , we have

ω2 =
m. (1 + ε1A2ω2 + ε2A2) + n. (1 + ε1A2ω2)

m + n
= 1 + ε1A2ω2 + k ε2A

2 (397)

Where m and n are weighting factors, k = n/m + n. Therefore the frequency can be

approximated as:

ω =
√

1 + k ε2A2

1 − ε1A2
(398)

Its approximate solution reads

u = A cos

√
1 + k ε2A2

1 − ε1A2
t (399)

In view of the approximate solution, Eq. (393), we re-write Eq.(393) in the form

d2u
dt2
+ (1+k ε2A

2

1−ε1A2 )u = (d
2u
dt2
) + ε1 (u2 (d

2u
dt2
) + u (du

dt
)2) + u + ε2u3 +Ψ

(400)

Ψ = (1 + k ε2A
2

1 − ε1A2
)u − ε1u2 (d

2u

dt2
) − ε1u(

du

dt
)
2

− u − ε2u3 (401)

Substituting the trial function into Eq. (401), and using Fourier expansion series, it is

obvious that:

Ψ = (1+k ε2A
2

1−ε1A2 ) (A cos ωt) − (2ω2ε1A
2cos2(ωt) − ε1A2ω2 − 1 − ε2A2cos2(ωt))Acos(ωt)

= ∑∞n=0 b2n+1 cos [(2n + 1)ωt] = b1 cos(ωt) + b3 cos(3ωt) + ... ≈ b1 cos(ωt)
(402)

For avoiding secular term we set b1= 0

∫
T /4

0
((1 + k ε2A

2

1 − ε1A2
) − (2ω2ε1A

2cos2(ωt) − ε1A2ω2 − 1 − ε2A2cos2(ωt))) Acos(ωt)dt = 0

(403)

Where T = 2π/ω. Solving the above equation, we can easily obtain

k = −
(ε1ω2 − ε21A2ω2 + 3ε1 − 2ε2 + 2ε2A2ε1)

3ε2
(404)

Substituting Eq. (404) into Eq. (398), yields
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ω =
√
(3 + ε1A2) (2ε2A2 + 3)

(3 + ε1A2)
(405)

According to Eqs. (405) and (394), we can obtain the following approximate solution:

u(t) = A cos
⎛
⎝

√
(3 + ε1A2) (2ε2A2 + 3)

(3 + ε1A2)
t
⎞
⎠

(406)

The exact frequency ωe for a dynamic system governed by Eq. (391) can be derived, as

shown in Eq. (407), as follows:

ωExact = 2π/4
√
2A ∫

π/2

0

√
1 + ε1A2cos2 t sin t√

A2 (1 − cos2 t) (ε2A2cos2 t + ε2A2 + 2)
dt (407)

To demonstrate the accuracy of the MMA, the procedures explained in previous sections

are applied to obtain natural frequency and corresponding displacement of tapered beams. A

comparison of obtained results from the Max-Min Approach and the exact one is tabulated in

table 13 for different parameters A,ε1 and ε2.

Table 13 Comparison of frequency corresponding to various parameters of system

Constant parameters Approximate solution Exact solution Relative error %

A ε1 ε2 ωMMA ω Exact ∣ωMMA−ωEx

ωEx
∣

2 0.1 0.5 1.43486 1.44100 0.42665
2 0.5 1 1.48323 1.44506 2.64192
2 5 10 1.8996 1.85323 2.50516
2 10 50 3.06138 3.0103 1.69512
10 0.1 0.5 2.81479 2.73523 2.90861
10 0.5 1 1.95708 1.92710 1.55604
10 5 10 1.99552 1.98950 0. 1842
10 10 50 3.15801 3.15265 0.17001

Figs. 44 and 45 represent the high accuracy of the MMA with the exact one for ε1 =
0.1 ε2 = 0.5 and ε1 = 0.5 ε2 = 0.1 . The effect of small parameters ε2 and ε1 on the frequency

corresponding to various parameters of amplitude (A) has been studied in Figs. 46 and 47.It

is evident that MMA shows excellent agreement with the numerical solution using the exact

solution and quickly convergent and valid for a wide range of vibration amplitudes and initial

conditions.

