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Abstract 
This work deals with numerical simulation of the mechanical be-
havior of materials composed of heterogeneous ductile microstruc-
tures using a multi-scale approach considering plasticity processes 
and phase debonding. Due to few studies about yield surfaces of 
metal matrix composites (MMC) with weak interfaces presented in 
the literature, the major goal of this work is to propose yield sur-
faces for metal matrix composites reinforced by rigid inclusions. 
The yield surfaces are obtained for Representative Volume Ele-
ments (RVEs) of materials presenting perfectly bonded inclusions 
and phase debonding in the interface zone. The matrix is consid-
ered an ideally plastic material governed by von Mises model, 
whereas the interface zone is modeled by means contact and frac-
ture constitutive models incorporated in a proposed finite element. 
Also, RVEs containing different distributions and volume ratios of 
voids are analyzed. Considering the phase debonding, for compres-
sive loadings the RVE behaves like RVE with perfectly bonded 
inclusions whereas for tension loadings the RVE presents a behav-
ior quite similar to the one with voids. On the other hand, the 
concentration of voids in the RVE decreases its mechanical 
strength. 
 
Keywords 
RVE, cohesive zone model, homogenization, phase debonding, yield 
surface, metal matrix composites. 
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1 INTRODUCTION 

The knowledge of the mechanical properties of the materials is an important aspect for the Materi-
als Science. In this context, computational modeling is an attractive alternative, since it is possible 
to obtain results using numerical simulations replacing several costly laboratory tests. Other aspect 
is related to the capabilities increasing of the computational devices allowing the development of the 
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constitutive models and numerical techniques. Due to the similar characteristics of the mechanical 
behavior at macroscopic level, many constitutive models based on continuum mechanics and ther-
modynamics of solids have been proposed for limited applications in several cases, Peric et al. 
(2010), Nguyen et al. (2011) and Pituba et al. (2016). This limitation is evident when dealing with 
materials composed of heterogeneous microstructures resulting in constitutive models with complex 
formulation and many parameters to identify (Karamnedjad et al., 2013). However, deformation 
and rupture processes take place at microscopic level. In this context and taking into account the 
advances on the computational mechanics, many numerical techniques and constitutive models have 
been proposed to describe the mechanical behavior of heterogeneous materials at microscopic level 
considering fracture and plasticity processes, for example, Pituba and Souza Neto (2015), Azizi 
(2012), Fernandes et al. (2015a), Fernandes et al. (2015b), Santos et al. (2016), Nguyen et al. 
(2011), Cavalcante et al. (2011), Needleman and Tvergaard (1987), Tvergaard and Needleman 
(2006)among others. 

In this work, a finite-element procedure proposed by Peric et al. (2010) and extended by Pituba 
et al. (2016) to take into account the fracture process in the EVR within a purely kinematical mul-
tiscale framework is used to simulate the mechanical behavior of metal matrix composites consider-
ing the influence of the phase debonding. For Giusti et al. (2009), the need for more precise re-
sponses has improved the studies on the lower scales leading to the development of multiscale theo-
ries, which use informations from different scales to obtain the material response. According to 
Miehe (2003) and Reis and Pires (2013), the use of homogenization techniques for modeling hetero-
geneous media is an interesting alternative and important subject of the research field. The initial 
focus is to understand the physical mechanisms that are developed in the microstructure of the ma-
terial and, later, this information is used to obtain results about complex macroscopic behaviors. At 
each point of the macroscopic level, a local analysis is carried out through the modeling of a Repre-
sentative Volume Element (RVE), which is responsible for describing the material microstructure. 
The micro-to-macro transition is based on the Hill-Mandel principle, which establishes the existence 
of the energy equivalence between a point on the macro-continuum and the RVE. In this context, 
studies on quasi-brittle, composites and porous ductile materials are included, mainly in which, het-
erogeneities significantly influence the behavior of the material. Finally, as the main advantage of 
multi-scale theories, it is possible to highlight the more detailed definition of the material micro-
structure and, consequently, a more detailed analysis of its behavior. 

On the other hand, the composite materials are formed by the combination of two or more con-
stituents with different properties resulting in a material with specific characteristics. Thereby, it is 
expected to obtain a material with improved properties when compared to the individual constitu-
ents. Accordingly to Lewis (2014), the Boeing 787 is composed of more than 50% of composite ma-
terials giving us an example of the importance of using this class of materials. The mechanical be-
havior of composite materials is affected by several parameters, including the size and proportion of 
the inclusions, as well as their distribution in the matrix. In this work, special attention is given to 
another very relevant aspect related to the matrix-inclusion interface: the phase debonding. Accord-
ingly Tian et al. (2010), the fracture process in the composite materials involves the nucleation of 
voids at the interface between the constituents and, later, the growth and coalescence of these voids 
in the matrix zone. A weak interface results in low stiffness and strength. This decreasing process of 
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the mechanical properties occurs because the weak interfaces contribute significantly to the fracture 
process of the material through the matrix-inclusion decohesion. It is noteworthy that several stud-
ies have been developed to model the decohesion process at the interface zone in composite materi-
als, such as Ghosh et al. (2000), Ghassemieh (2002), Chen et al. (2003), Sun et al. (2003), Papa-
kaliatakis and Karalekas (2004), Segurado and LLorca (2005), Zhang and Chen (2012), Abadi 
(2012) and Azizi (2012). 

