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Abstract 
In the article, a new approach considering structural local failure 
for topology optimization of continuum structure is proposed. It 
aims at not only lowering the risk of local failure in the concerned 
structural regions, but also ensuring a good stiffness of the struc-
ture. The local failure may be caused by the structural uncertain-
ties or possible structural fatigue. To this end, a criterion to evalu-
ate the effect of one local failure on the structure is introduced. 
This criterion is minimized to reduce the probability of structural 
damage based on an initialized structure whose compliance is opti-
mized. Solid Isotropic with Material Penalization (SIMP) method 
and Optimality Criteria (OC) method are combined to solve the 
design problem. The effectiveness of the proposed algorithm is 
verified by a series of numerical examples. Furthermore, experi-
ments merging with additive manufacturing technique are taken to 
prove the practical ability of the method in actual engineering. 
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1 INTRODUCTION 

Since topology optimization emerged, it has been received increasing attention and has taken an 
important place in the activities of engineering design. There are thousands of research papers pub-

Hongxin Wang a 
Jie Liu a,b 
Xiuyang Qian a 
Xiaonan Fan a 
Guilin Wen a,* 
 
a State Key Laboratory of Advanced 
Design and Manufacturing for Vehicle 
Body, Hunan University, Changsha 
410082, Peoples Republic of China 
b Centre for Innovative Structures and 
Materials, School of Civil, Environmental 
and Chemical Engineering, RMIT  
University, GPO Box 2476, Melbourne 
3001, Australia 
 
* Corresponding author: 
Tel.: +86 731 88823929;  
Fax: +86 731 88822051 
Email: glwen@hnu.edu.cn 
 
http://dx.doi.org/10.1590/1679-78253679 
 
Received 14.01.2017 
In revised form 26.04.2017 
Accepted 03.04.2017 
Available online 04.05.2017 



1144     H. Wang et al. / Continuum Structural Layout in Consideration of the Balance of the Safety and the Properties of Structures 

Latin American Journal of Solids and Structures 14 (2017) 1143-1169 

lished and also massive subjects about topology optimization to improve its application into engi-
neering. Topology optimization is usually classified into two types, namely, topology optimization of 
discrete structures (Achtziger, 1997; Mortazavi and Toğan, 2016) and topology optimization of con-
tinuum structures (Suzuki and Kikuchi, 1991; Sigmund, 2001; Wang et al., 2003; Bendsoe et al., 
2013; Huang et al., 2010; Xie et al., 1993; Eschenauer et al., 1994; Aage et al., 2015). The former 
one’s target is to determine the optimum numbers, positions, and mutual connectivity of the struc-
tural members. The latter one aims at finding the optimum distribution of material in a predefined 
design domain with given objectives and constraints (Frandsen et al., 2015; Dede et al., 2015; Jing 
et al., 2015; Fuchi et al., 2015; Christiansen et al., 2016; Otomori et al., 2016). Bendsøe and Kikuchi 
presented a method which makes the optimal shape design as the material distribution problem 
based on the theory of homogenization (Bendsøe and Kikuchi, 1988; Bendsøe, M. P. 1989). In addition, 
there is another research branch such as incorporating uncertainties into structural topology optimi-
zation (Guest et al., 2008; Asadpoure et al., 2011; Chen et al., 2011; Liu et al., 2016; Jung et al., 
2004; Schevenels et al., 2011; Liu et al., 2016; Xu et al., 2016; Xu et al., 2015). The method that we 
proposed in this article is to resist the structural local failure that may be caused by those uncer-
tainties or possible structural fatigue.  

With the risk of human’s errors and mistakes increasing, as well as the complexity of current 
structural mechanical properties, a limited redundancy and a good robustness for key structures is 
urgently needed. The collapse of the World Trade Centre towers and a number of collapses of struc-
tural systems have demonstrated the importance of the structural fail-safe robustness (Sørensen et 
al., 2012). A structure with good fail-safe robustness can avert this situation, which can decrease the 
risk when a possible failure or crack emerges. 

To our best knowledge, there are mainly two ways to consider the local failure in topology op-
timization. One way is to set structural stress as constraints, to introduce the failure criterion (Ver-
bart et al., 2013; Verbart et al., 2016), in which material is considered damaged when a stress con-
straint is violated. The problem usually can be written as: 
 

Minimize:   Mass 
                   Subject to: ( ) 0,F x xs( ) £ " Î W  (1)

 

where the material failure function F depends on the stress field )(x , and the constraint sets von 

misses stress is usually seen as a yielding criterion of material for this kind of method. It is used to 
restrict the stress within a limit to eliminate the area of stress concentration and resist the occur-
rence of damage. However, it is well-known that there are several difficulties to solve the concerned 
problems, such as singular optima, expensive computational cost and highly non-linear. 