11 HAMILTONIAN APPROACH (HA)

Investigate of nonlinear problems which are arisen in many areas of physics and engineering,

especially some oscillation equations are nonlinear, and in most cases it is difficult to solve such

equations, especially analytically. Previously, He had introduced the Energy Balance method

based on collocation and the Hamiltonian. This approach is very simple but strongly depends
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Figure 44 Comparison of analytical solutions of u(t) based on t with the exact solution for ε1 = 0.1 ε2 =
0.5A = 2
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Figure 45 Comparison of analytical solutions of du/dt based on time with the exact solution for ε1 = 0.5 , ε2 =
0.1 ,A = 2,
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Figure 46 Comparison of frequency corresponding to various parameters of amplitude (A) and ε1 = 1
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Figure 47 Comparison of frequency corresponding tovarious parameters of amplitude (A) and ε2 = 1

upon the chosen location point. Recently, He [111]has proposed the Hamiltonian approach to

overcome the shortcomings of the energy balance method. This approach is a kind of energy

method with a vast application in conservative oscillatory systems. Application of this method

can be found in many literatures [124, 140, 198, 199, 203–205].

11.1 Basic idea of Hamiltonian Approach

In order to clarify this approach, consider the following general oscillator;

ü + f(u, u̇, ü) = 0 (408)

With initial conditions:

u(0) = A, , u̇(0) = 0. (409)

Oscillatory systems contain two important physical parameters, i.e. the frequency ω and

the amplitude of oscillation A. It is easy to establish a variational principle for Eq. (408),

which reads;

J(u) = ∫
T /4

0
{−1

2
u̇2 + F (u)}dt (410)

Where T is period of the nonlinear oscillator,∂F/∂u = f .
In the Eq (410), 1

2
u̇2 is kinetic energy and F (u) potential energy, so the Eq (410) is the

least Lagrangian action, from which we can immediately obtain its Hamiltonian, which reads

;

H(u) = 1

2
u̇2 + F (u) = constant (411)

From Eq. (411), we have;
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∂H

∂A
= 0 (412)

Introducing a new function, H̄(u) , defined as;

H̄(u) =
T /4

∫
0

∫ {
1

2
u̇2 + F (u)} dt = 1

4
TH (413)

Eq. (412) is, then, equivalent to the following one;

∂

∂A
(∂H̄
∂T
) = 0 (414)

or

∂

∂A
( ∂H̄

∂ (1/ω)
) = 0 (415)

From Eq.(415) we can obtain approximate frequency–amplitude relationship of a nonlinear

oscillator.

11.2 Application of Hamiltonian Approach

We have considered three examples in this section to show the application of the proposed

method.

Example 1

To illustrate the basic procedure of the present method, we consider an u1/3 force nonlinear

oscillator:

ü + au + bu3 + cu1/3 = 0, u (0) = A, u̇ (0) = 0 (416)

The Hamiltonian of Eq. (416) is constructed as:

H = 1

2
u̇2 + 1

2
au2 + 1

4
bu4 + 3

4
cu4/3 (417)

Integrating Eq.(417) with respect to t from 0 to T / 4, we have;

H̄ = ∫
T /4

0
(1
2
u̇2 + 1

2
au2 + 1

4
bu4 + 3

4
cu4/3) dt (418)

Assume that the solution can be expressed as:

u(t) = A cos(ω t) (419)

Substituting Eq.(419) into Eq. (418), we obtain:
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H̄ = ∫
T /4
0 (1

2
A2ω2sin2 (ωt) + 1

2
aA2cos2 (ωt) + 1

4
bA4cos4 (ωt) + 3

4
cA4/3cos4/3 (ωt)) dt

= ∫
π/2
0 (1

2
A2ω sin2t + 1

2ω
aA2cos2t + 1

4ω
bA4cos4t + 3

4ω
cA4/3cos4/3t) dt

= 1
8
ωA2π + 1

8
aA2 π

ω
+ 3

64
bA4 π

ω
+ 0.12267 cA4/3 π3/2

ω

(420)

Setting:

∂

∂A
( ∂H̄

∂ (1/ω)
) = −1

4
ω2Aπ + 1

4
aAπ + 3

64
bA4π + 0.16356 cA1/3π3/2 (421)

Solving the above equation, an approximate frequency as a function of amplitude equals;

ωHA =
√

a + 3

4
A2b + 0.654236 c

√
π

A2/3 (422)

Hence, the approximate solution can be readily obtained;

u(t) = A cos
⎛
⎝

√
a + 3

4
A2b + 0.654236 c

√
π

A2/3 t
⎞
⎠

(423)

The same result was obtained by He [107].