However, a research field that still requires studies includes the proposal and study of beginning 
and evolution criteria of the plasticity process in heterogeneous media presenting ductile behavior. 
This assertion is due to many constitutive models have been proposed in the past for materials con-
sidering some requirements, such as: homogeneity, continuum medium, isotropy and incompressibil-
ity. For some cases, these requirements do not lead to realistic results when dealing with ductile 
materials with inclusions and voids. For this reason, some works have been recently developed in 
order to describe yield surfaces for heterogeneous materials. For ductile media with small voids pro-
portions, Gurson (1977) has proposed a yield surface within an analytical modeling. This pioneering 
work has been the reference for others works dealing with yield surfaces for heterogeneous media. 
For example, Tvergaard (1981) has proposed an improvement on Gurson’s model to deal with shear 
band instabilities. Also, Needleman and co-authors have studied ductile fracture processes in micro-
structures with random distributions of void nucleation in 2D and 3D analyses (Needleman and 
Tvergaard (1987) and Tvergaard and Needleman (2006)). Brünig, Voyiadjis and others have used 
homogenization techniques for modeling damage processes in composite materials (Voyiadjis and 
Kattan (1993), Kattan and Voyiadjis (2003), Brünig et al. (2011) and Brünig et al. (2014)). Anoth-
er work dealing with porous metals has been developed by Giusti et al. (2009), which used a multi-
scale approach to obtain results considering different void ratios, being compared with ones present-
ed by Gurson (1977). 

Regarding to ductile materials with inclusions, the work of Gărăjeu and Suquet (1997) deserves 
to be highlighted. The authors have presented results for viscoelastic and plastic matrix containing 
ideally rigid particles using a semi-analytical modeling considering a perfect bonding between ma-
trix and inclusions. This situation does not properly represent the mechanical behavior of composite 
materials presenting a weak interface. Recently, the subject has been taken up by the work of Som-
er et al. (2015), which estimates yield surfaces for metals with inclusions using a multiscale ap-
proach considering phase debonding. The authors have analyzed RVEs containing an inclusion and 
the interface has been modeled by a Coulomb type fiction law. In this context, this work intends to 
contribute to the knowledge about yield surface for metallic materials with inclusions perfectly 
bonded and the influence of the weak interface in the yield surface using simple constitutive models 
at microscopic level within a purely kinematical multiscale framework. For this propose, the weak 
interface is modeled by a recently proposed contact and fracture model in Pituba et al. (2016). This 
model represents the decohesion process in matrix/inclusion interface leading to a proper represen-
tation about the homogenized macroscopic behavior of the material. Besides, this work deals with 
yield surface for materials containing different distributions and volume fractions of voids. 

The paper is divided in five sections, as follows: a brief description on multiscale framework is 
presented in Section 2 as well as the incorporation of the fracture process in the formulation. In 
Section 3 is discussed the constitutive models employed to represent the dissipative phenomena at 
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microscopic level. Section 4 presents numerical analyses and yield surfaces proposed for metal ma-
trix composites considering inclusions perfectly bonded and the influence of the weak interface con-
sideration. Moreover, yield surfaces for porous ductile materials represented by RVEs containing 
voids are proposed. Finally, some discussions and possible extensions are presented in Section 5. 
 
2 MULTISCALE FORMULATION CONSIDERING FRACTURE PROCESS. OVERVIEW 

In the context of the multiscale approach, each point x  of the macroscale W  is considered as a 
RVE representing the microscale of the material mW . Each point over the volume of the RVE is 

characterized by coordinate point y  and the boundary of the RVE is denoted by m¶W . Besides, the 

length of the microscale has to be smaller than the length of the macroscale ( )l lm . However, it is 

important to characterize the proportionality between the material phases over the RVE which 
composes the microstructure of the material. The macroscopic properties of each point of the mac-
roscale are obtained by means homogenization techniques applied on the RVE volume. An example 
of multiscale analyses is shown in Figure 1. 

The RVE is considered as a continuum medium, so that the stress concept is valid at mi-

croscale. The macroscopic quantities for strain ( ),te x  and stress ( ),ts x  at a point x  of the mac-

ro-continuum are defined as the volumetric average of their respective field ( ),tm me = e y  and 

( ),tm ms = s y  over the RVE, considering all points y  of the RVE related to the point x . Thus, 

for an arbitrary instant t the following expressions are defined: 
 

1
( , ) ( , )t t dV

V
m

m W

= ò me ex y  (1)

 

1
( , ) ( , )t t dV

V
mm W

= ò ms sx y  (2)

 
 

Macroscale (Macro-Continuum) - Ω              Microscale (RVE) - Ωμ 

 

Figure 1: Multiscale analysis scheme considering two scales. 
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Equations (1) and (2) represent the macroscopic or homogenized values for strain and stress, as 
a microscopic filed have been transformed into a macroscopic quantity by means of a homogeniza-
tion technique. 