In addition, another way to consider local failure is referred to redundancy and robustness 
(Verbart et al., 2016; Ben-Tal and Nemirovski, 2002). Using this method to design an engineering 
structure, even complicated structures, the limited redundancy and well robustness make it essential 
to still survive due to human’s errors and accidents. Redundancy has been studied in truss structure 
to investigate the effect of some damages on the reliability of structure by removing some bars 
(Frangopol and Curley, 1987). Jansen et al. (2014) addressed the local failure of continuum struc-
tures in topology optimization in order to design fail-safe structures. Zhou and Raphael (2016) es-



H. Wang et al. / Continuum Structural Layout in Consideration of the Balance of the Safety and the Properties of Structures     1145 

Latin American Journal of Solids and Structures 14 (2017) 1143-1169 

tablished a rigorous framework for fail-safe topology optimization of general 3D structures based on 
the method. 

Analyzing the aforementioned remarkable works, most of them usually set the local failure as a 
constraint. They just attain the limit of the constraints for topology optimized designs but cannot 
minimize the effect of the worst damage case on the performance of the structures. In addition, 
some works remove the damaged regions with the form of patches to obtain the structure that is 
insensitive to the occurrence of a crack or a hole. However, many patches are removed in the final 
optimization results. Also, the aim of considering local failure in the optimization process should 
increase the safety under the premise of maintaining the properties of intact structures. But the 
aforementioned method just obtains a structure which is insensitive to the occurrence of a crack or 
a hole, not considering the stiffness of the intact structure. Therefore, a new approach is developed 
in this paper to balance the safety and the properties of structures. The method is to reduce the 
risk of prescribed regions which are to be possibly damaged in an initialized structure, at the same 
time, ensure the stiffness of the intact structure. To balance the safety and the stiffness, just a few 
areas are considered into the optimization objective, which are involved into one damaged scenario 
in the paper to reduce the computational cost. It should be pointed out that the possible damaged 
scenarios can be integrated by the Kreisselmeier-Steinhauser (KS) function (Jansen et al., 2014). A 
criterion which is also the optimization objective to evaluate the effect of one local failure on the 
initialized structure is introduced. The purpose of the method is to obtain the structure which gains 
the safety and a good stiffness at the same time. 

This paper is organized as follows. Topology optimization method for continuum structures is 
briefly discussed in Section 2. The theory of damaged model in density-based topology optimization 
and the definition of influence coefficient of local failure on the optimized structure are respectively 
presented in Section 3. Section 4 presents an innovative algorithm considering local failure using the 
sensitivity analysis information. Section 5 shows some examples to demonstrate the effectiveness of 
the proposed algorithm. In section 6, the experiment merging with additive manufacturing is taken 
to affirm the practical ability of the method in actual engineering. Finally, the paper is closed with 
some concluding remarks. 
 
2 TOPOLOGY OPTIMIZATION METHOD FOR CONTINUUM STRUCTURES 

In this section, the general approach without considering local failure for topology optimization of 
continuum structure is overviewed briefly. 

Topology optimization of continuum structure is to optimize the layout of material in the de-
sign domain with prescribed boundary conditions and loadings. In the presented work, the SIMP 
method (Eschenauer et al., 1994; Bendsøe and Sigmund, 1999) is used. The design domain  is 
discretized with finite elements, and the distribution of material is represented by a physical density 

er  per element, namely, the design variable which varies in the field of [0,1]. The Young’s modulus 

of element eE  is defined as follows: 
 

e minE = E + 0 min( )p
e E Er - (2) 
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where 0E  and minE  indicate the Young’s modulus of the solid and void of materials, respectively. 

p  denotes penalization which is used to make intermediate densities inefficient in the optimization 

and tend to discrete 0-1 design. The elements’ Young’s modulus eE  is used to construct the global 

stiffness matrix K  in the finite element analysis:  
 

0p
i i

i

r= åK k (3)

 
( ) ( )r r =K U F (4)

 

where 0
ik  denotes the elemental stiffness matrix associated with solid material properties. U  is the 

global displacement vector and F  is the global load vector. In the traditional OC method, the 
compliance is usually set as the objective of optimization, and the problem after using the SIMP 
method can be formulated as follows: 
 

    

0

1

Min      
N

p T
i i i i

i

C r
=

= å u k u

 
 

0

( )
subject to    

V
f

V

r
£

 
 

              =KU F  
 

                      min0 1r r< £ £

(5)

 
3 DAMAGE MODEL IN DENSITY-BASED TOPOLOGY OPTIMIZATION 

First, a mechanical body of an isotropic elastic material that occupies the design domain dRW Î  
(d=2 or 3) with a boundary that consists of two disjoint parts: 

d nG = G È G  is considered. A trac-

tion force t is defined on nG , and a prescribed displacement on DG , for simplicity, we assume the 

absence of body forces. In Fig. 1, the red region implies the damaged region where material is re-
garded as being damaged. W  denotes the whole design domain, and matW  denotes the material do-

main in which solid materials occupy; the region matW-W  implies void material domain in which 

Young’s modulus equals to minE , and the   implies damaged region in which Young’s modulus 

equals to minE . In order to differentiate void material and degraded material, a new coefficient that 

indicates degraded material will be introduced below. 
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Figure 1: The damaged model in the design domain Ω, and the material domain Ωmat. 