Example 2

Considering the governing equation of motion for the Duffing-harmonic oscillator:

ü + u3

1 + u2
= 0, u (0) = A, u̇ (0) = 0 (424)

The Hamiltonian of Eq. (424) is constructed as:

H = 1

2
u̇2 + 1

2
u2 − 1

2
log (1 + u2) (425)

Integrating Eq.(425) with respect to t from 0 to T / 4, we have;

H̄ = ∫
T /4

0
(1
2
u̇2 + 1

2
u2 − 1

2
log (1 + u2)) dt (426)

Assume that the solution can be expressed as:

u(t) = A cos(ω t) (427)

Substituting Eq.(427) into Eq. (426), we obtain:

H̄ = ∫
T /4
0 (1

2
A2ω2sin2 (ωt) + 1

2
A2cos2 (ωt) − 1

2
log (1 +A2 cos2 (ωt))) dt

= ∫
π/2
0 (1

2
A2ωsin2t + 1

2ω
A2cos2t − 1

2ω
log (1 +A2 cos2 t)) dt

(428)
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Setting:

∂

∂A
( ∂H̄

∂ (1/ω)
) = 0 (429)

Solving the above equation, an approximate frequency as a function of amplitude equals;

ωHA =

¿
ÁÁÁÀ∫

π/2
0 { cos2 t

1+A2 cos2 t
}dt

∫
π/2
0 sin2 t dt

(430)

The exact frequency is given by[132]:

ωEx =
2π

4 ∫
A
0

du√
[log(A2+1)−log(u2+1)]

(431)

Table 14 Comparison of frequency Hamiltonian approach and exact solution

A ωex ωHA Relative error (%)
0.01 0.00847 0.00865 2.12515
0.1 0.08439 0.08624 2.192203
1 0.63678 0.64359 1.06944
10 0.99092 0.99095 0.00303
100 0.9999 0.9999 0.0001

From Table 14, the maximum relative error is 2.192203%.

Example 3

The Hamiltonian of Eq. (391) is constructed as;

H = 1

2
(du
dt
)
2

+ 1

2
ε1 (

du

dt
)
2

u2 + 1

2
u2 + 1

4
ε2 u

4 (432)

Integrating Eq. (432) with respect to t from 0 to T / 4, we have;

H̄ = ∫
T /4

0
(1
2
(du
dt
)
2

+ 1

2
ε1 (

du

dt
)
2

u2 + 1

2
u2 + 1

4
ε2 u

4) dt (433)

Assume that the solution can be expressed as;

u(t) = A cos(ω t) (434)

Substituting Eq. (434) into Eq. (433), we obtain;

H̄ = ∫
T /4
0 ( 1

2
A2 ω2 sin2 (ωt) + 1

2
ε1 A4 ω2 sin2 (ωt) cos2 (ω t) + 1

2
A2 cos2 (ω t) + 1

4
ε2A

4 cos4 (ω t)) dt
= ∫

π/2
0 ( 1

2
A2 ω sin2t + 1

2
ε1 A4 ω sin2t cos2 t + 1

2ω
A2 cos2 t + 1

4ω
ε2A

4 cos4 t) dt
= 1

8
ωA2π + 1

32
ωA4ε1π

1
8ω

A2π + 3
64ω

A4ε2π
(435)
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Setting:

∂

∂A
( ∂H̄

∂ (1/ω)
) = −1

4
Aπω2 − 1

8
ε1A

3 π ω2 + 1

4
Aπ + 3

16
ε2A

3 π (436)

Solving the above equation, an approximate frequency as a function of amplitude equals;

ωHA =
√
2

2

√
(ε1A2 + 2) (3 ε2A2 + 4)

(ε1A2 + 2)
(437)

Hence, the approximate solution can be readily obtained;

u(t) = A cos
⎛
⎝

√
2

2

√
(2 + ε1A2) (4 + 3 ε2A2)

(2 + ε1A2)
t
⎞
⎠

(438)

Table 15 Comparison of frequency corresponding to various parameters of system

Constant parameters Approximate solution Exact solution Relative error %

A ε1 ε2 ωHA ω Exact ∣ωEX−ωHA

ωEx
∣

0.1 0.1 0.1 1.0001 1.0005 0.0374
0.1 1 0.2 0.9983 0.9983 0.0002
0.5 0.5 1 1.0572 1.0573 0.0084
0.5 1 0.5 0.9860 0.9870 0.1018
1 1 1 1.0801 1.0904 0.9382
1 0.5 0.2 0.9592 0.9623 0.3262
2 0.4 0.2 0.9428 0.9593 1.7212
2 1 0.8 1.0646 1.0917 2.4853
2 1 0.2 0.7303 0.7504 2.6846

The maximum relative error of Hamiltonian approach 2.6846 % for different values of
A, ε1, ε2 in comparison with the exact one.