On the other hand, by the homogenization process it can also obtain the homogenized constitu-

tive tangent modulus epC , as follows: 
 

( ) ( )
( )

( )

( )

( )( )

( )

1 1
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, , ,

S S

yt dV f t dV
V V

t
t
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m m
m m

¶ ¶
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¶ ¶ ¶

W W
= = =

ò òm ms e
s

e e e
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C x
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(3)

 

Observe that after solving the RVE equilibrium problem, presented afterwards in this paper, 

the microscopic field of stress ms  is known. Then, the homogenized values ( , )ts x  and ( , )tepC x

can be computed from Equations (2) and (3). 
Besides, the microscopic stress can be written in terms of the microscopic strain, as follows: 

 

( , ) ( ( , ))
y

t f t=m ms ey y  (4) 
 

where 
y
f  is the constitutive functional. In this work, for the triangular elements defined in the 

matrix (see section 3), the constitutive functional 
y
f  is defined by the von Mises elasto-plastic cri-

terion while for the rectangular elements defined on the interface between matrix and inclusions, 
the stress are computed taking into account the fracture and contact phenomena. Moreover, the 
microscopic strain me  can be written in terms of the microscopic displacement filed mu  of the RVE, 

as follows: 
 

( , ) ( , )St U t=m me y u y  (5) 
 

where S  is the symmetric gradient operator of the displacement field u . 
Without loss of generality, the microscopic displacement filed mu  can be defined as the sum of 

three parts: 
 

( , ) ( , ) ( , ) ( , )t t t t= + + 
m m mu y u x u y u y  (6)

 

being the first one a constant representing a rigid body motion coincident to the macroscopic dis-
placement ( , )tu x  related to the point x , the second one is obtained from the macroscopic strain e  

as follows: 
 

( , ): ( , )t t y=m eu y x  (7)
 

which varies linearly with the coordinate y , and the last part is a displacement fluctuation field 

( , )t
mu y . 

Thus, Equation (6) can be written as: 
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( , ) ( , ) ( , )t t t= + 
m meu y x y u y  (8)

 

as the macroscopic displacement ( , )tu x  is a rigid body motion, it has no influence in the stress 

field at points y  of the RVE, therefore it is not taken into account to obtain the solution of the 

equilibrium problem. Thus, in equation (8) ( , )tu x  has been disregarded, see Giusti (2009). 

In Equation (8) the part ey  varies linearly with y  resulting from the multiplication of the 

macroscopic strain e  of the RVE, which is constant, by the coordinates of the point y . In the case 

of having uniform microscopic displacement me , the displacement fluctuation mu  is null. In the 

RVE the following relations for the microscopic strain me  and the microscopic strain fluctuation 

me  have to be satisfied: 
 

( , )S t=m me u y  (9)
 

( , )S t= m me u y  (10)
 

Considering Equations (8) to (10) the microscopic strain can also be written as: 
 

( , ) ( , ) ( , )t t t= + m me e ey x y  (11)
 

After some manipulations (Fernandes et al., 2015a), Equation (11) can be written in terms of 
velocity, where a microscopic strain velocity is cinematically admissible if: 
 

( , ) ( , ) ( , )St t t mn= = + " Î     m m m me e ey u x y u  (12)
 

where mn  is the space of cinematically admissible displacements of the RVE. More details can be 

found in Fernandes et al. (2015a). 
As already mentioned, the microscale is represented by the RVE, being the FEM (Finite Ele-

ment Method), the numerical method used to solve the RVE equilibrium problem. Therefore, the 
computation of displacements, internal forces, stress and constitutive tensors, for all finite elements, 
are obtained when the convergence of the equilibrium problem is achieved according to the adopted 
tolerance factor. But, in order to solve the RVE equilibrium problem, boundary conditions in terms 
of displacement fluctuations must be imposed to the RVE. Therefore, considering Equations (3), (9) 
and (11), the following Equation can be obtained to represent the equilibrium problem of the solid 
part of the RVE in terms of displacement fluctuation: 
 

( ( , ) ( , )): 0
S

S S
yf t t dV

m

mn
W

+  = " Îò me h hx u y  
(13)

 

Finally the formulation is completed by the appropriated choice of the space mn , i. e., with the 

choice of the kinematical restrictions to be imposed to the RVE. Thus, the microscopic equilibrium 
problem consists of, given the macroscopic strain tensor e , finding the field mnÎmu  such that for 
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each instant t , the Equation (13) is satisfied. As h  is an arbitrary field, after the RVE domain 

discretization into finite elements, whose domain is referred as h
mW , an incremental microscopic 

equilibrium equation must hold for a load increment in time 1n n nt t t+D = -  and a domain discreti-

zation h , finding the displacement fluctuation ( ) ( ) ( )1n n n+
= +D  

m m mu u u . If the load increment is 

non-linear, Equation (13) is solved by applying the Newton-Raphson Method which consists of find-

ing the fluctuation correction 1i+mdu  for iteration i+1, such that: 
 

md ++ = 1 0ii iF K u  (14)
 

where F  is the force vector and K  the tangent stiffness matrix of the RVE. After computing the 

correction 1i+mdu  defined in Equation (14), the next step is to obtain the displacement fluctuation 

field to be considered at iteration i+1 given by: 1 1i i i+ += +  m m mdu u u . 