 
For damaged domain, in which the material is assumed degraded, accordingly, the Young’s 

modulus of material becomes minE . To not affect the update of elemental densities in the process of 

optimization, we introduce the coefficient eb , where 1eb =  denotes material of the element un-

damaged, 0.001eb =  denotes material of the element damaged, by which every element will be 

endowed the coefficient like elemental density. The predefined damaged areas are described through 
endowing coefficient of the element with 0.001eb = , and the coefficient of other elements are 

1eb = , then multiplying the coefficient by the elemental densities for all the elements. The func-

tion of introducing the coefficient eb  is to hold the assumed areas of local failure in the final struc-

ture and do not affect the elemental density. A new global stiffness matrix K  constructed with eb  

is obtained as:  
 

0

1

N

e e i
i

b r
=

= åK k (6)

 

Then, the new equilibrium equation for damaged model becomes: 
 

( )b r, =K W F (7)
 

where W  denotes the global displacement of the damaged model, F  is global load vector. The 
theory and equilibrium equation for the damaged model have been presented as above. Next, the 
criterion to evaluate the effect of one local failure on the structure will be discussed as follows. 
 
3.1 The Influence Coefficient of Local Failure in Optimized Structure 

Traditionally, compliance is the common optimization objective, which equals to the work of exter-
nal load, expressed by the following formulation: 
 

0

1

N
p T T
i i i i

i

C r
=

= =å u k u F U (8) 
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where N  denotes the number of elements, F  and U are the global load vector and global dis-
placement vector, respectively. Suppose that a crack or a hole occurs in the optimized structure, so 
materials in the region of crack or hole occurs become degenerated, resulting the coefficient of mate-

rial turning from 1e ib ( ) =  to 0.001e ib ( ) = . The change leads to the change of the stiffness matrix 

and W  is obtained by E.q(7). The compliance of damaged model becomes: 
 

TC = F W (9)
 

where F is fixed. As mentioned in (Verbart et al., 2016), suppose that the overall performance of 
the structure can be measured by a scalar function that depends monotonically on the local materi-
al properties. In that case, the damaged model will never perform better than the original model. 
Therefore, in this purely mechanical problem, we use the compliance as a measure of the overall 
performance. Consequently, the damaged model will be always more (or at best equally) compliant: 
 

T TC C= ³ =F W F U (10)
 

The effect of local failure on the compliance of the structure can be weighed by the increased 

proportion between C  and C , where the effect is the change of compliance between the damaged 
structure and original structure, indicating whether the structure is easy to be destroyed or not. An 
influence coefficient of local failure on the final design is introduced here in order to measure the 
aforementioned effect, where the percentage of the influence coefficient is adopted because the influ-
ence coefficient for some smaller regions are too small and have trouble at sensitivity filtering. The 
coefficient is defined as: 
 

C C C
G

C C
100% ( 1) 100%

-
= ´ = - ´ (11)

 
4 LOCAL FAILURE OF MATERIAL 

In practice, it requires a good robustness for the optimized structure due to the uncertainties of 
manufacture and accidental event. Typically, modern structural design requires that consequence of 
damages to structures should not be fatal to the causes of damage.  

Material failure introduces cracks and holes of varying shape and size. The local failure of the 
same size occurred in different positions will lead to different results. In Fig. 2, the vertical dis-
placements of an intact model and damaged model optimized with compliance are shown, where the 
damaged models consist of different cases that local failures occur in different positions. It is as-
sumed that the crack is a rectangle with the size of mmmm 55  . Seen from the Fig. 2, the maximal 
displacement in Fig. 2(b) is largest, which indicates the effect of the crack is larger than the other 
cracks in Fig. 2. Correspondingly, the compliance of the four cases are listed in Table 1, which show 
the compliance of damaged model in Fig. 2(b) is larger, namely, the stiffness is smaller. From the 
point of view of the energy, it will lead to more serious risk and the high rate of breaking down for 
the structure if the crack occurs in the position with high influence coefficient.  
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Figure 2: The vertical displacements for intact model and damaged model. 

 
 (a) (b) (c) (d) 

Compliance (N·mm) 220.5029 275.9644 275.9644 256.5163 

Table 1: Compliance for intact model and damaged models. 