12 HOMOTOPY ANALYSIS METHOD (HAM)

Homotopy analysis is a general analytic method for solving the non-linear differential equations.

The HAM transforms a non-linear problem into an infinite number of linear problems with

embedding an auxiliary parameter (q) that typically ranges from zero to one. As q increases

from 0 to 1, the solution varies from the initial guess to the exact solution. By suitable choice of

the auxiliary parameter (q), we can obtain reasonable solutions for large modulus. This method

is a strong and easy-to-use analytic tool for investigating nonlinear problems, which does not

need small parameters. In 1992, Liao employed the basic ideas of homotopy in topology to

propose a general analytic method for nonlinear problems, namely homotopy analysis method

(HAM) [128]. This method has been successfully applied to solve many types of nonlinear

problems by others [4, 6, 40, 41, 49, 51, 53, 114, 126, 129–131, 155–159, 172, 193, 194, 213].

The basic idea of HAM is introduced and then its application in nonlinear vibration is studied.
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12.1 Basic idea of Homotopy Analysis Method

To illustrate the basic ideas of the HAM, consider the following non-linear differential equation:

N [u(t)] = 0, (439)

Where N is a nonlinear operator, t denotes the independent variable and u(t) is an unknown

variable. The homotopy function is constructed as follows:

H̄(ϕ; q, h̵,H(t)) = (1 − q)L [ϕ(t; q) − u0(t)] − qh̵H(t)N [ϕ(t; q)] (440)

where ϕ , h̵ and H(t) are a function of t and q , the non-zero auxiliary parameter, is a non-zero

auxiliary function, respectively. The parameter L denotes an auxiliary linear operator. As q

increases from 0 to 1, the ϕ(t; q) varies from the initial approximation to the exact solution. In

the other words, ϕ(t; 0) = u0(t)is the solution of the H̄(ϕ, q, h̵,H(t))∣
q=0 = 0 and ϕ(t; 1) = u0(t)

is the solution of the H̄(ϕ, q, h̵,H(t))∣
q=1 = 0. Enforcing H̄(ϕ, q, h̵,H(t)) = 0 , the zero-order

deformation is constructed as:

(1 − q)L [ϕ(t, q) − u0(t)] = qh̵H(t)N [ϕ(t, q)] , (441)

with the following initial conditions:

ϕ(0; q) = a ,
dϕ(0, q)

dt
= 0 . (442)

The functions ϕ(t, q) and ω(q)can be expanded as power series of q using Taylor’s theorem

as;

ϕ(t, q) = ϕ(t,0) +
∞
∑
m=1

1

m!

∂mϕ(t; q)
∂qm

∣q=0 qm = u0(τ) +
∞
∑
m=1

um(t)qm (443)

ω(q) = ω0 +
∞
∑
m=1

1

m!

∂mω(q)
∂qm

∣q=0 qm = ω0 +
∞
∑
m=1

ωmqm (444)

Where um(t) and ωm are called the m-order deformation derivations.

Differentiating zero-order deformation equation with respect to q and the setting q =
0 ,yields the first order deformation equation(m = 1 )which gives the first-order approxima-

tion of the u(t)as follows:

L [u1(t)] = h̵H(t)N [u0(t), ω0] ∣q=0 , (445)

with the following initial conditions:

u1(0) = 0 , u̇1(0) = 0 (446)
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The higher order approximations of the solution can be obtained by calculating the m-

order (m>1) deformation equation. The m-order deformation equation can be calculated by

differentiating Eqs. (443) and (444) m times with respect to q as follows:

L [um(t) − um−1] = h̵H(t)Rm(u⃗m−1, ω⃗m−1), (447)

Where the u⃗m−1, ω⃗m−1and Rm(u⃗m−1, ω⃗m−1)are defined as follows:

Rm(u⃗m−1, ω⃗m−1) =
1

(m − 1)!
∂m−1N [ϕ(t, q)] , ω(q)

∂qm−1
∣
q=0

, (448)

u⃗m−1 = {u⃗0, u⃗1, u⃗2, ..., u⃗m−1} (449)

ω⃗m−1 = {ω0, ω1, ω2, ..., ωm−1} (450)