Accordingly Pituba et al. (2016), in order to define F  and K , let us denote eB  as the element 

strain-displacement matrix, eN  as the number of triangle finite elements, m
eD  as the constitutive 

tangent modulus of the element e, 
efK  as the tangent stiffness matrix of the cohesive contact finite 

element 
fe , int

efF  as the internal force vector of the cohesive contact finite element and 
fN  as the 

number of the cohesive contact finite elements. Thus, F  and K  can be written as: 
 

( ) ( ) ( ) ( )

1
1 1

fei i
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f
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e iT i int T int
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1 1i i

yi
df

d
+ += +

æ ö÷ç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷÷ç ÷çè øm m

m
m e e
e

Bu

D  (17)

 

On the other hand, the homogenized stress is computed from Equation (2), considering that the 

RVE is composed by voids and a solid part (matrix and rigid inclusions) S v
m m mW = W ÈW , resulting 

into: 
 

1 1
( , ) ( , ) ( , )

V
S v

t t dV t dV
V

m m
m mW W

= = +ò òm ms s s sx y y  (18) 
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The RVE equilibrium problem is completed with the choice of the kinematical restrictions to be 
imposed to the RVE, leading to different classes of multiscale models and consequently to different 
numerical results (Peric et al., 2010). In this work only periodic displacement fluctuations is consid-

ered. For that, each RVE side 
i
+G  whose normal direction is 

in
+ , must correspond to an equal side 

i
-G  with normal direction 

in
- , being 

i in n+ -= - . Similarly, for each point +y  defined on 
i
+G  

must exist a point -y  on the side 
i
-G .To have periodic displacement fluctuation on the boundary, 

for every pair of points ( ),+ -y y  the following relation must be verified: 

 

{ }( , ) ( , ) ,t t m
+ - + -= " Î¶W m mu y u y y y  (19)

 
3 CONSTITUTIVE MODELING 

In order to simulate the plastic strains presented in the microstructures of the ductile porous mate-
rials, the von Mises model with strain hardening has been used. Besides, for analysis of MMC, cohe-
sive fracture and contact models have been applied to describe the phase debonding in the interface 
zone as well as a rigid and elastic behavior is adopted for the inclusion. 

The Finite Element Method (FEM) is used to model the RVE problem. Triangular finite ele-
ments have been employed in the discretization problem of the inclusions and matrix zones. Con-
tact fracture finite elements recently developed in Pituba et al. (2016) have been used in the inter-
face zone. Figure 2 shows the discretization scheme. 
 

 

Figure 2: Constitutive and FEM Modeling of the RVEs: (A) RVE with an inclusion; (B) RVE with a void. 

 
The nucleation and evolution of the fracture process have been added to the previous micro-

structure formulation (item 2), leading to different homogenized stress and constitutive tensors. For 
the cohesive fracture model proposed in Pituba et al. (2016) and used in this work, the traction and 
opening displacement relation considers a gradual separation process of the fracture surfaces in or-
der to avoid numerical instabilities due to the strong discontinuity. Besides, each Gauss point of the 
contact fracture finite element (Figure 3) contributes to the internal force evaluation by means of 

Void
Cohesive Fracture and Contact Finite Elements 

(interface)

(A) (B)

Triangular Finite Elements
(inclusion) Triangular Finite Elements 

(matrix)
Triangular Finite Elements 

(matrix)
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the traction vector computed either by the cohesive law (if a crack is opened at that Gauss point) 
or by the contact law (if a crack is closed at that Gauss point). In the coordinate local system of the 
contact fracture finite element (Figure 3), the s and n axes indicate the sliding and normal direc-
tion, respectively. 
 

1 (1)
(2)

(4)

(5)

(7)(8)
tn ts

tnts

-1

0

+1

-1
0

+1





e-

e+

2

3

4

(6)

(3)

 

Figure 3: Contact fracture finite element developed in Pituba et al. (2016). 

 
It is important to note that the contact fracture finite element is composed of two surfaces 

which are coincident in the undeformed configuration of the RVE. The contact fracture finite ele-
ment is defined as an element with four nodes and its geometry is compatible with the two triangu-
lar finite elements used to model the matrix and inclusion zones. The formulation of the contact 
fracture finite element is presented in Pituba and Souza Neto (2015) and Pituba et al. (2016). 

Pituba et al. (2016) have proposed a cohesive fracture law in order to deal with damage process 
leading to the complete failure of microstructures in ductile media. The constitutive model describes 
the finite-deformation irreversible cohesive law. The cohesive free energy is given by: 
 

( , , )n Sf f d d= q  (20)
 

where, nd  is the normal opening displacement due to mode I; Sd  is the sliding opening displace-

ment due to mode II and q  is the internal variable that describes the inelastic processes related to 

decohesion. 
It is possible to assume that the deformation due to sliding opening process is a scalar value in-

dependent of the sliding direction on the cohesive surface, thus Sd = Sd , therefore the behavior 

has an isotropic characteristic and the cohesive law is written introducing an effective opening dis-
placement expressed by: 
 

2 2 2
S nd b d d= +  (21)

 

The parameter b  assumes different values (from 0 to 1) establishing a weight ratio between the 

sliding and normal directions. The f  free energy potential depends of d , and the cohesive law is 

expressed as: 
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2( )n

t
b d

d
= +St nd  (22)

 

where, n  is the unit normal to the cohesive surface; Sd  is the sliding opening vector located on the 

cohesive surface, t  is the cohesive traction on the crack; t  is a scalar effective traction. 
On the other hand, the released cohesive energy in the microstructure of the material proposed 

in this work (Equation (20)) is given by: 
 