 
The goal of the presented approach is to enhance the safety of structure based on the original 

structure. For balancing the safety and the properties better, usually, just some worst damaged 
scenarios are considered, the influence coefficient of these regions is set as optimization objective. 
Thus the design problem is formulated as follows: 
 

Min: ( 1) 100%
C

G
C

= - ´  (12a)

 

Subject to: 
0

( )V
f

V

r
£  (12b)

 

                   : ( ) ( )r r =K U F  (12c)
 

                       : ( ) ( )b r r, =K W F  (12d)
 

                       : min0 r r< £ £ 1  (12e)
 

where the second equilibrium equation in E.q(12d) is used to compute the displacement of the dam-
aged model, the global stiffness matrix of the damaged model is obtained based on the stiffness 
matrix of intact model in E.q(12c). The two equilibrium equations are performed simultaneously 
over all the iteration, so the computational cost is heavier, while the aim of involving the two equi-
libriums is to obtain the designs which are insensitive to the occurrence of local failure at the prem-
ise of guaranteeing the stiffness of the intact structure.  

The advantages of the optimization objective mentioned in the paper compared with the opti-
mization objective in (Jansen et al., 2014) are that it balances the safety and the good stiffness of 
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original structure. In the process of optimization, the structure derived in every iterative step will 
be assumed damaged in the predefined regions, however, the final optimization result holds the 
areas of predefined local failure. 
 
4.1 Sensitivity Analysis 

Based on the analysis mentioned above, the optimization objective considering local failure is shown 
in Equation (12a). Sensitivity analysis is needed when gradient-based optimization method is em-
ployed to solve the above problem. Due to massive design variables, the adjoint method is adapted 
to obtain sensitivity analysis. The details of obtaining the total derivative of the objective function 
will be shown as follows. Using the chain rule, the total derivative of the objective function with 
regard to a design variable can be obtained as follow: 
 

2

1

e e e

dG dC C dC

d C d dCr r r
= - (13)

 
where C in the second term is the compliance of the original model, and it’s derivative can be de-
rived by self-adjoint: 
 

1 0

1

N
p T
i i i i

ii

dC
p

d
r

r
-

=

= - å u k u (14)

 

where iu  denotes the nodal displacement vector per element, 0
ik  is the elemental stiffness matrix in 

the original model. The derivative of the compliance of damaged model C  in the first term of equa-

tion (13) is also straightforward to derive. The coefficient of eb  is independent of density, so the 

sensitivity also can be calculated using the self-adjoint. 
 

1 0

1

N
p T

i i i i i
ii

dC
p

d
b r

r
-

=

= - å w k w (15)

 

where iw  denotes the nodal displacement vector of the damaged model and 0
ik  is the elemental 

stiffness matrix. Finally the sensitivity of the objective is shown as follow: 
 

1 0 1 0
2

1 1

1 N N
p T p T

i i i i i i i i i
i ii

dG C
p p

d C C
b r r

r
- -

= =

= - -å åw k w u k u (16)

 
Now, the OC method is employed to expediently solve the design problem. In order to ensure 

existence of results to the concerned design problem and to overcome the formation of checkerboard 
patterns, a sensitivity filter method (Sigmund, 2001) is used to modify the sensitivities presented in 
Equation (16). 
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5 EXAMPLES 

In this section, four numerical examples are discussed to illustrate the validity of the approach. 
Optimization results obtained by traditional approach and those obtained by the presented method 
are compared. In the examples, the neighborhoods of the loads and boundaries are also included to 
optimize, because the method just redistributes the elements based on the original structure. And 
the singularity for the computation of the point supports and point loads have been considered in 
the optimization. In the examples, just the regions which are easy to be damaged are only consid-
ered. 
 
5.1 Cantilever Beam 

First, a simple example of optimizing cantilever beam is shown in Fig. 3 to test the proposed meth-
od. The dimension of design domain is 100mm×60mm and is discretized by equally sized finite ele-
ments with the size of 1mm×1mm. The volume fraction is limited to 0.5, the density is filtered 
using the filter radius R= 2. For the properties of the material, the Young’s modulus of solid mate-
rial equals to 0 1E =  Mpa, and the Poisson ratio is assumed 0.3. A unit external load 1NF =  is 

imposed on the lower right corner. 
 

 

Figure 3: Design domain and boundary conditions for cantilever beam. 