Subject to the following initial conditions:

um(0) = u̇m(0) = 0. (451)

12.2 Application of Homotopy Analysis Method

Example 1

Consider the following Duffing equation ;

ü + αu + βu3 = 0 u(0) = A , u̇(0) = 0 (452)

Under the transformation τ = ωt and W (τ) = u(t) Eq. (452) becomes as follows:

ω2Ẅ + αW + βW 3 = 0 (453)

The zero-order deformation equation can be written as below:

(1 − q)L [ϕ(τ ; q) −W0(τ)] = qhh̵(τ)N[ϕ(τ ; q)] (454)

In which;

N[ϕ(τ ; q)] = ω2∂
2ϕ(τ ; q)
∂τ2

+ αϕ(τ ; q) + βϕ(τ ; q)3 = 0 (455)

We chose the following auxiliary linear operator as:

L[ϕ(τ ; q)] = ω2
0 [

∂2ϕ(τ ; q)
∂τ2

+ ϕ(τ ; q)] (456)

We employ Taylor expansion series for ϕ(t; q) and ω(q)as
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ϕ(τ ; q) = ϕ(τ ; 0) +
∞
∑
m=1

1

m!

∂mϕ(t; q)
∂qm

∣q=0 qm =W0(τ) +
∞
∑
m=1

Wm(τ)qm (457)

ω(q) = ω0 +
∞
∑
m=1

1

m!

∂mω(q)
∂qm

∣q=0 qm = ω0 +
∞
∑
m=1

ωmqm (458)

In order to satisfy the initial conditions, the initial guess of W (τ) is chosen as follows:

ω0(τ) =Wmax cos(τ) (459)

In our case, to obtain the first-order approximation, the function of W1(τ) can be expressed

as

L[W1(t)] = hh̵(t)N[ϕ(t; q)] ∣q=0 (460)

W1(0) = 0 ,
dW1(0)

dt
= 0 (461)

Assuming h̵1 = −1 , h(t) = 1and after substituting Eq. (459) in Eq. (460), one would get:

ω2
0(Ẅ1 +W1) =Wmax cos(τ)(ω2

0 − α −
3

4
βW 2

max) −
βW 3

max

4
cos(3τ) (462)

W1(0) = 0 , Ẇ1(0) = 0 (463)

Eliminating the secular term, we have:

ω0 =
√

α + 3

4
βW 2

max (464)

The same result was obtained in the first example of section 2.

Solving Eqs. (462) and (463), the W1(τ) is obtained as follows:

W1(τ) = −
1

32ω2
0

βW 3
max(cos(τ) − cos(3τ)) (465)

Thus the first-order approximation of the W (τ)yields to:

W (τ) =W0(τ) +W1(τ) (466)

In which:

τ = ω t , ω = ω0 (467)

Latin American Journal of Solids and Structures 9(2012) 145 – 234



224 M. Bayat et al / Asymptotic methods: applications for nonlinear vibration

13 CONCLUSIONS

It has reviewed new asymptotic methodologies throughout numerous examples. The analytical

solutions yield a thoughtful and insightful understanding of the effect of system parameters

and initial conditions. Also, Analytical solutions give a reference frame for the verification and

validation of other numerical approaches.

Variational Iteration Method (VIM),Homotopy Perturbation Method (HPM), Energy Bal-

ance Method (EBM),Parameter-Expansion Method (PEM) ,Variational Approach (VA),Improved

Amplitude Frequency Formulation (IAFF),Max-Min Approach (MMA),Hamiltonian Approach

(HA) and Homotopy Analysis Method (HAM) are suitable not only for weak nonlinear prob-

lems, but also for strong nonlinear problems as it is indicated in this review. The most sig-

nificant feature of those methods is their excellent accuracy for the whole range of oscillation

amplitude values. Also, it can be used to solve other conservative truly nonlinear oscillators

with complex nonlinearities. The solutions are quickly convergent and its components can be

simply calculated. Also, compared to other analytical methods, it can be observed that the

results of those methods require smaller computational effort and only the one iteration leads

to accurate solutions. The successful implementations of the mentioned methods for the large

amplitude nonlinear oscillation problem were considered in this review. All reviewed methods

can be applied to various kinds of weak and strong nonlinear problems, and the examples

studied in this review can be utilized as paradigms for oscillator problems. Through nonlinear

oscillators, all the reviewed methods yield high accurate approximate periods which indicated

above.
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