1

1c ce e

d
d

f s d

é ùæ ö÷çê ú÷ç- + ÷çê ú÷ç ÷çê úè øë û

é ù
ê ú
ê ú= -ê ú
ê ú
ê úë û

c  (23)

 

where the law for the scalar effective traction for the loading cases is obtained from Equation (23) 
as: 
 

/
max 0ct e if andd df

s d d d
d

-¶
= = = ³

¶
c  (24)

 

For the scalar effective traction for the unloading cases is proposed a law considering an elastic 
behavior, i. e., without residual effective opening displacement as follows: 
 

max
max

max

0
t

t if ord d d d
d

= < <  (25)

 

Where e  is the e-number, cs  is the maximum tension cohesive normal traction and cd  is a 

characteristic opening displacement that indicates a critical opening. Thus, b , cs  and cd  are pa-

rameters of the cohesive model. Besides, d  is the opening displacement rate. Also, there is a relation 
between the cohesive law and the critical energy released rate (GC) for crack propagation in the 
microstructure. Assuming the direction 1 as the direction on the fracture surface and towards to the 
its propagation, GC can be written as: 
 

,1 1

0

.
R

C
G t dxd= ò  (26)

 

where R is the cohesive zone length. The Equation (26) can also be defined as: 
 

,1 1

0

.
C
G t dxd f

¥

¥
= =ò  (27)

 

For the cohesive law presented in this work, using Equation (24), the critical energy released 
rate is given by: 
 

C C C
G es d=  (28)
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Before the nucleation process, it is assumed the existence of stiffness between the surfaces of the 
future fracture situated between triangular finite elements. This stiffness is simulated by another 
parameter of the proposed model called penalty factor (

pl ). In a practical view, high values for this 

parameter are adopted in order to obtain an accurate approach. This procedure ensures that the 
future fracture be kept closed until the separation criterion is reached and, at the same time, guar-
antees the physical admissibility of the entire process. The penalty factor is, therefore, a stiffness 
imposed to the crack keeping it closed. 

In general way, that strategy intends to create stiffness between the nodes of the embedded 
contact fracture finite elements in the interface zone in order not to allow penetration between the 
surfaces of the fracture. However, in tension regimes, this penalty factor effectively replaces the 
initial rigid part of the cohesive law for a linear response given by Equation (29). In order to detect 
the cohesive contact phenomenon, the concept of the opening displacement gap between the Gauss 
points of the contact fracture finite element is adopted. 
 

p P c
t sel d l d s= £  (29) 

 
4 RESULTS 

In this section, the computational homogenization-based approach described in section 2 is used for 
numerical analyses of MMCs (metal matrix composites) and porous ductile microstructures in order 
to obtain yield surfaces and understanding the mechanical behavior of these kinds of materials. For 
the MMCs, the analyses are performed considering perfect bonding in the interface zone as well as 
the phase debonding to discuss the influence of this fracture process on the mechanical strength of 
MMCs. Other analyses are performed considering porous microstructures with ductile matrix con-
sidering different void volume fractions and different void distributions. In all analyses, the periodic 
boundary fluctuations have been used. 

Initially, the study is focused on the hydrostatic part of the homogenized stress tensor p  and 

the homogenized effective stress of von Mises model denoted by q . Consider now, the normalized 

values of ' 'p q-  related to yielding stress 
y

s , where the followings relationships are employed to 

obtain the numerical results: 
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where: xxs  represents the homogenized stress component in the direction x ; yys  represents the 

homogenized stress component in the direction y ; and xys  is the shear homogenized stress. 

The numerical responses represented by curves of 'p  and 'q  versus normalized increments of 

imposed macroscopic strains have been plotted for each RVE. Soon after, the maximum values for 
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'p  and 'q  obtained in each analysis have been used for the construction of yield surfaces for the 

materials. 
 
4.1 Numerical Analysis of Metal Matrix Composites 

This works intends to discuss the progressive collapse of heterogeneous materials composed of duc-
tile microstructures reinforced by rigid inclusions and weaken by voids. Somer et al. (2015) has 
discussed this theme using a Coulomb type fiction law to model the interface. However, in this sec-
tion, cohesive and contact laws are used with contact fracture finite element. In Pituba et al. (2016) 
is presented some advantages of the proposed modeling, such as: the proposal of a smoother stiff-
ness reduction for ductile media, and the stiffness of the contact fracture finite element is computed 
taking into account individual contributions of each Gauss point, which can be either in an opened 
or closed condition, as described in section 3. 

In order to observe the mechanical behavior of metal matrix composites, different RVEs sub-
mitted to different loading states have been analyzed. For the study, four different RVEs with their 
dimensions defined by LxL and thickness given by L/10 have been used: one RVE containing a 
concentrated void at the center of the RVE with 10% porosity; another RVE containing an inclu-
sion, at the center of the RVE, perfectly bonded to the matrix with 10% of volume fraction; the 
same configuration of the last RVE, but considering the phase debonding with b = 0  (considering 

only normal opening of the crack surface) and b = 0.707  (considering normal and sliding phenom-

ena over the crack surface). 
For the RVE with void 1800 triangular finite elements have been used. For the RVE with an 

inclusion perfectly bonded, 1976 triangular finite elements have been used. Finally, for the two situ-
ations of the RVE containing an inclusion considering phase debonding, 1976 triangular finite ele-
ments have been used and 32 contact fracture finite elements have been employed to model the 
interface zone. In all numerical analyses, plane strain conditions in small strain regime have been 
considered using a tolerance factor of 10-6 to check the convergence of the nonlinear procedure. 