 
In this specific example, it is supposed that the size of local failure is 3mm×3mm. Three regions 

which are easy to be damaged are selected to optimize, they are {1≤x≤3, 1≤y≤3}, {1≤x≤3, 57≤y≤59} 
and {97≤x≤99, 57≤y≤59} respectively (shown in Fig. 4). The units of the coordinate ranges are mm, 
to simplify, the units are elided in these examples. To compare conveniently, four cases which are 
named case 1, 2, 3, 4 are chosen to optimize. Case 1 is to optimize compliance, case 2 is to optimize 
the scenario assuming that the local failures occur in the region of {1≤x≤3, 1≤y≤3}, case 3 is to op-
timize the scenario with the local failures occurring in the regions of {1≤x≤3, 1≤y≤3}, {1≤x≤3, 
57≤y≤59} and case 4 is to optimize the scenario considering the local failures occurring in the re-
gions of {1≤x≤3, 1≤y≤3}, {1≤x≤3, 57≤y≤59} and {97≤x≤99, 57≤y≤59}. Also, the three damaged areas 
can be divided into three different damaged scenarios, but for saving computation cost, we just 
involve them in one damaged scenario.  
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Figure 4: The prescribed damaged regions which are in blue for cantilever beam. 

 
Optimization result of normal design is shown in Fig. 5(a) and robust designs considering differ-

ent damage scenarios are shown in Fig. 5(b)-(d). The structures of robust design just change a little 
compared with the normal design, the basic members in the optimized structure are nearly same 
and the difference is that the angle and position of members have some changes. Also, the prede-
fined damaged regions are filled with more elements compared with the normal design. The objec-
tive function of the proposed algorithm is the influence coefficient of predefined regions, which aims 
at minimizing the global deformation when there are cracks. So it is useful to distribute more mate-
rials in the prescribed regions as well as its neighborhood to brace the structure when there are 
damages. To prove the effectiveness of the method, the compliance of the intact model and the 
damaged model which are obtained by traditional method and presented method are compared in 
Fig. 6. In Fig. 6, C1 is the compliance of intact model, C2 is the compliance of damaged model, G is 
the optimization objective which is showed in E.q.12(a). From the Fig. 6, it can be seen that the 
compliance of the structure optimized with presented method is smaller, namely, the stiffness is 
larger when the structure is damaged at the predefined regions. The raise of the stiffness for the 
damaged model optimized with presented method improve the rate of survival of the structure 
when it is damaged. At the same time, influence coefficients of the three predefined damaged re-
gions are listed respectively in Table 2. It can be seen that the influence coefficient in the prescribed 
region decreases greatly when case 2 is compared with case 1, and for the other two regions which 
are out of the prescribed regions listed in the table, the influence coefficients decrease a little or 
increase. As for case 4, it can be seen that the influence coefficients decrease in all the three optimi-
zation regions when compared with case 1. So it is verified strongly that the method is effective to 
reduce the risk for the case that small cracks occur in the concerned regions. And the advantage of 
the method at keeping stiffness will be justified further in Section 6. 
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(a) case 1 (b) case 2 

  

(c) case 3 (d) case 4 

Figure 5: Optimization results of the four cases for cantilever beam. 

 

  

(a) (b) 

(c) 

Figure 6: The comparison of compliance of intact model and damaged model for cantilever beam. 
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Prescribed damaged regions {1≤x≤3,1≤y≤3} {1≤x≤3,57≤y≤59} {97≤x≤99,57≤y≤59} 
Case 1 6.4894 3.3260 5.1119 
Case 2 4.9662 3.2458 5.2692 
Case 3 4.8789 2.7072 5.3080 
Case 4 4.8892 2.7108 4.5046 

Table 2: The influence coefficient in prescribed damaged regions for cantilever beam. 

 
To observe the changes of influence coefficient in other regions, the distribution of densities for 

the optimized structure are recorded. The influence coefficient of each element calculated using 
Eq.(11) is shown in Fig. 7. 
 

(a) case 1 (b) case 2 

(c) case 3 (d) case 4 

Figure 7: Diagrams of influence coefficient in the whole structure for cantilever beam. 

 
Some elements from Fig. 7 and their influence coefficients are selected and recorded in Table 3. 

It can be seen that influence coefficients near the optimized regions decrease, but with the distance 
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increasing, influence coefficients of the element which are away from the optimized regions tend to 
increase accordingly. The goal of the method is to balance the safety and the stiffness, so the effect 
of other unimportant regions is not considered in the optimization. Although the influence coeffi-
cients of some regions increase, the effect of local failure on the structure for these unimportant 
regions is little compared with the prescribed regions. 
 

The selected regions (1,5) (1,10) (1,20) (1,30) 
Case 1 0.6184 0.3940 0.2104 0.1025 
Case 2 0.5041 0.3828 0.2504 0.1369 
Case 3 0.4963 0.3852 0.2548 0.1442 
Case 4 0.4960 0.3835 0.2579 0.1482 

Table 3: Comparison of influence coefficient in some elements for cantilever beam. 