On the other hand, von Mises Model with perfect elasto-plasticity has been adopted to model 
the mechanical behavior of the matrix zone considering a yield stress s =y 240MPa . Also, a 

Young´s modulus = 200GPaE  and Poisson’s ratio n = 0.3 have been assigned. To the inclusions, 

an elastic behavior has been assumed considering a Young´s modulus = 1100GPaE  and Poisson’s 

ratio n=0.25 in order to simulate a rigid inclusion. For the interface zone, the following parame-
ters have been assigned: 

p
l = 122x10 , 

c
s = 24MPa , 

c
d = 0.2mm  and b = 0  or b = 0.707 . 

To perform the analyses presented in this section, a macroscopic strain tensor have to be im-
posed to the RVE. In order to cover a range of possible loading states, the Equation (32) is adopted 
to describe the imposed macroscopic strain tensor: 
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where a  represents a load factor. Besides, in all numerical analyses the macroscopic strain tensor 
has been divided in 30 increments to perform the non-linear analysis (∑ N° Increments = 30, see 
Figures 4, 5, 6, 8, 9 and 10). 

Therefore, the normal strains ( xxe  and 
yye ) and/or distortional strain (

xyg ) vary accordingly 

with adopted value for a . For the analyses focusing on behavior of the normalized effective stress 
'q  and pressure 'p , positive (a=1.0 , a= 0.8 and a= 0.6) and negative (a= -1.0 , a= -0.8 

and a= -0.6) values for a are used. Besides, the analysis with a= 0.0  has been performed, but 
for these cases the numerical convergence has not achieved due to the high values for the distor-
tional macroscopic strain imposed to the RVE leading to early plastic collapse of the matrix zone. 

Figures 4, 5 and 6 present the results considering the components 'q  and 'p  for positive values 

of load factor. 
 
 
 

 

Figure 4: Numerical results considering the components 'q  and 'p  for a = 1.0 . 

 
 
 

 

Figure 5: Numerical results considering the components 'q  and 'p  for a = 0.8 . 
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Figure 6: Numerical results considering the components 'q  and 'p  for a = 0.6 . 

 
Figure 7 presents the x-direction stress distribution over the RVE for positive values of load 

factor. Note that the use of a unique stress scale for the entire Figure 7 leads to some perturbations 
for visualization proposes of the stress distribution for a=1.0  due to the large values of stress 
scale. However, the stress distribution is considered symmetric as expected for a=1.0 . 
 

 

 

 

Figure 7: The x-direction stress distribution (MPa) over the RVE for positive values of load factor. 

 
The results related to the components of 'q  and 'p  for compressive load factors (negative val-

ues for a ) are shown in Figures 8, 9 and 10. 
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Figure 8: Numerical results considering the components 'q  and 'p  for a = -1.0 . 

 
 

 

Figure 9: Numerical results considering the components 'q  and 'p  for a = -0.8 . 

 
 

 

Figure 10: Numerical results considering the components 'q  and 'p  for a = -0.6 . 
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Figure 11 presents the x-direction stress distribution over the RVE for negative values of load 
factor. The same observation reported for Figure 7 about the visualization of the stress distribution 
is valid here for a= -1.0 . 

Also, more analyses were performed using others values for α considering positive and negative 
values in order to provide a range of results which are necessary to propose the yield surfaces relat-
ed to obtained maximum values for 'q  and 'p . The yield surfaces considering microstructures with 

void, bonded inclusion and debonded inclusion are presented in Figure 12. In order to compare the 
results obtained by the proposed modeling for porous ductile materials with Gurson’s model, Figure 
12 also shows the results expressed by Equation (33) proposed by Gurson (1977). 
 

( )2

6

1
' 1 2 cosh 3 '
1 3 24

q f f p
f f

= + -
+ +

 (33)

 
where f  represents the void volume fraction (in this case, 10%=f ) and 'p  and 'q  are given by 

Equations (30) and (31), respectively. 
 
 

 

 

Figure 11: The x-direction stress distribution (MPa) over the RVE for negative values of load factor. 
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Figure 12: Proposed yield surfaces considering the components 'q  and 'p  for four  

different microstructures: RVE with void, RVE with bonded inclusion, RVE with  

debonded inclusion (b = 0 ); RVE with debonded inclusion (b = 0.707 ). 

 
 
 

The numerical results show that for compressive loadings the RVE considering phase debonding 
presents a similar mechanical behavior to the RVE with bonded inclusion. This conclusion is in 
agreement with Somer et al. (2015). This result was expected because in case of compressive load-
ings the contact phenomena play an important role in the mechanical behavior of the RVE keeping 
the possible fractures closed. Therefore, even considering phase debonding, the inclusion is capable 
to conferee an high rigidity to the RVE. Therefore, for the cases of RVE with bonded inclusion and 
RVE considering the phase debonding, a significative parcel of the stress state is supported by the 
reinforcement (rigid inclusion). 

For expansive loading cases the RVE considering phase debonding presents a similar mechanical 
behavior to the RVE with centered void. This qualitative result is also in agreement with Somer et 
al. (2015). This similarity of mechanical behaviors is possible due to the gradual separation of the 
fracture surfaces leading to a complete debonding and failure of the microstructure as a RVE with 
void, i. e., the rigid inclusion does not play its role as reinforcement. It is important to note that for 
high values of distortional strains, difficulties to obtain the numerical responses of the RVEs consid-
ering phase debonding have been experienced, mainly for the case with b = 0  where the shear 

stresses have leaded to a massive yielding of the matrix zone. Besides, it is important to note that 
the proposed modeling presents results quite satisfactory in expansive loading cases for microstruc-
tures with phase debonding or voids when compared with Gurson’s model. Moreover, for micro-
structures with voids in compressive loading cases, the proposed modeling also is agreement with 
Gurson’s model. 
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Finally, based on the results presented in this section some approximate equations have been 
proposed to deal with the different kinds of heterogeneous microstructures. Figure 13 shows the 
proposed equation for reinforced microstructures considering perfectly bonded inclusion. Figures 14 
and 15 show the proposed equations for reinforced microstructures considering phase debonding 
(b = 0 ) submitted to expansive and compressive loadings, respectively. Figures 16 and 17 are 

about the consideration with b = 0.707 . Figure 18 presents the proposed equation for porous duc-

tile materials. 
 
 
 

 

Figure 13: Approximate function for yield surface for reinforced microstructures with perfectly bonded inclusion. 

 
 
 

 

Figure 14: Approximate function for yield surface for reinforced microstructures  

considering phase debonding (b = 0 ) - expansive loadings. 

q' = -0.0000006580p'6 - 0.0000000171p'5 + 0.0000784918xp'4 + 
0.0000026231p'3 - 0.0079915972p'2 - 0.0000558720p' + 

1.0131454564

0

0,2

0,4

0,6

0,8

1

1,2

-15 -10 -5 0 5 10 15

q'

p'

Bonded

Approximate function
(Bonded)

q' = -68458.39p'4 + 384159.15p'3 - 808362.90p'2 + 
755954.75p' - 265088.09

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

1,35 1,37 1,39 1,41 1,43 1,45

q'

p'

Debonded (β = 0)

Approximate function 
(Debonded: β = 0)



W.F. Santos and J.J.C. Pituba / Yield Surfaces of Material Composed of Porous and Heterogeneous Microstructures Considering…     1405 

Latin American Journal of Solids and Structures 14 (2017) 1387-1415 

 

Figure 15: Approximate function for yield surface for reinforced microstructures  

considering phase debonding (b = 0 ) - compressive loadings. 

 
 
 

 

Figure 16: Approximate function for yield surface for reinforced microstructures  

considering phase debonding (b =0.707 ) - expansive loadings. 
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uted voids with 10% porosity where 1922 triangular finite elements have been used. The major goal 
here is to analyze the differences of the mechanical behavior of porous materials considering two 
factors: the value of the porosity and the distribution or concentration of voids. 
 
 
 

 

Figure 17: Approximate function for yield surface for reinforced microstructures  

considering phase debonding (b =0.707 ) - compressive loadings. 

 
 
 

 

Figure 18: Approximate function for yield surface for microstructures with voids. 
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modulus E = 200GPa  and Poisson’s ratio n = 0.3 have been assigned. It has been assumed plane 

strain conditions in small strain regime considering the following relation for the imposed macro-
scopic strain: 
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 (34)

 
where a  represents a load factor. 

Now, RVEs containing porous ductile material are analyzed, therefore it was necessary to de-
crease the values for the imposed macroscopic strains in order to avoid the massive yielding of the 
matrix zone leading to the collapse of the RVE and, also, in order to obtain the convergence of the 
numerical procedure, mainly in the RVE with 10% porosity with distributed voids. Besides, in all 
numerical analyses the macroscopic strain tensor has been divided in 30 increments to perform the 
non-linear analysis (∑ N° Increments = 30, see Figures 19, 20, 21, 22, 24, 25 and 26). 

For the analyses focusing on behavior of the normalized effective stress 'q  and pressure 'p , 

positive (a=1.0 , a= 0.8 and a= 0.6) and negative (a= -1.0, a= -0.8 and a= -0.6) values 
for α are used as well as a= 0.0 . Figures 19, 20, 21 and 22 present the results considering the 
components 'q  and 'p  for positive and null values of load factor. 

Figure 23 presents the x-direction stress distribution over the RVE for positive and null values 
of load factor. 

The results related to the components 'q  and 'p  for compressive load factors (negative values 

for α) are shown in Figures 24, 25 and 26. 
 
 
 

 

Figure 19: Numerical results considering the components 'q  and 'p  for a = 1.0 . 
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Figure 20: Numerical results considering the components 'q  and 'p  for a = 0.8 . 

 
 

 

Figure 21: Numerical results considering the components 'q  and 'p  for a = 0.6 . 

 
 

 

Figure 22: Numerical results considering the components 'q  and 'p  for a = 0.0 . 
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Figure 23: The x-direction stress distribution (MPa) over the RVE for positive and null values of load factor. 

 
 

 

Figure 24: Numerical results considering the components 'q  and 'p  for a = -1.0 . 
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Figure 25: Numerical results considering the components 'q  and 'p  for a = -0.8 . 

 
 
 

 

Figure 26: Numerical results considering the components 'q  and 'p  for a = -0.6 . 

 
 
 

Figure 27 presents the x-direction stress distribution over the RVE for negative values of load 
factor. 