 
5.2 MBB Beam 

This example considers fail-safe robustness optimization in MBB beam. The boundary condition 
and dimension are shown in Fig. 8(a). The rectangular design domain is discretized into 130×40 
mesh and the downward load is applied at the center of the top. The move limit becomes 0.1, the 
volume fraction is limited to 0.5, and other parameters are the same as the previous example. The 
prescribed damaged regions are plotted in Fig. 8(b). In the example, the size of assumed damaged 
regions is 10mm×3mm near the load and 5mm×5mm near the boundary. Where the coordinate 
coefficients are {60≤x≤70, 1≤y≤3}, {1≤x≤5, 36≤y≤40} and {126≤x≤130, 36≤y≤40} respectively, the 
elements on which the load and the boundary apply are excluded. And two cases are chosen, where 
case 1 is to optimize compliance, case 2 is to optimize the influence coefficient in these prescribed 
regions.  
 

 

(a) 

 

(b) 

Figure 8: (a) Design domain and boundary condition for MBB beam;  

(b) The prescribed damaged regions which are in blue for MBB beam. 
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In Fig. 9, the optimization results of normal design and robust design are plotted respectively. 
It can be observed more obviously that the basic members don’t change, instead, angles and posi-
tions change a lot. From the structural point of view, the approach is to optimize the layout of 
members to change the load path and strengthen the prescribed regions. The final compliance for 
intact model and damaged model obtained by traditional method and presented method are listed 
in Fig. 10, which illustrate the superiority of the method at balancing the safety and the stiffness of 
structures. The influence coefficients of each area with the size of 2mm×2mm in the whole design 
domain are calculated using Eq. (11), and are shown in Fig. 11. The elements which are applied 
load and boundary constraints are excluded to avoid the singularity for calculating the influence 
coefficient. Then the max influence coefficient in each prescribed damaged region is listed in Table 4. 
 

 

(a) case 1 

 

(b) case 2 

Figure 9: The optimization results of the two cases for MBB beam. 

 

 

Figure 10: The comparison of compliance of intact model and damaged model for MBB beam. 
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(a) case 1 (b) case 2 

Figure 11: Diagrams of influence coefficient in the whole structure for MBB beam. 

 

Prescribed damaged 
regions 

1 2

37 38

x

y

£ £
£ £  

61 62

1 2

x

y

£ £
£ £

129 130

37 38

x

y

£ £
£ £

 
Case 1 13.3386 2.8749 13.3386 
Case 2 12.7611 2.8683 12.7611 

Table 4: The maximal influence coefficient in prescribed damaged regions for MBB beam. 

 
5.3 L-Bracket 

Then the effectiveness of the method will be tested in L-type beam. The structure is modeled using 
four node finite elements with the size of 1mm×1mm, where the number of elements is 6400. The 
volume constraint is 30% of the design domain; other parameters are identical to those used in ex-
ample 5.1. The external load is 1NF =  and is imposed on the top of the lower right corner (shown 
in Fig. 12). 
 

 

Figure 12: Design domain and boundary conditions for L-bracket. 



1158     H. Wang et al. / Continuum Structural Layout in Consideration of the Balance of the Safety and the Properties of Structures 

Latin American Journal of Solids and Structures 14 (2017) 1143-1169 

In the example, two cases are compared. The first case is to optimize compliance which is called 
L1, the second is to optimize the influence coefficient in the region of {36≤x≤45, 56≤y≤65} (Fig. 13) 
which is easy to be damaged and is called case L2. It is supposed that the size of local failure is 
10mm×10mm, because the corner in the L bracket is very important, so the predefined region is 
larger than other examples. And the optimization results of normal design and robust design are 
shown in Fig. 14. 
 

 

Figure 13: The prescribed damaged region which is in blue for L-bracket. 

 

 

(a) case L1 (b) case L2 

Figure 14: Optimization results of the two cases for L-bracket. 

 
From the Fig. 14, it can be seen that the critical section near the corner is filled with more ele-

ments and the angle of members become larger, namely, the predefined regions get strengthen 
strongly. It can be evidently seen that new bars appear to resist the damage. These changes of 
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members alter the load path, which offer more braces for the corner. Also the compliance of intact 
model and the damaged model for case L1 and case L2 are compared in Fig. 15, which justifies that 
the method is to improve the stiffness of damaged model at the premise of keeping the good proper-
ties of intact model. Also the objective function of G decreases greatly, which indicates that the 
method is valid. Then the elemental densities for the optimized structure are used to calculate the 
influence coefficients of each element, and they are shown in Fig. 16. The maximal influence coeffi-
cient near the structural corner is selected from the diagram and is listed in Table 5. 
 

 

Figure 15: The comparison of compliance of intact model and damaged model for L bracket. 

 

  

(a) case L1 (b) case L2 

Figure 16: The influence coefficient of each element in the L-bracket for the two cases. 

 
In the table, it can be observed that the influence coefficient of the optimized region reduces 

significantly, where the reduced proportion approaches 50%. But for the other two areas out of the 
prescribed regions, the changes of influence coefficient are different, one decreases a little and the 
other increases a little. 
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Some selected regions (41,61) (1,1) (40,1) 
Case L1 1.9723 0.3082 0.2689 
Case L2 0.7330 0.2803 0.2767 

Table 5: Comparison of influence coefficient in some local regions for L-bracket. 

 
5.4 U-Shape Structure 

In the last test, the U-shape structure is optimized to verify the proposed algorithm. The design 
domain has a width of 120mm and a length of 100 mm, the mesh size of each element is defined as 
1mm×1mm, so the total elements number of design domain is 10400. The external load and bound-
ary condition are shown in Fig. 17(a). The volume constraint is 30% of the design domain. In Fig. 
17(b), the prescribed damaged regions are shown in blue. And two cases are compared, where case 1 
is to optimize compliance and case 2 is to optimize the scenario that assume local failures occur in 
the prescribed regions. 
 

 

(a) 

 

(b) 

Figure 17: (a) Design domain and boundary conditions for U-shape structure;  

(b) The prescribed damaged regions which are in blue for U-shape structure. 
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The compared results are shown in Fig. 18(a) and (b) respectively. It can be obviously seen that 
the predefined regions are strengthen by more elements compared with the normal design. Also, 
new bars appear to resist the damage, and the critical section in case 2 is stronger than  case 1, 
which, once again, illustrate that the algorithm is to redistribute the elements or members based on 
the normal structure. For the U-shape structure, it is obvious that the two corners are the most 
serious areas where the stress concentrates, so they are the only prescribed optimization regions 
when the components are used under the regular work. The compliance of intact model and dam-
aged model are also compared, which is more intuitive to illustrate the availability of the method. 
In Fig. 19, C1 is the compliance of intact model, C2 is the compliance of damaged model and the G 
is the optimization objective. The influence coefficient of each element is shown in Fig. 20, where 
the influence coefficients in the prescribed regions are listed in Table 6. From the Table 6, it can be 
seen that the reduced proportion of influence coefficient approaches to 50%, which demonstrates the 
effectiveness of the method once again. 
 

  

(a) case 1 (b) case 2 

Figure 18: The optimization results of the two cases for U-shape structure. 

 

 

Figure 19: The comparison of intact model and damaged model for U-shape structure. 
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(a) case 1 (b) case 2 

Figure 20: The influence coefficient of each element in the U-shape structure for the two cases. 

 
The prescribed regions (80,31) (80,70) 

Case 1 2.0896 2.0896 
Case 2 1.1230 1.1230 

Table 6: Comparison of influence coefficient in prescribed regions for U-shape structure. 

 
6 THE EXPERIMENT COMPARISON BY ADDITIVE MANUFACTURING 

In this section, the effectiveness of the method will be proved further through the test with the op-
timization results listed in the last section, and the optimal structures are fabricated by additive 
manufacturing. Due to the limit of experimental equipment, only the MBB beam and the U-shape 
structure are selected in the test. The experiment simulates the loading and boundary condition on 
the tensile machine, and tests the additively manufactured components to verify the effectiveness of 
the method in the practical engineering. The details are stated as follows. 
 
6.1 Additive Manufacturing Related to Topology Optimization 

Additive manufacturing, which is known as 3D printing is popular recently because of the superiori-
ty at the fabrication of the components with the geometrical complexity. Topology optimization, 
which is restricted at the conceptual design due to traditional manufacturing process is hard to 
fabricate the complex structure created by topology optimization, such as casting and machining. 
However, the advanced development of the additive manufacturing makes them an ideal fit. 

Additive manufacturing (AM) (Bourell, 2016) is defined by the joint ISO/ASTM terminology 
standard to be the process of joining materials to make parts from 3D model data, usually layer 
upon layer, as opposed to subtractive manufacturing and formative manufacturing methodologies. 
The salient part of the definition is used of a computer to translate a solid model into a real part. 
For most commercial devices, the material is usually a polymer or polymer-based material, also the 
material of metal can be used in the manufacturing process. The synergy of topology optimization 
with 3D printing realizes the full benefits of topology optimization: (1) Complexity for free; (2) 
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Much less re-engineering needed; (3) Optimal performance remains intact. Therefore, it will be a 
promising research direction for the topology optimization with additive manufacturing. 
 
6.2 The Experiment of MBB Beam  

First, the optimization results of MBB beam shown in the section 5.2 were built artificially in the 
SolidWorks. Unavoidably, there would be some deviations with theoretical results due to the inter-
mediate densities near the boundary. However, we had tried our best to draw it as a unified stand-
ard to decrease the effect. For increasing the accuracy, we endued the plane optimization results a 
thickness of 10mm. Then the test specimens were additively manufactured by means of the fused 
filament fabrication technique (Clausen et al., 2016) using a machine of Makerthink x1, where the 
printing material adopts polylactide (PLA). The aim of the experiment is to compare the structures 
obtained with the two different algorithms, so the influence of the material and the influence of 
infill density can be ignored. The fill density is 20% of the whole structure, and the filament was 
extruded with a layer height of 0.2 mm and an extrusion width of approximately 0.4 mm.  