As explained in section 4.1, more analyses were performed using others values for a  in order to 
propose the yield surfaces considering microstructures with randomly distributed voids and concen-
trated void presented in Figure 28. 
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Figure 27: The x-direction stress distribution (MPa) over the RVE for negative values of load factor. 

 

 

Figure 28: Proposed yield surfaces considering the components 'q  and 'p for four different  

microstructures: RVEs with concentrated void containing 5% and 10% porosities, RVEs  

with randomly distributed voids containing 5% and 10% porosities. 
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concentrated void. As expected, the RVEs with 5% porosity have presented higher strength than 
ones with 10% porosity. For 0.0a = , the numerical results were different and small values have 
been observed being considered nulls (see Figure 22) because in this case only macroscopic distor-
tional strains are imposed leading to small values for 'p , mainly in RVEs with symmetric distribu-

tions of voids. 
On the other hand, for component 'q , it can observed that the void distribution has influenced 

the numerical results. In general point of view, for the same void ratio, the values for 'q  in RVEs 

with randomly distributed voids are bigger than for the cases of RVEs with concentrated voids. 
Therefore, the concentration of voids at center of the RVE has influenced the deviatoric part of the 
stress tensor leading to decreasing of values for component 'q . The RVEs with 5% porosity have 

presented values for 'q  bigger than RVEs with 10% porosity in all cases, except in situations with 

a = 1.0 and a = -1.0 . In these last cases, the numerical results have presented small values for 'q  

due to only macroscopic normal strains have been imposed to the RVE. 
Besides, Figure 28 shows that the increasing of the porosity implies in yield surfaces with small-

er values. The increasing of the porosity leads to the loss of strength of the RVE and its early col-
lapse. This conclusion is in agreement with Giusti et al. (2009). Moreover, the shape of the void 
distribution has influenced the obtained results. The concentration of voids has implied in yield 
surfaces with smaller values when compared to distributed voids situation. It is important to note 
that the yield surfaces have presented little different values for expansive and compressive loadings. 
It is possible to observe that expansive loadings present a more evident difference between surfaces 
when considering concentrated and distributed voids, in each situation (5% and 10% porosities). 

For 5% porosity the following equation has been proposed based on the results presented in 
Figure 28: 
 

6 5 4 3 2

1 2 3 4 5 6 7

0.0347 0.0008 0.0777 0.0004 0.296 0.0033 0.683
' ' ' ' ' ' '=- + + + - - +q p p p p p p

A A A A A A A
 (35)

 

where iA is a parameter to fit the curves considering centered ( 1.0 1...7= =iA for i  ) or distributed 

voids ( 1 2 1 3 1 4 1 5 1 6 1 7 11.33; 0.1 ; 1.05 ; 0.02 ; 0.85 ; 0.58 ; 0.74= = - = = = = =A A A A A A A A A A A A A ). 

For 10% porosity, the proposed equation is given by: 
 

6 5 4 3 2

1 2 3 4 5 6 7

0.1332 0.0004 0.2104 0.0008 0.4375 0.0009 0.5794
' ' ' ' ' ' '=- - + + - - +q p p p p p p

B B B B B B B
 (36)

 

where iB is a parameter to fit the curves considering centered ( 1.0 1...7= =iB for i  ) or distribut-

ed voids 

( 1 2 1 3 1 4 1 5 1 6 1 7 11.22 0.01 ; 0.94 ; 0.01 ; 0.84 ; 0.12 ; 0.79= = = = = = =B B B B B B B B B B B B B; ). 

 
5 CONCLUSIONS 

In this work yield surfaces for porous ductile media and metal matrix composites considering phase 
debonding have been proposed. A computational homogenization-based approach considering frac-
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ture processes has been used to model the mechanical behavior of materials at microscopic level. 
The importance to consider the phase debonding in metal matrix materials has been addressed in 
Pituba et al. (2016). However, it is necessary to discuss the safety limits to deal with this kind of 
materials. Therefore, this work has contributed to understand the mechanical behavior of MMCs 
and porous ductile materials at microscopic level leading to properly proposed yield surfaces. 

Specific results have been found in this work related to MMC. For instance, it is possible to 
note that for compressive loadings, RVE considering phase debonding has the same mechanical 
behavior of the RVE considering perfectly bonded inclusion. However, for expansive loadings, RVE 
considering phase debonding behaves closely to the RVE with void. Therefore, the consideration of 
phase debonding is important in collapse regimes when the material is excited by dominant tension 
regimes. 

Another interesting discussion is about the porous ductile media. In general way, the numerical 
results have shown that the increasing of the void volume fraction leads to yield surfaces with small 
values. Besides, the distribution of voids in the RVE has a massive influence on the Von Mises ef-
fective stress. If the void volume fraction is kept constant, the RVEs with randomly distributed 
voids present high values for the Von Mises effective stress when compared to the RVEs with con-
centrated void. So, it is possible to observe that the concentration of voids in the RVE leads to the 
decreasing of its strength. 

Finally, the computational homogenization-based approach has shown the capability to deal 
with complex macroscopic phenomena of mechanical behavior of heterogeneous materials using 
simple, but efficient constitutive models at microscopic level. This formulation is potentially appli-
cable to fully coupled multiscale analysis of solids composed of heterogeneous materials. 
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