With the components fabricated by additive manufacturing, the three-point bending test of 
MBB beam was carried on the tensile machine of TFW-108. A steel loading head was placed on the 
loading point of the beam, and the beam was placed on the two supports of the steel bracket 
(shown in Fig. 21) to simulate the loading and boundary condition in the problem of topology op-
timization. The loading head was applied on the loading point with the velocity of 5mm/min, the 
data of force and displacement was measured by the transducer in the machine and was plotted as 
curve. The components of normal design and robust design fabricated by additive manufacturing 
were tested uniformly as the step. Where the test results are shown in Fig. 22, and the curves of 
force and displacement are shown in Fig. 23. Seen from the test results, the component of case 1 
lost the ability of normal working because of the entire fracture at one side of the supports, due to 
some uncertainties of manual operations, there may be some mistakes that cause the case 1 which is 
symmetric just fractured at one side. For case 2, the component were injured at the two supports, 
however, it still survived for a long time, which can be observed clearly from the curve of force and 
displacement. And seen from the curve, the displacement of case 2 is larger than the displacement 
of case 1 when the structure is damaged. In other words, the structure of case 1 is destroyed howev-
er the structure of case 2 is safe when these two structures undergo the identical strain. 
 

 

Figure 21: The loading and supporting condition on the tensile machine for MBB beam. 
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(a) case 1 (b) case 2 

Figure 22: The experiment results of the two cases for MBB beam. 

 
 

 

Figure 23: The force-displacement curve of the two cases for MBB beam. 

 
6.3 The Experiment of U-Shape Structure 

For the U-shape structure, it was also fabricated as the parameters and steps mentioned above, and 
was tested on the tensile machine of TFW-108. Different from the experiment of MBB beam, the 
U-shape structure was stretched through the strings knitted with aramid fiber connecting with the 
clamps of the tensile machine to simulate the point load, which are shown in Fig. 24. For examining 
the effect of aramid fiber, the aramid fiber was stretched on the machine to obtain the curve of 
force and displacement, which are shown in Fig. 25. From the curve, it can be observed that the 
strain of the aramid fiber is very small even though the load is very large, thus, the effect of the 
aramid fiber can be ignored in the test. 
 



H. Wang et al. / Continuum Structural Layout in Consideration of the Balance of the Safety and the Properties of Structures     1165 

Latin American Journal of Solids and Structures 14 (2017) 1143-1169 

 

Figure 24: The loading condition on the tensile machine for U-shape structure. 

 

 

Figure 25: The curve of force and displacement for aramid fiber. 

 
Also, the U-shape components additively manufactured were tested with the velocity of 

5mm/min. And seen from the cracked position in Fig. 26, the algorithm presented in the paper 
successfully strengthens the prescribed regions by the simple layout redistribution. For case 1 in the 
Fig. 26, the component broke down at one corner completely, and for case 2, the damage position 
occurred in the regions near the load. Also the main connection in case 1 is destroyed but is safe in 
case 2, which justify the advantage of the method. Because in the example, only the two corners are 
selected as the prescribed local failure, so the regions near the load which are also easy to be dam-
aged become weaker. The connection of the force and the displacement can be observed in the curve 
(shown in Fig. 27). It can be seen that the component of case 2 can bear larger deformation than 
case 1, namely, the component of case 2 can not be destroyed when it undergoes the same strain 
with case 1. Actually, the component of case 2 is not destroyed completely, and its displacement 
may be larger. 
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(a) case 1 (b) case 2 

Figure 26: The experiment results for U-shape structure. 

 

 

Figure 27: The curve of force and displacement for U-shape structure. 

 
7 CONCLUSIONS 

This paper presents a novel algorithm by taking local failure into consideration in topology optimi-
zation, and introduces a criterion called influence coefficient to evaluate the consequence caused by 
a local failure in continuum structures. The objective of the optimization problem is to minimize 
the risk of the prescribed regions based on an initialized structure, and maintain the property as the 
original structure. The concerned problem is solved by using the sensitivity analysis information. 
The effectiveness of the presented algorithm is verified by a series of numerical examples, and the 
experiment with the help of additive manufacturing is taken to approve the ability of the method in 
practical. Our algorithm can redistribute materials and members to strengthen the predefined pos-
sible damaged regions and maintain the stiffness as the original structure. For perfecting the meth-
od further, our future work will target at studying how to balance the safety and stiffness best, and 
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introducing a constraint of length scale control on the member to ensure the safety of some thin 
members in the final results. 
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